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ABSTRACT 
 

Regional comprehensive universities offer accessible and diverse undergraduate 

educational programs, while grappling with funding cuts and affordability.  The study’s 

first research question underscores the enduring importance of factors such as student 

characteristics, pre-college characteristics, and financial situations.  The findings 

highlight high school GPA's (HS GPA) pivotal role in academic performance.  Higher HS 

GPAs correlate with successful academic performance resulting in higher retaining 

likelihoods; conversely, lower HS GPAs are associated with academic struggles and 

increased departure likelihoods.  HS curriculum variables also impact academic 

performance, notably in extreme gradient boosting (XGBoost) models.   

The second research question centers on the algorithms’ predictive power.  

XGBoost and random forest models consistently outperform the other models in 

predicting GPAs.  Prioritizing area under the curve values for retention, both XGBoost 

and random forest models are statistically comparable for developing predictive 

algorithms, despite facing challenges with low specificity rates.  Only slight 

enhancements in predictions were detected in the upsample ensemble learning models. 

Implications for practice underscore the importance of targeted interventions 

through leveraging data science techniques and machine learning algorithms to identify 

and allocate support resources for at-risk students.  This research significantly contributes 

to the discussion on student success in higher education by providing practical insights 

and guiding evidence-based practices.  As education evolves, integrating data science into 

strategic planning becomes pivotal for shaping the trajectory of student success 

initiatives.  
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Chapter I 

INTRODUCTION 

 Each May, students walk across a stage to receive a diploma, marking the end of 

their high school career and the beginning of their journey into early adulthood.  Some of 

these students enter the workforce or enlist in the armed forces, while others pursue a 

postsecondary degree.  Recent national data from Fall 2018 show an enrollment of nearly 

three million first-time freshmen pursuing a postsecondary degree, with 45.4% enrolled 

in a four-year public institution (National Center for Education Statistics [NCES], 2019).  

As students embark on their postsecondary education, administrators and policymakers 

monitor specific milestones to evaluate students' progress towards degree completion.  

Milestones, such as grade point average (GPA) and retention status, are critical indicators 

of academic performance examined by postsecondary institutions (Arnold, 1999; 

Offenstein & Shulock, 2010; Tai, 2020). 

 Nationally, governmental agencies and other organizations release academic 

performance metrics, including enrollment numbers and other relevant data, for public 

access.  These published facts allow agencies and the public to understand the “full and 

complete... condition of postsecondary education” (NCES, n.d.c).  A recent report by the 

National Student Clearinghouse Research Center (NSCRC) (2019) revealed 73.5% of 

Fall 2017 first-time, full-time freshmen (FTFTF) continued to the second year at their 

initial postsecondary institution.  This retention rate indicates slightly more than a quarter 

of students do not remain at their first institution.  For public institutions, the retention 
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rate for FTFTF was 79.1%.  Although public institutions have a retention rate more than 

5% higher than the national average, they still slightly trail behind private, not-for-profit 

institutions (NSCRC, 2019). 

 With the availability of postsecondary data, journalists and news organizations 

have scrutinized and reported on the issue of inadequate preparation for academic 

performance.  Despite changes in high school curriculum aimed at college preparation, a 

2011 Washington Post article cited research from Johns Hopkins University and the 

University of Arizona, which found 40% of students were unprepared for postsecondary 

coursework and even for the modern-day workforce (de Vise, 2011).  Furthermore, a U.S. 

News & World Report article highlighted of the 1.8 million students who took the ACT in 

2013, only 26% were deemed college-ready in four subjects.  Additionally, 27% of 

students were prepared in two or three subjects, and 16% were ready for one subject 

(Bidwell, 2013).  Overall, Bidwell (2013) reported 33% of students were unprepared for 

postsecondary courses in at least one of the major core subject areas. 

 In attempting to establish a connection to the lack of preparedness stemming from 

high school curriculum, The Chicago Tribune examined 120,000 high school juniors’ 

exam scores.  The findings revealed a weak general curriculum and lack of advanced or 

rigorous courses contributed to 75% of students being classified as unprepared for 

postsecondary coursework in mathematics, social studies, or sciences, and 50% of 

students for postsecondary coursework in English (Rado, 2017).  Butrymowicz (2017) 

and French (2016) revealed one out of five students who graduate from high school are 

considered unprepared to succeed within their first year of studies.  Elaborating further, 

they indicated earning a high school diploma does not equate to being prepared or 



 

3 
 

successfully performing in a postsecondary setting (Butrymowicz, 2017; French, 2016).  

From these published articles, it can be inferred the high school curriculum could be 

affecting students’ first-year academic performance in postsecondary institutions. 

 With increased awareness of the lack of preparedness and poor postsecondary 

academic performance, elected officials began to enact laws to strengthen the high school 

curriculum through accountability metrics for students' readiness.  In 2002, the No Child 

Left Behind (NCLB) act made efforts to hold elementary and high schools accountable 

for the educational progress of all students (Lee, n.d.).  Largely focusing on closing 

achievement gaps, annual testing became a significant component of accountability to 

assist in identifying existing educational gaps, yet schools faced financial penalties when 

making no progress (Lee, n.d.; U.S. Department of Education, n.d.).  In 2015, the Every 

Student Succeeds Act (ESSA) replaced NCLB, charging all American high schools to 

teach a high standard to prepare students for postsecondary education and the modern-

day workforce (United States Department of Education, n.d.).  In addition to shifting the 

accountability systems back to the states’ governments, ESSA also removed financial 

penalties for struggling schools (Understood Team, n.d.).  Under ESSA, the law provided 

each state the autonomy to develop and implement its accountability system.  However, 

ESSA still requires specific academic factors to be included.  The factors focused on 

curriculum, including the assessments of reading and mathematics scores and English 

proficiency levels.  Additionally, the law required states to develop a college readiness 

metric (Understood Team, n.d.). 

 Within the State of Georgia, the Department of Education developed the 

accountability system called the College and Career Ready Performance Index (CCRPI).  
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According to the Georgia Department of Education (GaDOE) (2021c), the accountability 

system contains published information regarding the postsecondary and career readiness 

of each school.  With states having the autonomy of the accountability system, the 

GaDOE has made continuous improvements to the readiness index over the years.  The 

CCRPI is a score from 0 to 100 derived from five components for each high school.  The 

components for high schools include content mastery, progress, closing gaps, readiness, 

and graduation rates.  Assessment tests over the four main subject areas in high school are 

used to develop the content mastery score.  Growth in proficiency levels provides the 

progress score.  The closing of the gaps in the scores measures any progress in meeting 

the improvement targets.  The graduation rates for each high school are included 

(GaDOE, 2018b). 

