Dynamics

Objective: Learning about the affect of forces on motion - "Dynamics"
> Kinematics -'How'
$>$ Dynamics -'Why' (Forces)

Key concepts:

* Mass and inertia
* Force
- Free-body diagram
* Newton's laws of motion
* Newton's laws of gravitation

Concept of Force

A force is a push or a pull acting on an object. A force is a vector!

- Contact forces arise from physical contact, and are due to a stretch or compression at the point of contact.
- Action-at-a-distance forces do not require contact and include gravity and forces due to charged particles
$15 \mathrm{~N}=$ fifteen newtons
- Arrow are used to represent force vector is proportional to the magnitude of the force.
- SI Unit of force is Newton (N).

	force
5 N	$10 \mathrm{~N} \sim 2.2 \mathrm{lbs}$
Individual Forces	

$$
1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}
$$

- Often, more than one force acts on an object. The net force is the vector sum of all of the forces acting on an object. $F_{n e t}=\sum F_{i}$

Net Force

How to measure Force

- Spring scale: Larger force $=$ Larger stretch (a.k.a. displacement (Δx)). On a budget? Can use a rubber band!
- If you know $k_{\text {spring }}$ and $\& g$, Equilibrium: Spring force balances gravity force

$$
\begin{aligned}
& \boldsymbol{F}_{\text {spring }}=k_{\text {spring }} \Delta \boldsymbol{x}=m \boldsymbol{g}=\boldsymbol{F}_{\text {gravity }} \\
& m=\left(k_{\text {spring }} \Delta \boldsymbol{x}\right) / \boldsymbol{g} \ldots \ldots \Delta x \text { gives us the mass } m!
\end{aligned}
$$

Newton's First Law of motion The Law of Inertia

> Newton's $1^{\text {st }}$ Law: A body at rest remains at rest, or, if in motion, remains in motion at a constant velocity, unless acted upon by a net external force, $F_{n e t}$.
So,
$>$ Newton's $1^{\text {st }}$ Law: So if the $\boldsymbol{F}_{\text {net }}$ acting on a object is NOT ZERO, the velocity (magnitude, or direction, or both) must change... Newton's $1^{\text {st }}$ law is just a special case of $\boldsymbol{F}_{\boldsymbol{n e t}}=m \boldsymbol{a}$ (Newton's $2^{\text {nd }}$ Law), where $\boldsymbol{F}_{\boldsymbol{n e t}}=0$.

Newton's 1st law is often called the law of inertia.
> Inertia is the natural tendency of an object to remain at rest or in motion at a constant speed along a straight line.
$>$ The mass of an object is a quantitative measure of inertia.

Mass and Inertia

$>$ Mass is the amount of material (number and kind of atoms) in an object.
> Mass is a also measure of inertia because, mass resists acceleration. For a given force, acceleration produced is inversely proportional to mass,

$$
\mathbf{a} \propto \frac{1}{m}
$$

SI Units for mass is Kilogram (kg).
$>$ Mass is NOT weight!
A 1 kg mass has a weight of $9.8 \mathrm{~N}\left(\boldsymbol{W}=\boldsymbol{m g}\right.$, where $\left.\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$

Newton's Second Law of motion The Law of Inertia

> Newton's $2^{\text {nd }}$ Law: When a net external force acts on an object of mass m, the acceleration a that results is directly proportional to the net force and has a magnitude that is inversely proportional to the mass.

$$
\boldsymbol{a}=\frac{\boldsymbol{F}_{\boldsymbol{n} \boldsymbol{e}}}{m} \quad \text { or } \quad \boldsymbol{F}_{\boldsymbol{n e t}}=m \boldsymbol{a}
$$

$>$ The direction of the acceleration, \boldsymbol{a} is the same as the direction of the net force, $\boldsymbol{F}_{\boldsymbol{n e t}}$.
$>$ The $2^{\text {nd }}$ law is a more general statement than Newtons' $1^{\text {st }}$ law of motion, which it encompasses. Since, $\boldsymbol{F}_{\boldsymbol{n e t}}=m \boldsymbol{a}$, and if $\boldsymbol{F}_{\boldsymbol{n e t}}=0$, then $\boldsymbol{a}=\boldsymbol{0}$; i.e. constant or uniform motion.

Newton's Second Law of motion The Law of Inertia

Concept questions:

- Suppose you push with the same force on two wagons. What is the acceleration of wagon B compared to that of wagon A? Justify your answer.

> Wagon A has a mass of 10 kg and wagon B has a mass of 40 kg .

- Does the mass of an object affect the force of gravity on it?
- Does the mass of an object affect the rate of acceleration caused by gravity?

Free-body diagram

$>$ A free-body-diagram is a diagram that represents the object and the forces that act on it.

