What is Energy

Objective: Learning about the different forms of energy. Explore mechanical energies and associated conservation principle.

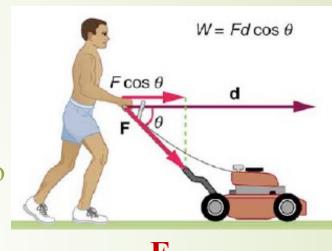
Key concepts:

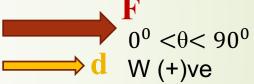
- Work and Energy
- * Kinetic energy
- Gravitational potential energy
- Conservation of energy
- Power and Efficiency

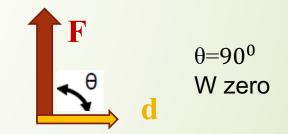
Concept of Work

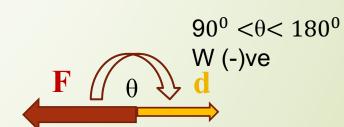
Work tells you how much energy it takes to push something and make it move.

- Work is *done on* an object (a mass) by the force components acting on the object that are parallel to the displacement of the object.
- \triangleright Work, W = Force x Distance x $\cos\theta$ = Fd $\cos\theta$
- > SI Units of Work and Energy: Joules (J)
- Work is a scalar! (no direction but it can have a sign)
- The work is positive if **F** and d point in the same direction.
- The work is negative if **F** and d point in opposite directions.









Work-Energy Theorem

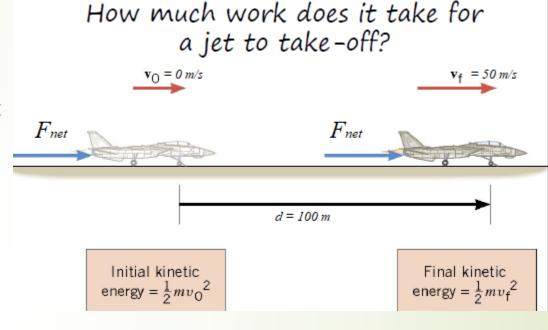
Example: Suppose you are taking off in a jet of 10000 kg. If the 125 kN force acts on the probe through a displacement of 100 m, what is the work done.

Solution:

W = Fnet *d = (125000 N)*(100m)

W = 12.5 MJ

From Kinematics,



Recall:
$$v_f^2 = v_0^2 + 2 \ a \ (x-x_0) \Rightarrow v_f^2 - v_0^2 = 2 \ a \ d$$

$$\Rightarrow a = \frac{v_f^2 - v_0^2}{2d}$$

Since, W = Fnet *d = (ma)*d

$$W=\frac{1}{2}m v_f^2 - \frac{1}{2}m v_0^2 = K.E_{final} - K.E_{inital} = \Delta K.E.$$
 (Work-Energy Theorem)

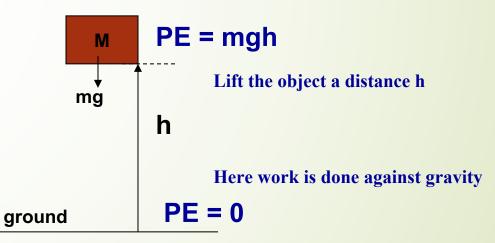
where, Kinetic Energy = $K.E. = \frac{1}{2} mv^2$ (***K.E. has a ______ relationship with v.)

$$W = \frac{1}{2} *10000 kg * (\frac{50m}{s})^2 = 12.5 \text{ MJ } (By \text{ using, Work-Energy Theorem})$$

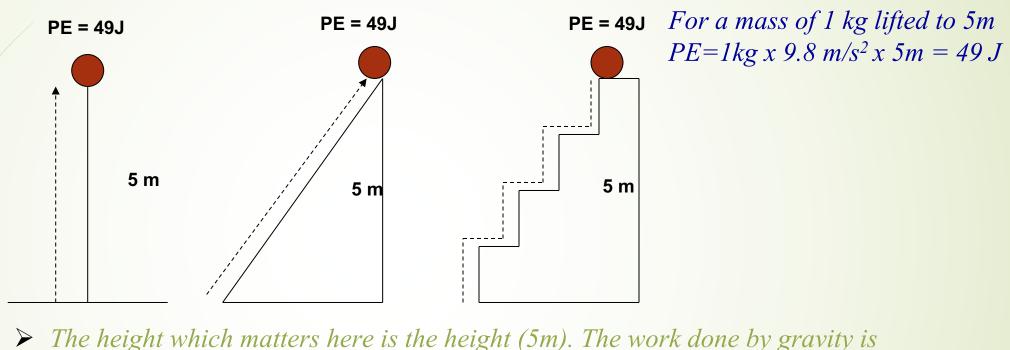
Mechanical Energy

Kinetic energy, K.E. = $\frac{1}{2} mv^2$ Because of objects motion

- \triangleright Gravitational potential energy: P.E. = mgh
- \triangleright Work done by gravity is: $W_{grav} = -mgh = > W_{grav} = -\Delta P.E.$
- There are various kinds of potential energy.
- Most important kind gravitational potential energy.

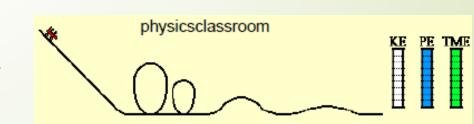


Conservative Forces and Gravitational Potential Energy



- independent of the path taken!
- > Gravity, spring/elastic force are examples of "Conservative Force"
- \triangleright Conservative force can used to create P.E. (stored energy), $W_c = -\Delta P.E$
- > Try the "Roller-Coaster" Model.