 For high schools, readiness comprises a mixture of data points, including a 

college and career readiness score.  The data points consist of literacy of 9th grade English 

and Language Arts proficiencies; student attendance; the percentage of 12th graders 

enrolled in dual enrollment, Advanced Placement, or International Baccalaureate courses; 

the percentage of 12th graders completing advanced academic, CTAE, fine arts, or world 

language pathways; and a derived college and career readiness score.  Components of the 

derived college and career readiness score incorporate the percentage of students who 

enroll in public postsecondary institutions without the need for any remedial coursework, 

admission test scores, completion of at least two or more advanced courses from high 

school, completion of a pathway assessment resulting in a credential, and work-based 

learning experience (GaDOE, 2018a). 
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 Furthermore, the public postsecondary education systems in the State of Georgia 

have increasingly begun to focus on improving academic performance to build a better-

educated workforce, as directed by the governor in mid-2011.  This directive is called 

Complete College Georgia (CCG).  As charged by the governor, one of the main areas of 

CCG (2021a) focuses on college readiness to repair and strengthen the level of 

preparedness for college-level coursework.  With increased focus on the critical first year, 

a University System of Georgia’s (USG) initiative, Momentum Year, was implemented to 

improve academic performance and increase the number of students who graduate on 

time.  USG’s administrators encourage institutions to use predictive analytics along with 

advising techniques to help students navigate their first-year of studies (CCG, 2021b). 

 Published facts about the first-time college students within USG (2018c, 2019e, 

2021c, 2021b, 2021c, 2021d) institutions indicate a three-year average enrollment of 

51,889, with a 75.5% three-year average one-year retention rate.  Comparing the 

retention rates of the national public institutions, USG lags slightly behind the national 

rate for public institutions at 3.6%.  Within the USG, the institutions are divided into four 

tiers: research universities, comprehensive universities, state universities, and state 

colleges.  Research institutions typically admit high-performing high school graduates 

and are more appealing to out-of-state students.  Two research institutions have received 

high rankings by U.S. News & World Report (2021a, 2021b): Georgia Institution of 

Technology ranked 35th nationally overall and 8th nationally for engineering institutions, 

and the University of Georgia ranked 47th nationally overall.  The three-year average 

retention rate when excluding research institutions is 69.8%, which is 9.3% below the 

national average for public institutions (USG, 2021b, 2021c, 2021d). 
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Statement of Problem 

 Successful academic performance within the first year at a postsecondary 

institution aids in building momentum and establishing a good foundation for the 

remaining years of a student’s pursuit towards degree attainment.  Conversely, 

unsuccessful performance leads to compounding factors resulting in long-lasting effects 

on the student’s life, family, and occupation.  According to the literature, unsuccessful 

academic performance leads to students departing, whether voluntarily or involuntarily, 

from the institution (Astin, 1984, 1993; Bean, 1980; Spady, 1970, 1971; Tinto, 1975, 

1993).  Departing students who received loans are forced to budget their income as they 

begin paying off the debt, contributing to less money for personal and leisure expenses.  

Moreover, college dropouts are four times more likely to default on college loans than 

those earning a degree (Ezarik, 2020). 

 Exiting a postsecondary institution without earning a bachelor’s degree 

contributes to fewer job opportunities and growth, as most future jobs require a college 

degree (Lee, 2019; Smith-Barrow, 2019).  Similarly, dropout students earn three times 

less than those who earned a bachelor’s degree (Lee, 2019).  The current unemployment 

rate of college dropouts is 2.2% higher than those with at least a bachelor’s degree, 

indicating individuals who drop out of college are more vulnerable to layoffs and job 

eliminations (Lee, 2019; United States Bureau of Labor Statistics, 2021).  Other than 

earned income, individuals who earn at least a bachelor’s degree have increased benefits 

in better health and life expectancies than students who drop out (Lee, 2019).  While it is 

not impossible to return and obtain a degree, these students may face increased 

frustrations, such as institutions rejecting credit hours or challenges in balancing family, 
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work, and school (Smith-Barrow, 2019).  Identifying the specific factors in the early 

stages of students’ academic journeys creates a never-ending problem for higher 

education in understanding unsuccessful performance at an institution. 

 Existing literature paints an overwhelming picture of factors influencing students' 

first-year success.  However, very little research has been conducted to indicate whether 

high schools' curriculum prepares students for the rigor of postsecondary coursework.  

With the implementation of the ESSA requiring states to assess college readiness, 

postsecondary institutions can incorporate this information into existing theories.  The 

incorporation of high school curriculum quality, along with the known factors influencing 

academic performance, may aid in identifying students who could be at risk of 

unsuccessful performance in the first year. 

Purpose of the Study 

 Through the utilization of data science techniques, the purpose of this study was 

to identify factors impacting the first-year academic performance of students enrolled in 

regional comprehensive universities (RCUs) in the State of Georgia.  The factors 

included student characteristics, precollege characteristics— including high school 

curriculum quality, financial situations, major or program of study, and institutional 

financial expenditures.  An additional purpose of the study was to develop four data 

mining models to determine which of the four algorithms yields the most accurate model.  

The accuracy metrics involved the review of the root mean square error (RMSE) for the 

first-fall and first-year GPAs.  The accuracy metrics for the one-year retention status 

included accuracy, sensitivity, specificity, f-measure scores, and area under the curve 
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(AUC) value.  The final purpose of the study incorporated an ensemble learning model to 

determine if a higher accuracy rate could be produced than through a single model. 

Research Questions 

 The following research questions for this study guided the examination of factors 

affecting significant milestones for first-year academic performance, as indicated by 

Arnold (1999), Offenstein and Shulock (2010), and Tai (2020).  Examining the factors 

impacting earned GPA and retention status can assist institutions in the identification of 

at-risk students. 

1. Are student characteristics, precollege characteristics (including high school 

curriculum quality), financial situations, major or program of study, and 

institutional financial expenditures significant predictors in first-time, full-time 

freshmen’s academic performance in their first year? 

a.  Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 

program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s first-fall GPA? 

b. Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 
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program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s first-year GPA? 

c. Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 

program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s one-year retention status? 

2. Does one machine learning algorithm (regression, support vector machine, 

random forest, and extreme gradient boosting) or an ensemble learning algorithm 

produce a higher accuracy based on the evaluation metrics for accuracy in 

examination of first-year academic performance? 

a. Does one machine learning algorithm (linear regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 

metrics of the root mean squared error (RMSE) for first semester GPA? 

b. Does one machine learning algorithm (linear regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 

metrics of the RMSE for first-year GPA? 

c. Does one machine learning algorithm (logistic regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 
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metrics of accuracy, sensitivity, specificity, f measure scores, and AUC 

value for one-year retention status? 

Research Methodology 

 This study was a nonexperimental, ex post facto, correlational research design.  

Research utilizing ex post facto allows for examining phenomena in which possible 

causes have already occurred (Bordens & Abbott, 2011).  Institutional data collected for 

this study came from USG’s Office of Research and Policy Analysis (RPA).  RPA 

oversees the collection of census and other data files from each institution.  Student 

enrollment data are collected twice a semester (USG, 2021b).  Census files are data 

collected by the office from the information systems on specific dates to report facts to 

outside agencies (Milam & HigherEd.org, 2003).  First-year academic performance was 

examined using these census files.  Additional archival data was obtained from the 

GaDOE’s College and Career Ready Performance Index, Governor’s Office of Student 

Achievement, and NCES’ websites.  These files contained information on the high school 

quality of curriculum and the institutions’ expenditures.  As archival data prevent the 

independent variables from being manipulated, the nonexperimental, ex post facto 

research design was justified (Bordens & Abbott, 2011). 

