Chapter 21 Example Problems

- 1. The emfs and resistances in the circuit have the following values: $r_1 = 2.3 \Omega$, $r_2 = 1.8 \Omega$, $R = 5.5 \Omega$, $\mathcal{E}_1 = 4.4 V$, and $\mathcal{E}_2 = 2.1 V$
 - a. What is the current in the circuit?
 - b. What is the potential difference between the terminals of battery 1?

2. In the figure, the ideal batteries have emfs of $\mathcal{E}_1 = 150$ V and $\mathcal{E}_2 = 50$ V and the resistances are $R_1 = 3.0 \Omega$ and $R_2 = 2.0 \Omega$. If the potential at *P* is 100 V, what is it at *Q*?

3. What are the currents through each resistor if $\mathcal{E}_1 = 4.0$ V, $\mathcal{E}_2 = 1.0$ V, $R_1 = R_2 = 10.0 \Omega$, and $R_3 = 5.0 \Omega$, and the battery is ideal?

- 4. In the figure, the ideal battery has an emf of $\mathcal{E} = 12.0$ V, $R_1 = 6.00 \Omega$, and $R_2 = R_3 = R_4 = 18.0 \Omega$.
 - a. What is the magnitude of the current through resistor R_2 ?
 - b. How much energy is dissipated by all four resistors in 1.00 min?

5. A capacitor with initial charge q_0 is discharged through a resistor. What multiple of the time constant τ gives the time the capacitor takes to lose (a) the first one-third of its charge and (b) two-thirds of its charge?

6. In the figure, $R_1 = 10.0 \text{ k}\Omega$, $R_2 = 15.0 \text{ k}\Omega$, $C = 0.400 \mu\text{F}$, and the ideal battery has an emf of 20.0 V. First the switch is closed a long time so that the steady state is reached. Then the switch is opened at time t = 0. What is the current in resistor 2 at t = 4.00 ms?