***P.E. has a ______ relationship with h.



Different forms of Energy & Conservation of Energy

- ➤ **Kinetic Energy** = Energy of motion
- > Potential Energy = Energy of position
- > Thermal Energy = Kinetic Energy of the random motion of molecules
- > Chemical Energy = Potential Energy of the bonds between atoms
- > Nuclear Energy = Potential Energy of the particles inside the atomic nucleus

Conservation of Energy: Energy cannot be created or destroyed. It may be transformed from one form into another or transferred from one object to another, but the total amount of energy never changes.

Conservation of Mechanical Energy

A *Non-conservative force* is one for which the work depends on the path taken. Friction, air-resistance, viscosity, tension... etc adds or removes energy from the system.

➤ Since, both Conservative & Non-conservative forces can change K.E.

We can write,
$$\Delta K.E. = W_{net} = W_C + W_{NC}$$

Since, $\Delta P.E. = -W_C \Rightarrow W_{NC} = \Delta K.E. + \Delta P.E.$
Total Mechanical Energy, $E=P.E. + K.E.$
Therefore, $W_{NC} = \Delta E = E_f - E_o \Rightarrow E_f = E_o + W_{NC}$

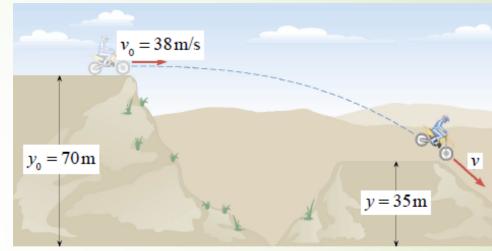
➤ When considering mechanical energies of a system:

$$KE_f + PE_f = KE_o + PE_o + W_{NC}$$

 \triangleright In absence of Non-conservative forces, total mechanical energy is **conserved!** $KE_f + PE_f = KE_o + PE_o$; $(W_{NC} = 0)$

Conservation of Mechanical Energy

Example: A motorcyclist leaps across the canyon by driving horizontally off a cliff with 38.0 m/s. Ignoring air resistance, find the speed with which the cycle strikes the ground on the other side.

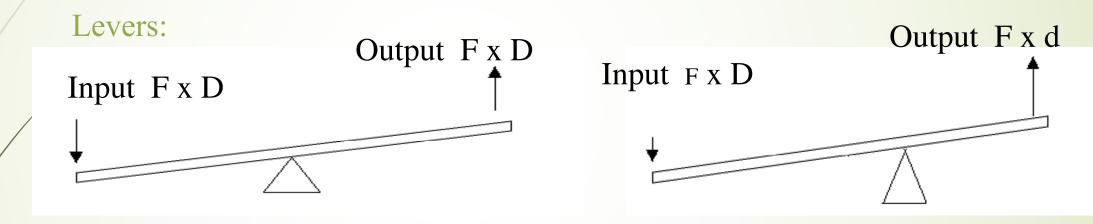


Solution: Only a conservative force-gravity is present, so the total mechanical energy should be conserved

⇒
$$E_f = E_o$$
 (Since, $W_{NC} = 0$)
⇒ $mgy_f + \frac{1}{2}mv_f^2 = mgy_o + \frac{1}{2}mv_o^2$
⇒ $2gy_f + v_f^2 = 2gy_o + v_o^2$
⇒ $v_f^2 = 2g(y_o - y_f) + v_o^2 = 2(9.8 \text{ m/s}^2)(35 \text{ m}) + (38 \text{ m/s})^2$
⇒ $v_f = 46.2 \text{ m/s}$

Machines - devices to multiply forces

(Force x Distance)input = (Force x Distance)output Work Input = Work Output



Equal distance means equal force

Smaller distance means bigger force

Energy is conserved: A machine can multiply force but cannot increase energy!

POWER

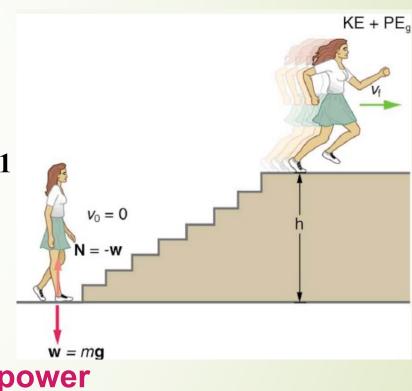
Power is the RATE at which energy is changed from one form to another.

$$Power = \frac{Work\ done}{time\ interval}$$

watts(W) =
$$\frac{\text{Joule}}{\text{s}} = \text{Js}^{-1}$$

1000 W = 1 kW 1000 kW = 1 MW 746 W = 1 Mechanical Horsepower

Power tells you how quickly work gets done.



Efficiency

Efficiency is how much work gets done for the amount of energy used. Machines that do more work given the same energy input are more efficient.

Efficiency =
$$\frac{\text{Work done}}{\text{Energy used}} = \frac{\text{Energy out}}{\text{Energy in}}$$
80% efficient $\frac{80 \text{J output}}{100 \text{J input}}$

100% efficient systems are not practical

Efficiency

Example: 100 J of energy input for a machine, 98 J of work done.

Efficiency =
$$\frac{\text{work done}}{\text{energy used}} = \frac{98J}{100J} = 0.98 \text{ or } 98\%$$

Where did the other 2J or energy go?

The lower the efficiency, the more energy is "wasted" as heat.

The "graveyard" (or final form of energy) is "heat".

Energy Sources

Sun - the most powerful energy source

All natural power sources we have today originated from sun e.g. wind, hydro, thermal etc.

Solar power – sunlight is directly transformed into electricity

Wind power - turn into electricity using wind turbines

Hydro power – water is used to turn turbines and produce electricity

Nuclear power – stored energy in plutonium and uranium can be used to produce electricity

Energy is needed for all living things