 Within the study, the dependent variables consisted of three different 

measurements of academic performance.  Two of the dependent variables were interval-

level data, and one dependent variable was nominal-level data.  The interval levels 

comprised the first-fall and first-year GPAs, while the nominal level comprised the one-

year retention status.  The independent variables consisted of 11 nominal variables and 25 

interval measurement levels data.  Nominal variables consisted of student characteristics 
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(gender, race and ethnicity, family educational background, and locale), pre-college 

characteristics (five subject areas of the college preparatory curriculum requirements),  

financial status (Zell Miller recipient), and major or program of study.  Interval level data 

consisted of precollege characteristics (high school GPA, admission test scores, and four 

advanced standing hours), high school curriculum (CCRPI content mastery, CCRPI 

readiness, EOC mean English and Language Arts, EOC mean Mathematics, EOC mean 

Science, and EOC mean Social Studies), financial situations (EFC, HOPE Scholarship, 

PELL Grant, federal subsidized and unsubsidized loans, and other loans), and 

institutional expenditures (instruction, research, public service, academic support, student 

services, institutional support, and other core expenses).  In addition to the study’s goal of 

identifying factors impacting first-year academic performance for three dependent 

variables, the research attempted to identify the best model in terms of accuracy in 

predictions utilizing data science techniques.  The data science techniques involved 

analyzing accuracy metrics across four models along with an ensemble learning model to 

identify the best accuracy in predicting earned GPAs and retention status of students. 

 The target population enrolled in the four regional, comprehensive universities 

was the FTFTF pursuing a bachelor’s degree who graduated from a public high school 

within the State of Georgia.  The population obtained was for two fall semesters: Fall 

2018 and Fall 2019.  Based on published information from the system office, USG, the 

target population averaged 13,178 students per year, totaling 26,356 students (USG 

2022a, 2022b).  The system office does not publish a breakdown of students who 

graduated from a public high school and those who did not.  For students to qualify for 

the study, the following three criteria were met:  
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1. Integrated Postsecondary Education Data System’s (IPEDS) classification of first-

time, full-time freshmen (determined by USG for IPEDS reporting)  

2. Pursuing a bachelor’s degree (determined by USG for IPEDS reporting)  

3. Graduated from a Georgia public high school in 2018 or 2019 (calculated from 

the high school code in RPA census files) 

A mixture of descriptive and inferential statistics was used in the study to analyze 

the data.  For the interval-level data, the number of records, mean, median, standard 

deviation, minimum value, maximum value, skewness, and kurtosis were calculated.  

Frequencies and percentages were calculated for the nominal and ordinal variables.  

Within the study, statistical learning assisted in discovering which factors impact first-

year academic performance.  According to James, Witten, Hastie, and Tibshirani (2013), 

statistical learning incorporates tools to understand data involving either supervised or 

unsupervised learning techniques.  Supervised learning is the most appropriate technique 

for the analysis of academic performance within the first year.  Within supervised 

learning, developing predictive models involve at least one factor producing an estimate 

used to influence the outcome (James et al., 2013).  Predictive algorithms are largely 

time-consuming to conduct by hand; however, with the advancement in technology, these 

algorithms can be conducted faster through automated processes.  With the expansion of 

algorithms, testing multiple models allows researchers to find one with the best accuracy 

to provide insights to aid in the decision-making process.  The insights provided from the 

predictive modeling with the best accuracy would allow administrators and other 

policymakers to effectively and efficiently allocate resources to support students 

identified as unsuccessful academic performers. 
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Within R programming, the tidymodels package were utilized to assist in data 

preparation, algorithm development, and the assessment of accuracy metrics (Kuhn & 

Silge, 2021).  In addressing the first research question, predictors were assessed through 

variable importance analysis.  While linear and logistic regression models produce 

coefficients to measure the impact, non-regression models do not produce equivalent 

values.  Instead, each model’s variable importance analyses were examined to measure 

the impact of the factors; additionally, the importance values were rescaled for 

comparison across models. 

Before building the predictive models, it was crucial to review statistical 

considerations and assumptions to ensure the results draw valid conclusions on reality 

and produce meaningful research (Field, Miles, & Field, 2012; Garson, 2012).  

Depending on the statistical analysis, the considerations and assumptions may vary.  

Reviewing observation independence is important to ensure no individual presents a bias 

within the analysis (Heidel, 2022).  Moreover, missing data is another consideration that 

needs to be reviewed.  For this study, any missing data may be missing completely at 

random, missing at random, or missing not at random (Mack, Su, & Westreich, 2018). 

Missing completely at random data occurs when the missing data are independent 

regarding the observed and unobserved data, resulting in no systematic differences 

between individuals.  Missing data related to the observed rather than the unobserved 

data are classified as missing at random, resulting in the introduction of bias in the 

analysis.  Lastly, missing not at random data stems from data missing due to some factor 

can be accounted for by the researcher (Mack et al., 2018). 
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According to Osborne and Overbay (2004), data points beyond the norm are 

identified as outliers.  The presence of outliers has the potential to introduce bias in the 

estimated parameters of a predictive model, which may result in Type I or Type II errors 

(Osborne & Overbay, 2004).  With the usage of archival data, outliers largely will stem 

from data entry issues from being miskeyed into the information system.  While archival 

data undergo data validations and cleanup processes, some errors go undetected.  Outliers 

were reviewed through a combination of summary statistics, z-score examination, data 

visualization, and statistical analyses (Osborne & Overbay, 2004).  Some analyses, like 

general linear models, require the data to be evenly distributed, as skewness creates 

undue influence and impacts the model’s estimates (James et al., 2013; Sharma, 2019).  

Ensuring equal distribution, univariate and multivariate normality were examined through 

data visualization techniques and statistical methods such as Shapiro-Wilks and 

Royston’s tests (Fife, 2019; Merler & Vannatta, 2002; Oppong & Agbedra, 2016).  

Linearity requires the data to have a linear relationship resembling a straight line with the 

dependent variable (Merler & Vannatta, 2002).  Examination of linearity involved the 

review of the Pearson’s R correlation coefficient and residual plots (Glen, 2022; Merler & 

Vannatta, 2002).  The last assumption is the review of homoscedasticity.  Using a 

statistical test such as Levenne’s test allowed the assessment of the equal distribution of 

variance (Merler & Vannatta, 2002). 

With the second research question, utilizing multiple predictive models and an 

ensemble learning algorithm to assess the accuracy of the predictions, accuracy metrics 

were examined to discover the appropriate accuracy and interpretability trade-off.  

According to Kuhn and Johnson (2013), predictive models should not sacrifice accuracy 
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for interpretability.  They further argued "the predictive models that are most powerful 

are usually the least interpretable" (Kuhn & Johnson, 2013, p. 50).  Additionally, when 

comparing models for accuracy, unintended consequences may result from the selection 

of the wrong model (Kuhn & Silge, 2021).  For regression analysis of the GPA dependent 

variables, accuracy metrics included the examination of the RMSE.  Boehmke and 

Greenwell (2020) emphasized the importance of RMSE values in determining the 

accuracy of regression outputs over other metrics for regression outputs.  For the 

retention-dependent variables, examination of classification accuracy of the models 

utilized different metrics.  Classification models' accuracy metrics included overall 

accuracies, sensitivities, specificities, F-scores, and ROCs (Boehmke & Greenwell, 2020; 

Dey, 2021; Kuhn & Johnson, 2013).  Dey (2021) stressed the importance of the AUC 

produced from the ROC graphs as the value used in comparing multiple classification 

models. 