The net force in this case is: $\boldsymbol{F}_{\boldsymbol{n e t}}=\mathbf{2 7 5} N+\mathbf{3 9 5} N-\mathbf{5 6 0} N=+\mathbf{1 1 0} N$ And $\boldsymbol{F}_{\boldsymbol{n e t}}$ is directed along the $+\boldsymbol{x}$ axis.
If the mass of the car is 2200 kg then, by Newton's second law, the
acceleration is: $\boldsymbol{a}=\frac{\boldsymbol{F}_{\boldsymbol{n e t}}}{m}=\frac{\mathbf{+ 1 1 0 ~} \boldsymbol{N}}{\mathbf{2 2 0 0} \mathbf{k g}}=+0.05 \mathrm{~m} / \mathrm{s}^{2}$
**Connecting dynamics to kinematics: If starting from rest, how far the car will go after 10s of pushing! (Answer: 2.5 m)

System of interest

Choosing the correct system:

- The system of interest is the stuff we care about
- Need to define "the system" before solving problem
- It's possible to have systems within a system

Free body diagrams

System 1

Frictional forces

To Move $\mathbf{M} \longrightarrow$ Pulll force \mathbb{F} must be greater than $\mathbb{F}_{\text {friction }}$
To maintain motion $\longrightarrow \mathbb{F}$ need to be only equal to $\mathbb{F}_{\text {friction }}$

Frictional forces and Drag

Terminal velocity :When air drag is not negligible the acceleration of fall is less than \mathbf{g}

Downward Net Force $=$ weight - air drag

When falling high distances the air drag builds up to equal weight
Net force = 0

Object reaches its terminal velocity

Frictional forces and Drag

Force	Frictional Force	Net Force	Acceleration
50 N	0 N		
	0 N		$5 \mathrm{~m} / \mathrm{s}^{2}$
60 N	$\mathbf{3 0} \mathrm{~N}$		
60 N	60 N		

Use $\mathrm{F}=\mathrm{m} a$ with $\mathrm{m}=15 \mathrm{~kg}$

Newton's Third Law of motion

> Newton's 3 ${ }^{\text {rd }}$ Law: Whenever one body exerts a force on a second body, the second body exerts an oppositely directed force of equal magnitude on the first body.
$>$ Forces always come in action-reaction pairs!
$>$ Since the action force \& reaction force are acting on different objects, you will never have both the action force \& its reaction force on the same free-body diagram.
***Newton's 3st law can appear to be violated if you can't see the resulting movement of a massive object.

Newton's Third Law of motion

Example: An Astronaut "pushes" on the spacecraft and Spacecraft "responds" by pushing on the Astronaut. Suppose that the magnitude of the force, 30 N . If the mass of the spacecraft is $10,000 \mathrm{~kg}$ and the mass of the astronaut is 90 kg , what are the accelerations?

Spacecraft's push acting on the astronaut.

Astronaut's push acting on spacecraft

Solution:

On the Astronaut $\Sigma \boldsymbol{F}_{A, S}=-P$. (on a second object)
Spacecraft acceleration: $\boldsymbol{a}=\frac{+P}{m}=\frac{+\mathbf{3 0 N}}{\mathbf{1 0 0 0 0} \mathbf{k g}}=+0.003 \mathrm{~m} / \mathrm{s}^{2}$ or $3 \mathrm{~mm} / \mathrm{s}^{2}$
Astronaut acceleration: $\boldsymbol{a}=\frac{-P}{m}=\frac{+30 \mathrm{~N}}{90 \mathrm{~kg}}=+0.3 \mathrm{~m} / \mathrm{s}^{2}{ }_{(100 \text { times larger than the spacecraft) }}$

Newton's Law of Gravitation

For two particles that have masses m_{1} and m_{2} and are separated by a distance r, the force has a magnitude given by

$$
\begin{aligned}
& F=\frac{G m_{1} m_{2}}{r^{2}} ; G=6.673 \times 10^{-11} N \cdot \frac{m^{2}}{\mathrm{~kg}^{2}} \\
& m g=\frac{G m M_{E}}{\boldsymbol{R}_{E}^{2}} \text { or, } g=\frac{G M_{E}}{R_{E}^{2}}=9.81 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

The same magnitude of force acts on each mass, no matter what the values of the masses.

Newton's Law of Gravitation

Relation Between Mass and Weight

> Gravity acts between objects that have mass.
> The gravitational force is always attractive along a line between objects.
> Gravity is always pulling you down towards Earth. Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ then put sign on force.
> Weight is defined as:

$$
\begin{aligned}
& W=F_{\text {gravity }}=m g \\
& W(\operatorname{in~} N)=m(\text { in } k g) x 9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

> Therefore, weight depends on where you are Mass of an (unchanged) object is constant.

