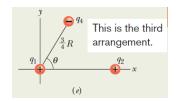
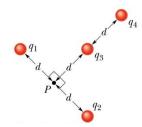

Chapter 18 Example Problems


1. Two positively charge particles are fixed on the *x*-axis. The charge $q_1 = 1.60 \times 10^{-19}$ C and $q_2 = 3.20 \times 10^{-19}$ C are separated by a distance R = 0.0200 m. What is the magnitude of the electrostatic force F_{12} on particle 1 from particle 2?


2. Charges $q_1 = 1.60 \times 10^{-19}$ C and $q_2 = 3.20 \times 10^{-19}$ C are separated by a distance R = 0.0200 m. A third charge $q_3 = -3.20 \times 10^{-19}$ C and is placed a distance ${}^{3}\!\!/R$ from particle 1. What is the magnitude of the electrostatic force $F_{1,net}$ on particle 1 from particle 2 and 3?

3. Charges $q_1 = 1.60 \times 10^{-19}$ C and $q_2 = 3.20 \times 10^{-19}$ C are separated by a distance R = 0.0200 m. A charge $q_4 = -3.20 \times 10^{-19}$ C and is placed a distance ${}^3\!\!/R$ from particle 1 and lies on a line that makes an angle of $\theta = 60^\circ$ with the *x*-axis. What is the magnitude of the net electrostatic force $F_{I,net}$ on particle 1 from particle 2 and 4?

4. The four particles in the figure are fixed in place and have charges $q_1 = q_2 = +5e$, $q_3 = +3e$, and $q_4 = -12e$. Distance $d = 5.0 \mu m$. What is the magnitude of the net electric field at point *P* due to these particles?

- 5. An electric dipole consisting of charges of magnitude 1.50 nC separated by 6.20 μ m is in an electric field of strength 1100 N/C. Determine the following:
 - a. Magnitude of the electric dipole moment?
 - b. Difference between the potential energies for dipole orientations parallel (0 $^{\circ}$) and antiparallel (180 $^{\circ}$) to **E**?