The evaluation of accuracy for the three dependent variables were used to assess 

the out-of-sample predictive power (Calvo & Santafé, 2016; Horthorn et al., 2005; James 

et al., 2013; Kuhn & Johnson, 2013; Kuhn & Johnson, 2019).  In building the predictive 

algorithms, a 10-fold validation was applied to the training and testing data sets.  The 

cross-validation of training data sets allowed for the review of the accuracy of the models 

for optimal performance before application to the testing or the unseen, real-world data 

set (Goyal, 2021; Soni, 2019).  The 10-fold cross-validation methods was also applied to 

the testing data set.  This method of cross-validation on the testing data set was used to 

examine how the models perform across several slices of the unseen real-world data.  
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According to Bose (2019), cross-validation allows researchers to review how a model 

may overfit to the training data set. 

Significant of the Study 

 This study made a minimum of three contributions to the current literature.  First, 

traditional models of examining academic performance often exclude the high school’s 

curriculum quality.  This study sought to explore whether there is a relationship between 

the high school’s curriculum and academic performance while considering traditional 

factors.  Findings from this study identified the impact of high school curriculum quality, 

if any, along with characteristics from previous literature, in successful first-year 

academic performance.  Second, the study analyzed the performance of predictive 

algorithms by extending beyond traditional inferential statistical tests.  By identifying 

which predictive model provided the best accuracy, postsecondary institutions would be 

able to gain insights into implementing additional analytical tools to detect students who 

are more likely to be unsuccessful within the first year of studies.  Lastly, this study 

analyzed specific milestones within the first year to see how the identification of 

characteristics changes or enhances the accuracy of predictions.   

 With an increased focus on student success at the national and state levels, 

initiatives such as Complete College America (n.d.) and Complete College Georgia 

(2021a) have prompted postsecondary administrators and other policymakers to identify 

best practices and implement strategies to enhance academic performance.  Furthermore, 

institutional researchers, student success data managers, and others studying academic 

performance may find the study results relevant.  Their job duties may include assisting 

administrators and policymakers in assessing the impact of current and potential new 
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strategies.  The study aimed to assist postsecondary institutions in identifying 

characteristics affecting the academic performance of FTFTF students within the first 

year of their studies.  Postsecondary employees could use the information derived from 

the findings to allocate expenditures and resources more effectively to improve academic 

performance. 

Theoretical Framework of the Study 

 The theoretical framework for the study was the integration theory of student 

departure developed by Tinto (1975, 1993).  As one of the most prominent theoretical 

models, Tinto argued previous models lacked attempts to provide an explanation for the 

student departure phenomenon.  Initially, Tinto (1975) based the model on the utilization 

of Durkheim’s suicide theory.  The initial model indicated students' departure decisions 

stemmed from a failure to integrate into the academic or social societies found within a 

postsecondary institution.  Upon reflection and in response to negative criticism 

regarding the usage of the term "suicide," Tinto (1993) revised the model, arguing 

students' integration into the postsecondary institution's community resembles Van 

Gennep’s rites of passage theory, as displayed in Figure 1.  According to Tinto (1993), 

students begin the initial steps of separation from familiar surroundings and norms when 

they enroll in a postsecondary institution.  After the separation, students go through a 

transition phase as they interact with the new surroundings and norms.  Tinto (1993) 

argued this process assists in facilitating their integration into the academic and social 

communities. 
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Figure 1. Tinto's integration model. 

Tinto (1993) cautioned the failure to integrate stems from a void produced 

between the separation and incorporation stages.  As students separate from their familiar 

norms, they may experience loneliness, hindering integration into the communities.  

Since the inception of his theoretical model, Tinto (1975, 1993) argued student attributes, 

such as family background, student abilities, and precollege schooling, factor into the 

students’ goals and commitments.  The goals and commitments of the students then 

influence their integration into the postsecondary communities.  Noting the integration 

process does not occur within a vacuum, Tinto (1993) stated external commitments, such 

as family and job commitments, influence the departure decision. 

Limitations of the Study 

 There were several limitations to the study.  First, concerning the location of the 

population, the study was focused on students enrolled in four regional, comprehensive 

universities within USG.  As a result of the selected institutions, other institutions may 

not be able to generalize the findings to their enrolled students.  Another limitation 
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pertained to the population examined.  With the study focusing on the first-year academic 

performance of FTFTFs who recently graduated from high school, the findings would not 

be applicable to other undergraduate students—such as FTFTFs who delay enrollment 

and transfers—or beyond the FTFTFs’ first year.  This study did not include an 

exhaustive list of factors impacting academic performance.  An analysis involving a more 

comprehensive list would alter the study's findings.  Regarding the quality of the high 

school curriculum, using aggregated curriculum values of the schools to compare a subset 

of students posed a limitation since not all students from these schools enrolled in a 

postsecondary institution.  Furthermore, the information collected on high school 

curriculum quality was based on pre-COVID-19 pandemic changes. 

 In studying the phenomenon of academic performance, the study had a limitation 

due to the utilization of ex post facto data.  The data collected and utilized in examining 

the factors impacting first-year academic performance did not include students' 

motivation, as indicated by Tinto (2017) in his reflection on factors in student persistence.  

Tinto (2017) stated students' self-efficacy, sense of belonging, and perception of the 

curriculum provide further insights into students' decisions to persist at or depart from the 

institution.  Factors related to student motivation are typically obtained through surveys 

and interviews rather than being stored in archival data.  This study did not incorporate 

data collected from surveys regarding students' motivation attributes as they are beyond 

the scope of the study. 

 Lastly, the final limitation involved the record-keeping process.  This study 

collected data from four different sources.  Regarding the data, human error in the form 

of data entry may occurred.  As data entry involves a person keying in information into a 
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student information system, this may have resulted in someone accidentally entering the 

wrong data.  For example, simple data errors could lead to the accidental entry of 

incorrect information for a student’s high school GPA or admission test score during the 

processing of admissions applications. 

Definitions of Terms 

Within this study, the following terms or phrases are used and provide consistency: 

• Area under the curve (AUC).  The AUC is a diagnostic test to measure the overall 

usefulness of a model.  A model with a no discrimination would have a value of 

.50, while a perfect model would have a value of 1 (Mandrekar, 2010). 

• College and Career Ready Performance Index (CCRPI).  As part of ESSA, 

GaDOE developed the CCRPI to communicate improvements and display 

accountability regarding each school’s ability to promote readiness for life after 

graduating (GaDOE, 2021C). 

• End-of-course (EOC) tests.  Each high schools’ rates of proficiency and above 

proficiency rates for the four main subject areas, given to students at the end of 

the semester (GOSA., n.d.). 

• F-measure.  The F-measure is a measurement of accuracy involving the harmonic 

mean of the recall and precision (Brownlee, 2020).   

