Homework: Ch. 31 & 32

- 1. What is the radius of an α particle?
- 2. Show that if you assume the average nucleus is spherical with a radius $r = r_0 A^{1/3}$, and with a mass of Au, then its density is independent of A.
- 3. What is the kinetic energy in MeV of a β ray that is traveling at 0.998c? This gives some idea of how energetic a β ray must be to travel at nearly the same speed as a γ ray.
- 4. A 60 Co source is labeled 4.00 mCi, but its present activity is found to be 1.85×10^7 Bq.
 - a. What is the present activity in mCi?
 - b. How long ago did it actually have a 4.00 mCi activity? The half-life of 60 Co is 5.2714 years.
- 5. The ceramic glaze on a red-orange Fiestaware plate is U_2O_3 and contains 50.0 grams of 238 U, but very little 235 U. What is the activity of the plate?
- 6. The fact that *BE/A* is greatest for *A* near 60 implies that the range of the nuclear force is about the diameter of such nuclides.
 - a. Calculate the diameter of an A = 60 nucleus.
 - b. Calculate BE/A for 58 Ni, which is a tightly bound nuclides.
- 7. A neutron generator uses an α source, such as radium, to bombard beryllium, inducing the reaction ${}^{4}\text{He} + {}^{9}\text{Be} \rightarrow {}^{12}\text{C} + n$. Calculate the energy output of the reaction in MeV.
- 8. A plumber at a nuclear power plant receives a whole-body dose of 30 mSv in 15 minutes while repairing a crucial valve. Find the radiation-induced yearly risk of death from cancer.
- 9. In the 1980s, the term picowave was used to describe food irradiation in order to overcome public resistance by playing on the well-known safety of microwave radiation. Find the energy in MeV of a photon having a wavelength of a picometer.
- 10. Tritium is naturally rare, but can be produced by the reaction $n + {}^{2}H \rightarrow {}^{3}H + \gamma$. How much energy in MeV is released in this neutron capture?

- 11. The electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical.
 - a. What is the thermal nuclear power output in megawatts?
 - b. How many ²³⁵U nuclei fission each second, assuming the average fission produces 200 MeV?
 - c. What mass of 235 U is fissioned in one year of full-power operation?