Chapter 21

Example Problems

1. The emfs and resistances in the circuit have the following values: $\mathrm{r}_{1}=2.3 \Omega, \mathrm{r}_{2}=1.8 \Omega, \mathrm{R}=$ $5.5 \Omega, \mathcal{E}_{1}=4.4 \mathrm{~V}$, and $\mathcal{E}_{2}=2.1 \mathrm{~V}$
a. What is the current in the circuit?
b. What is the potential difference between the terminals of battery 1 ?

2. In the figure, the ideal batteries have emfs of $\mathcal{E}_{1}=150 \mathrm{~V}$ and \mathcal{E}_{2} $=50 \mathrm{~V}$ and the resistances are $R_{1}=3.0 \Omega$ and $R_{2}=2.0 \Omega$. If the potential at P is 100 V , what is it at Q ?

3. What are the currents through each resistor if $\mathcal{E}_{1}=4.0$ $\mathrm{V}, \mathcal{E}_{2}=1.0 \mathrm{~V}, R_{1}=R_{2}=10.0 \Omega$, and $R_{3}=5.0 \Omega$, and the battery is ideal?

4. In the figure, the ideal battery has an emf of $\mathcal{E}=12.0 \mathrm{~V}, R_{1}=$ 6.00Ω, and $R_{2}=R_{3}=R_{4}=18.0 \Omega$.
a. What is the magnitude of the current through resistor R_{2} ?
b. How much energy is dissipated by all four resistors in 1.00 min ?

5. A capacitor with initial charge q_{0} is discharged through a resistor. What multiple of the time constant τ gives the time the capacitor takes to lose (a) the first one-third of its charge and (b) two-thirds of its charge?
6. In the figure, $R_{1}=10.0 \mathrm{k} \Omega, R_{2}=15.0 \mathrm{k} \Omega, C=0.400 \mu \mathrm{~F}$, and the ideal battery has an emf of 20.0 V. First the switch is closed a long time so that the steady state is reached. Then the switch is opened at time $t=0$. What is the current in resistor 2 at $t=4.00 \mathrm{~ms}$?