• False-negative rate.  The false-negative rate is a measure of percentage of actual 

cases with the event wrongly predicted to not have the event occurring (Silipo & 

Widmann, 2019).  The false-negative rate in this study was the percentage of 

students were predicted not to retain divided by total actual retained students. 
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• False-positive rate.  The false-positive rate is a measure of percentage of actual 

cases within the event wrongly predicted to have the event occurring (Silipo & 

Widmann, 2019).  The false-positive rate in this study was the percentage of 

students were predicted to retain divided by total actual not retained students. 

• First-time, full-time freshmen (FTFTF).  According to the Integrated 

Postsecondary Education Data System (IPEDS), an FTFTF are students pursing 

an undergraduate degree by matriculating into an institution for the first time.  

The student must enroll in the fall term or the proceeding summer term to qualify 

(National Center for Education Statistics [NCES], n.d.e).  Furthermore, the 

student must be enrolled in at least 12 credit hours to be considered full-time 

(USG, 2020a). 

• First-year academic performance.  The first-year academic performance in this 

study was comprised of first-fall GPA, first year GPA, and one-year retention 

status. 

• High school curriculum quality.  In the study, the HS curriculum quality measured 

the schools’ overall content mastery and readiness scores in additional the 

proficiency levels of the four main subject areas. 

• Out-of-sample predictive power.  The out-of-sample predictive power builds on 

the trustworthiness of the prediction: accuracy predicting the events (Kuhn & 

Johnson, 2013).   

• Precision.  The precision is a calculation measuring the accuracy actual positive 

cases within the total predicted positive cases (Silipo & Widmann, 2019).   
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• Predictive modeling/predictive algorithm.  Predictive modeling and predictive 

algorithm may be used interchangeably through the study.  Predictive modeling, 

as defined by Kuhn and Johnson, is “the process of developing a mathematical 

tool or model that generates an accurate prediction” (2013, p. 2).  

• Receiver operating characteristics (ROC) curve.  The ROC curve is a plot in 

which displays the true-positive and true negative rates.  Within the plot, the point 

closest to the upper left corner is considered the most accurate (Kuhn & Johnson, 

2013). 

• R-square/Adjusted R-square.  The r-square and adjusted r-square provides a 

measurement of correlation for ratio and interval dependent variables.  The 

measurements assess how well the model fits the dependent variables (Kuhn & 

Johnson, 2013).  These values measured the correlation between the predicted and 

actual GPAs.  

• Regional, comprehensive university (RCU).  A regional, comprehensive 

university is a four-year institution degree granting institution offering primarily 

bachelor’s degrees to undergraduate students.  These types of institutions have a 

different focus than the flagship and research institutions, as their primary goal is 

to have an impact on workforce in the region they are located.  Regional, 

comprehensive universities not only provide affordable options for students, but 

according to Sandeen (2020) their primary goal is the success of the students.  

• Retention status.  The retention status is defined as whether a student returned to 

the initial postsecondary institution one-year later or graduated before the 

proceeding fall semester. (USG, 2020b).  
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• Root mean square error (RMSE).  The RMSE is a measurement of accuracy of 

predicted values to the actual values for ratio or interval dependent variables 

(Kuhn & Johnson, 2013).  In the study, RMSE measured the distance between the 

actual and the predicted GPA values. 

• Sensitivity  The true-positive rate, sensitivity, or recall evaluates the accuracy of 

the prediction within the sample with the event actually occurring.  The 

percentage of the true predictive positive cases divided by the total actual true 

cases (Kuhn & Johnson, 2013).  The true-positive rate in this study would be the 

percentage of students predicted to retained by the total actual students who 

retained. 

• Specificity.  The true-negative, specificity, or false alarm evaluates the accuracy 

of the predictions within the sample without the event actually occurring.  The 

percent is the true predicted negatives divided by the total actual negative cases 

(Kuhn & Johnson, 2013; Silipo & Widmann, 2019).  In this study, the true-

negative rate is the percentage of students who were not predicted to retain 

divided by the total number of students who actually retained. 

• Testing data set.  The testing data set is the portion of the data set used in 

assessing the accuracy of the algorithm’s predictions (Kuhn & Johnson, 2013).  

• Training data set.  The training data set is the portion of the data set used in 

developing the model (Kuhn & Johnson, 2013).   

• University System of Georgia (USG).  The USG (2021a) compromises of 26 

public postsecondary institutions within the State of Georgia.  Of the 26 
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institutions, four are research institutions; four are regional, comprehensive 

institutions; nine are state universities; and nine are state colleges. 

Organization of the Study 

 The study is organized into five distinct chapters.  Chapter 1 contains an 

introduction, statement of the problem, purpose statement, and significance for the study.  

Additionally, the chapter provides the research questions and methodology conducted in 

the study.  Within Chapter 2, there is a review of relevant retention theories proposed by 

Spady (1970, 1971), Tinto (1975, 1993), Bean (1980), and Astin (1984, 1993), followed 

by a literature review of characteristics affecting academic performance within the first 

year at a postsecondary institution.  Additionally, a review of RCUs and data science is 

also included in the literature review.  Chapter 3 discusses the breakdown of the study to 

describe the research design, population, and methods of data collection.  The third 

chapter explains the research methodology, containing a review of the data analysis 

involving descriptive and inferential statistics, along with the review of statistical 

considerations and assumptions.  The fourth chapter contains the analysis and 

interpretation of the data to answer two research questions.  As the conclusion of the 

study, the final chapter provides an overview of the study along with a discussion of the 

results and implications for future research.   
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Chapter II 

LITERATURE REVIEW 

In this study, students’ academic performance in regional comprehensive 

universities in Georgia’s public system is investigated to determine what independent 

variables, including student characteristics, precollege characteristics, graduating high 

school characteristics, major declaration, and institutional financial expenditures, have an 

impact within the first year.  Retention theories proposed by Spady (1970, 1971), Tinto 

(1975, 1993), Bean (1980), and Astin (1984, 1993) provide the basis for examining 

academic performance at the comprehensive public post-secondary institutions.  This 

chapter begins with an overview of regional comprehensive universities along with the 

growing concerns these institutions face.  The next section has a review of the literature 

regarding the independent variables impacting first-year academic performance.  The last 

section contains a review of data science and data mining techniques implemented in 

higher education. 

Regional Comprehensive Universities 

 According to the American Association of State Colleges and Universities 

(AASCU) (2020), a regional comprehensive university (RCU) provides students with a 

high-quality education at affordable costs.  Originally, RCUs were established to produce 

future educators, formed as night schools, and provide educational opportunities for 

veterans (AASCU, 2020; Orphan, 2018a, 2018b).  Henderson (2009) stated public RCUs 

are “the People’s University” due to the increased focus on educational opportunities and 
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connection to the local economic area (p. 5).  Unlike research universities, admission 

standards for RCUs are more relaxed requirements to which almost half of the students 

applying are accepted (Nietzel, 2019b; Orphan, 2018b).  These institutions provide 

educational opportunities for a more diverse student population with relaxed admission 

requirements.  Students attending RCUs overwhelmingly commute rather than live in 

residential dorms (Reis, n.d.).  Within the student body, undergraduates come from 

diverse backgrounds and preparations.  The diversity of the student population includes 

age, race and ethnicity, first-generation status, and individuals from low to middle 

socioeconomic statuses (Nietzel, 2019a).  Frequently, these students come from a non-

affluent background and enroll in an RCU because of the possibility to prepare them for a 

future or career advancement (Reis, n.d.). 

