Chapter 20
 Example Problems

1. How long does it take electrons to drift from a car battery to the starting motor? Assume the current produced by the electrons drifting through the circuit is 300 A and the electrons travel through a copper wire with cross-sectional area $0.21 \mathrm{~cm}^{2}$ and length of 0.85 m . The number of charge carries per unit volume is $8.49 \times 10^{28} \mathrm{~m}^{-3}$.
2. A circuit contains a battery and a resistor of resistance R. For which one of the following combinations of current and voltage does R have the smallest value?
a. $\quad V=9 \mathrm{~V}$ and $i=0.002 \mathrm{~A}$
b. $V=12 \mathrm{~V}$ and $i=0.5 \mathrm{~A}$
c. $V=1.5 \mathrm{~V}$ and $i=0.075 \mathrm{~A}$
d. $V=6 \mathrm{~V}$ and $i=0.1 \mathrm{~A}$
e. $\quad V=4.5 \mathrm{~V}$ and $i=0.009 \mathrm{~A}$
3. A coil is formed by winding 250 turns of insulated 16-gauge copper wire (diameter $=1.3$ $\mathrm{mm}, \rho=1.69 \times 10^{-8} \Omega \mathrm{~m}$) in a single layer on a cylindrical form of radius 12 cm . What is the resistance of the coil? Neglect the thickness of the insulation.
4. The legend that Benjamin Franklin flew a kite as a storm approached is only a legend- he was neither stupid nor suicidal. Suppose a kite string of radius 2.00 mm extends directly upward by 0.800 km and is coated with a 0.500 mm layer of water having resistivity 150 $\Omega \mathrm{m}$. If the potential difference between the two ends of the string is 160 MV , what is the current through the water layer? The danger is not this current but the chance that the string draws a lightning strike, which can have a current as large as 500,000 A (way beyond just being lethal.)
5. A student kept his $9.0 \mathrm{~V}, 7.0 \mathrm{~W}$ radio turned on at full volume from 9:00 PM to 2:00 AM. How much charge went through it?
