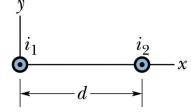

Ch. 22 Worksheet

1. A portion of a loop of wire passes between the poles of a magnet as shown. We are viewing the circuit from above. When the switch is closed and a current passes through the circuit, what is the movement, if any, of the wire between the poles of the magnet?

2. A circular loop of wire is placed in a magnetic field such that the plane of the loop is perpendicular to the magnetic field. The loop is then connected to a battery and a current then flows through the loop. What will happen to the loop?

3. An ion source is producing 6 Li ions, which have charge +e and mass 9.99×10^{-27} kg. The ions are accelerated by a potential difference of 10 kV and pass horizontally into a region in which there is a uniform vertical magnetic field of magnitude B = 1.2 T. Calculate the strength of the smallest electric field, to be set up over the same region that will allow the 6 Li ions to pass through undeflected.


- 4. An electron of kinetic energy 1.20 keV circles in a plane perpendicular to a uniform magnetic field. The orbit radius is 25.0 cm. Find the following:
 - a. The electron's speed
 - b. The magnetic field magnitude
 - c. The circling frequency
 - d. The period of motion

- 5. The figure shows two long straight wires at separation d = 16.0 cm carry currents i_1 = 3.61 mA and i_2 = 3.00 i_1 out of the page.
- e figure shows two long straight.

 .61 mA and $i_2 = 3.00i_1$ out of the page.

 a. Where on the x-axis is the net magnetic field equal to zero?

 b. If the two currents are doubled, is the zero-field point in the standard wire 1, shifted toward wire 2, or in the standard wire 1. unchanged?