 While research institutions gain considerable media attention, RCUs provide a 

large share of enrolled students in the state, and administrators work to provide 

opportunities for success to these students.  The focus of RCUs centers on undergraduate 

student programming in which faculty are praised for teaching (Nietzel, 2019b; Orphan, 

2018b; Schleifer, Hagelskamp, & Riendhart, 2015).  These institutions provide a wide 

range of undergraduate programs, along with a few master’s degree programs 

(Henderson, 2009; Nietzel, 2019b).  A few institutions have doctorate degrees primarily 

concentrating in the educational field (Henderson, 2009).  RCUs and the local areas have 

a symbiotic relationship.  RCUs depend on the areas as a large base for recruitment of 

new students, while the areas need RCUs to provide students who are career-ready 

(Orphan, 2018b).  Additionally, RCUs educate over half of the teachers within the state's 

school system (Orphan, 2018a). 
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Largely, RCUs belong to the public sector of control and have experienced 

declining funding and often face budget cuts.  Before the recession in 2008, public RCUs 

received 70% of their funding from state appropriations, only to see the funding 

percentage take around a 20% cut (Orphan, 2018b).  In other words, RCUs have largely 

become reliant on funding from tuition generated based on student enrollment.  With the 

reliance on tuition funding, RCUs have been the main driver of tuition increases, 

resulting in increased costs driving the public’s growing disinvestment (AASCU, 2020).  

However, RCUs struggle with a delicate balance of affordability and funding. As tuition 

rates continue to rise, these institutions risk becoming counterproductive in providing 

affordable education.  Yet without increasing tuition, educational quality may suffer from 

a lack of funds (Schleifer et al., 2015).  A total of 27 states have linked academic 

performance to the available state appropriations for institutions, called performance-

based funding (Schleifer et al., 2015). 

Growing concerns for regional comprehensive universities.  With RCUs 

considered the workhorse of the postsecondary institutions in producing degree-

credentialed workforce for state and regional areas, these institutions need to consider 

any changes having a profound impact on the general population.  While postsecondary 

institutions have a myriad of issues to deal with now, administrators and other 

policymakers will need to be aware of the current decline in the traditional age student 

population, changing demographics, and the public’s perception of postsecondary 

education.  

 Decline in traditional-age student population.  From December 2007 to June 

2009, the United States of America experienced an economic recession.  Considered the 
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most significant recession since The Great Depression, Livingston and Cohn (2010) 

linked the recession to the birth rate decline.  They reported the birth rate dropped from 

69.9% to 68.8% (Livingston & Cohn, 2010).  While the recession impacted states 

differently, an overall decline occurred (Livingston & Cohn, 2010).  Along with a birth 

rate decline, high school graduates will naturally follow suit as children progress through 

the elementary, middle, and secondary school systems.  In a Hechinger Report, Barshay 

(2018) wrote postsecondary enrollment should prepare for enrollment declines beginning 

in 2025.  Furthermore, Barshay (2018) indicated some states would experience a greater 

decline than other states.  While most postsecondary institutions are growing in student 

and employee size, Miller (2020) indicated some institutions have already begun to 

experience a downturn in enrollment. 

 In the beginning of 2020, COVID-19 presented significant challenges, and 

postsecondary institutions had to adapt to continue operating and educating students.  As 

a result of the pandemic, Sedmak (2020) wrote a press release for NSCH indicating Fall 

2020’s decline was twice as severe as the decline in Fall 2019.  As postsecondary 

institutions adapted to the new norms, some institutions modified the recruiting methods 

and admissions requirements.  Due to several relaxed requirements, some institutions 

experienced relative increases in enrollment for the following fall semester (Sedmak, 

2020).  USG (2020c) experienced a 2.4% increase within the State of Georgia to achieve 

a system-wide all-time high in record enrollment for Fall 2020.  For Spring 2021, 

Sedmak (2021) reported the national undergraduate enrollment in postsecondary 

institutions faced its sharpest decline of 5.9%.  As national reports have begun to indicate 
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the decline predicted to occur in 2025, the current trend along with the prediction does 

not provide a promising outlook for future enrollment growth of traditional-age students. 

 Changing demographics.  In a Pew Research Report, Henderson (2016) stated 

more people within the nation had started to migrate from the Northeast to the South or 

West.  He indicated the largest areas of growth occurred in the Sun-Belt region 

(Henderson, 2016).  The migration has been large enough to impact how congressional 

house seats were distributed across the states (Henderson, 2016).  Henderson (2016) 

reported the migration had an economic driver rather than weather or climate drivers.  

Continuing, he revealed two-thirds of the long-distance migrants were due to job 

opportunities and housing costs (Henderson, 2016).  As migration within the nation 

occurred, this would result in population changes causing economic and population 

growth. 

 Individuals relocated for better opportunities, which sparked a population 

demographic change in the receiving regions.  Additionally, projections have indicated 

the nation's demographics will be a majority minority by 2025.  The change in 

demographics not only stems from within-the-nation migration, but the nation has 

reached an all-time high of migrations from other nations (Facing History & Ourselves, 

2021).  For postsecondary institutions, demographic changes have begun to be noticed.  

For the academic year 2017-2018, public postsecondary undergraduates were considered 

majority minority institutions as the percentage of White students fell below 50% (Miller, 

2020). 

 Public’s perception of postsecondary education.  Within any election cycle, one 

can only look back at the 2020 election to see how candidates portrayed postsecondary 
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education regarding affordability or indoctrination issues.  According to Lederman 

(2019), the public nationally does not view postsecondary institutions the way politicians 

do.  While tending to have a positive view of higher education, the public has indicated 

postsecondary institutions “must do a better job of educating students affordably and 

effectively” (Lederman, 2019).  Further adding, Lederman (2019) stated the public still 

view obtaining a postsecondary degree forms the stepping stone to a successful career.  

While the positive view is held by many, they also believe postsecondary education may 

not be worth it as the costs continue to increase, especially for students who take on 

substantial debt (Lederman, 2019).  Even though Lederman indicated an overall positive 

perception of postsecondary education, Nietzel (2019a) stated the positive belief of 

importance has begun to erode.  He noted only 50.0% of respondents to a Gallup poll 

expressed belief in the positive importance (Nietzel, 2019a).  In comparing the 

percentage from 2013 to 2019, this belief declined by 20.0% (Nietzel, 2019a). 

Development of Attrition Theories 

Academic performance metrics of successful first-year GPA and retention to the 

second year of studies continue to puzzle postsecondary administrators over the years. 

Students’ academic performance within the first years is critical in developing a powerful 

momentum to propel them towards their eventual degree attainment.  Until the 1970s, 

researchers analyzed data about students’ characteristics and attributes to explain attrition 

(Aljohani, 2016).  According to Spady (1970), he stated these early attempts lacked an 

“analytical-explanatory category” describing the attrition phenomenon (p. 64).  Berger, 

Ramirez, and Lyon (2012) indicated the previous attempts used a psychological lens 

rather than a sociological lens in providing explanations regarding attrition.  While 
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William first began using a sociological lens to develop a theory regarding retention, 

Spady’s work introduced the term retention and explained how institutions have a shared 

responsibility in the phenomenon (Aljohani, 2016). 

Spady’s undergraduate dropout process model.  Developed by Spady (1970, 

1971), the model drew from Durkheim’s suicide theory's sociological lens.  This 

sociological lens sought to define and explain the relationship between students and 

institutions in a social construct (Aljohani, 2016).  Using the stages of suicide, Spady 

(1970, 1971) argued student attrition occurred when students did not successfully 

integrate into the postsecondary institution environments.  According to Spady (1970; 

1971), attrition results when students fail to integrate into the communities, whether 

academic or social, resulting in postsecondary suicide.  He explained postsecondary 

suicide described the student’s departure from the academic or social communities 

(Spady, 1970, 1971).  Spady solidified his model by analyzing data collected from 

students at the University of Chicago to discover how student characteristics, academic 

potential and ability, family background, and social support influenced retention 

decisions (Aljohani, 2016). 

Tinto’s institutional departure model.  Tinto's model has become one of the 

most recognized and used models to explain attrition.  In 1975, Tinto began examining 

and expanding Spady's departure theory.  Like Spady, Tinto used Durkheim's suicide 

theory to examine students' integration into the institution's academic and social 

communities.  After some reflection, he revisited his theoretical model to use Van 

Gennep's theory on the rites of passage in 1993 (Tinto, 1993).  The rites of passage theory 

by Van Gennep (1960) focused on three distinct phases individuals experienced: 
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separation, transition, and incorporation.  Tinto stated new students integrating into a 

postsecondary institution's communities first had to experience separation from their 

hometown or community's traditional and familiar norms.  Students began to interact 

with the new traditions and norms in the postsecondary setting during the transition 

phase.  Finally, Tinto argued students began to incorporate the new norms and traditions 

into their daily life.  Over several years, the model has been revisited for revisions and 

expansions by multiple researchers (Cabrera et al., 1992; Cabrera et al., 1993; Pascarella 

& Terenzini, 1979, 1980, 1983; Terenzini et al., 1981; Tinto, 1988). 

 Later, Tinto (1993) added that students' integration into the academic and social 

communities is measurable through academic performance—grades earned and 

persistence—and student interactions with others—peers and faculty.  Before entering a 

postsecondary institution, students possess attributes shaping and impacting their goals 

and dreams of eventual degree attainment.  Students' characteristics and prior schooling 

are ever-present effects that "weaken or strengthen" their commitment to their academic 

journey (Alojanhi, 2016, p. 6).  Also, Tinto (1975, 1993) added environmental factors, 

such as family and occupation, may affect students' academic performance.  The impact 

on a student's decision on whether to retain or depart stems from these attributes. 

Bean’s student attrition model.  While aligning with the prior theories, Bean 

(1980) criticized Spady's and Tinto's initial use of Durkheim's Suicide Theory.  Bean's 

(1980) main critique was that the prior theories only examined correlations rather than 

providing in-depth analytical explanations between students' attributes and post-

secondary institutions.  Purporting Price's (1978) employee turnover theory, Bean (1980) 

indicated that student attrition was similar in terms of satisfaction and departure decisions 
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in the workforce.  While students do not receive any monetary value for their academic 

journey, they do receive grades, GPAs, and intellectual development affecting their 

overall satisfaction with the institution, resulting in their decision to retain or depart. 

Astin’s student involvement theory.  Like other theories examining students' 

departure decisions and the postsecondary institution, Astin (1984) suggested student 

retention is also related to the level of involvement in the institution.  Like Tinto's (1975, 

1993) theory, Astin's (1984) involvement theory examined the students' involvement or 

integration into the postsecondary environments.  Expanding on the use of student 

backgrounds and precollege attributes, Astin (1984, 1993) included institutional factors 

such as resource expenditures impact and improvements in academic performance.  

Institutions expending dollars and allocating resources to assist students with their 

integration into the academic and social communities could relate to the eventual 

academic performance of students with a measure of devotion and intentionality towards 

their success. 

Characteristics Impacting Academic Performance 

 The theories mentioned above suggest consensus on the overarching themes of 

factors impacting academic performance.  There are five main themes: 1) student 

characteristics, 2) precollege characteristics, 3) financial situations, 4) major declaration, 

and 5) institutional characteristics.  These factors often interact and influence academic 

performance, especially in the critical first years of postsecondary education.  The 

following section will review the literature on these overarching themes of factors 

influencing academic performance. 
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Student characteristics.  

Gender.  Research indicates gender plays a key factor in determining successful 

academic performance indicating females outpace males in attendance and academic 

performance in postsecondary education.  Jacob (2002) investigated the gender 

differences in postsecondary attendance and retention using a representative sample from 

the National Educational Longitudinal Study (NELS).  The data Jacob obtained focused 

on eighth graders from 1988 to 1994.  Within the data, observations had a corresponding 

survey regarding postsecondary and workforce events after high school graduation.  Of 

the 10,925 students, he found females had a 4.7% higher postsecondary attendance than 

males (Jacob, 2002).  Jacob (2002) noted the rates were higher than the national rates but 

still confirmed females were attending postsecondary institutions at higher rates than 

their counterparts.  In examining the differences in enrollment rates, the NELS survey 

indicated males were more likely to dislike school, be employed in the workforce, or see 

no further need for education than females (Jacob, 2002).  Also, he noted males were 

more likely to attend based on their family background, while females were more likely 

to attend based on their cognitive ability (Jacob, 2002).  Additionally, Jacob (2002) 

mentioned females were more likely to return than males.  He further reported around 

90% of the gender gap is accounted for in non-cognitive abilities (Jacob, 2002).  In 

reviewing the results of his study, Jacob (2002) suggested future research should include 

the characteristics of how the school's curriculum influences attendance and retention by 

gender.   

In reviewing enrollment trends from the early 1960s to the mid-2000s, Buchmann 

and DiPrete (2006) confirmed females were outpacing males in postsecondary attendance 
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and academic performance.  Moreover, they alluded to the inequalities of postsecondary 

access in earlier years contributing to males attending at higher rates (Buchmann & 

DiPrete, 2006).  Using the data from NELS of children born in 1973 or 1974, they 

conducted a logistic regression model and reported females were more likely to attend 

any postsecondary institution (N = 10,820, B = .219, p ≤ .01) and to be successful within 

four years (N = 10,759, B = .234, p ≤ .01) (Buchmann & DiPrete, 2006).  Buchmann and 

DiPrete (2006) found no significant differences between females and males in enrolling 

in a four-year institution.  In examining the gender gap, they found significant differences 

for earning a degree for a four-year institution (N = 6,014, B = .368, p ≤ .01) and 

enrolling only in four-year institutions (N = 3,512, B = .454, p ≤ .01) (Buchmann & 

DiPrete, 2006).  Their findings suggest female students have higher likelihoods of 

successfully obtaining a degree within four years regardless if the female students 

initially matriculated or transferred into a four-year institution when compared to their 

counterparts. 

Gender alone is not a sole factor in impacting academic performance in terms of 

GPA.  In controlling for race and family background for 5,032 observations, Buchmann 

and DiPrete (2006) conducted an ordinary least squares regression and reported gender as 

a significant predictor (B = .263, p ≤ .01) of earned GPA.  Additionally, they found 

students identifying as White exhibited a strong predictor of academic performance 

compared to their underrepresented counterparts.  Specifically, students identifying as 

Black or African American (B = -.443, p ≤ .01) exhibited a significant predictor of 

unsuccessful performance or earning lower GPAs (Buchmann & DiPrete, 2006).  

However, Buchmann and DiPrete (2006) conducted a second model with 4,249 
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observations incorporating high school preparation to report a lesser negative effect for 

students identifying as Black or African American (B = -.254, p ≤ .01) (Buchmann & 

DiPrete, 2006).  When factoring in academic preparation, especially for Black or African 

American students, Buchmann and DiPrete (2006) stated students who had higher marks 

of preparedness earned higher college GPAs while students who were not as prepared 

earned lower GPAs. Students with at least one parent with some postsecondary education 

was a significant predictor (mother, B = .147, p ≤ .01and father, B = .149, p ≤ .01), when 

controlling for race and family background (Buchmann & DiPrete, 2006).  When 

including high school preparation, Buchmann and DiPrete (2006) reported only the 

father’s postsecondary education was significant (B = .084, p ≤ .01).  While confirming 

females outperform their counterparts, Buchmann and DiPrete (2006) stated the gender 

gap largely stems from White female students.  

In analyzing additional factors impacting the gender gap, Morales (2008) 

conducted a phenomenological study using a purposeful sample of 50 individuals.  In his 

study, the findings revealed 93% of females having a conscience and intense connection 

between their degree program and their future occupation produced a strong motivation 

to perform successfully.  Additionally, Morales (2008) reported 92% of females indicated 

they had clear professional goals compared to 30% of males.  In the study, females 

largely reported resistance and harsh criticism from family members and others regarding 

pursuing a postsecondary degree.  Specifically, underrepresented females reported more 

resistance than White females.  Morales (2008) suggested this form of resistance is due to 

the cultural and traditional norms expected of females.  Further examining the 

connectivity between the programs of study and future occupations, a qualitative study 
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conducted by Kleinfield (2009) of 99 students confirmed females view postsecondary 

education as a pathway for their future occupation.  Noting a lack of connection between 

major and occupation, Kleinfeld (2009) also recommended male students receive early 

preparation through dual enrollment courses in high school to help to form the connection 

to build momentum toward performing well in a postsecondary setting.  

In terms of returning or departing from the institution, research has consistently 

indicated females retain at a higher rate than males.  A study conducted by Stewart, Lim, 

and Kim (2015) analyzed the effect of remediation status, personal attributes, family 

background, prior schooling, and college academic performance impacted students' 

decisions on retaining or departing from the institution.  Using a large public four-year 

institution, they obtained 3,212 student observations and analyzed the data with a 

factorial analysis of variance (Stewart et al., 2015). Stewart et al. (2015) conducted three 

factorial ANVOAs comparing separately how gender, race and ethnicity, and financial aid 

status along with remediation status impacted students’ retention. The first factorial 

ANOVA study revealed only remediation status had a significant impact on persistence 

(F(1, 3,212) = 3.948, p = .047, η2 = .001), while gender alone and the gender and 

remediation interaction had no impact (gender, F(1, 3,212) = .399, p = .528; gender and 

remediation, F(1, 3,212) = 1.065, p = .302) (Stewart et al., 2015).  The second factorial 

ANOVA found only race and ethnicity (F(4, 3,212) = 8.386, p < .01, η2 = .010) and the 

third factorial ANOVA found only financial aid status (F(1, 3,212) = 12.825, p < .01, η2 = 

.004) influenced students retaining (Stewart et al., 2015).  In both the second and third, 

remediation and the interaction with remediation were not found to be significant 

(Stewart et al., 2015).  In the breakdown of the race and ethnicity, Stewart et al. (2015) 
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reported students’ race and ethnicity and followed up with Games-Howell post hoc 

comparison.  They reported Asian or Pacific Islander students (M = 4.97, SD = 1.394) had 

the highest and Black or African American students (M = 4.87, SD = 1.604) had the 

second highest likelihoods of persistence (Stewart et al., 2015).  The findings from 

Stewart et al. (2015) indicated students’ race and ethnicity and financial aid status 

contribute to a students’ likelihood of persistence, while gender is not a contribution to 

the persistence likelihood.  Yet, it is important to note the small effect sizes indicate very 

limited partial applications of the analyses. 

Race and ethnicity.  According to the Association of American Colleges and 

Universities (AACU) (2019), the student body in postsecondary institutions has become 

more diverse than in previous years.  For underrepresented groups enrolled in a 

postsecondary degree, a 24.4% increase occurred from 1996 to 2016.  The reports 

revealed most of the growth in the underrepresented groups resulted from students 

identifying as Hispanic (AACU, 2019).  As the postsecondary student population is 

growing to become a majority minority, administrators and other policy-makers need to 

be aware of how race and ethnicity influence academic performance within the critical 

first years.  Underrepresented groups of students may experience difficulties in 

performing successfully and integrating into the communities due to the lack of 

representation in the student body, faculty, and staff (Odell, Korgen, & Wang, 2005; 

Seidman, 2007). 

Using data from the National Longitudinal Survey of Freshmen on student 

entering institutions in 1999, Fischer (2007) conducted a three-step survey of a stratified 

random sample of 3,924 first-time students to measure the influencing factors on earned 
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GPA and retention status.  She noted people of color were oversampled in order to 

conduct within group analysis (Fischer, 2007).  The first step involved collecting data on 

students’ demographics, family background, and high school experience.  The second and 

third surveys included the collection of students’ adjustments to coursework, interaction 

with others on campus, integration into the campus communities, and experience with 

discrimination (Fischer, 2007).  Within the collected data, Fischer (2007) reported the 

mean earned GPAs were the highest in Asian and White students (3.30 and 3.32, 

respectively).  Additionally, she reported Hispanic and Black or African American 

students had significantly lower earned GPAs (3.08 and 2.95, respectively) (Fischer, 

2007).  Fischer (2007) conducted four ordinary least square models based on the students’ 

race and ethnicity in order to determine how the factors impact students’ GPA (White, N 

= 891, R2 = .209; Asian, N = 871, R2 = .210; Hispanic, N = 820, R2 = .216; and Black or 

African American, N = 885, R2 = .225).  Fischer (2007) noted significant differences in 

GPA by race and ethnicity.  For White, Hispanic, and Black or African American 

students, gender exhibited a significant negative influence for males on earned GPA 

(White, B = -.07, p < .01; Hispanic, B = -.106, p < .05; and Black or African American, B 

= -.096, p < .001) (Fischer, 2007).  Furthermore, White (B = -.134, p < .01) and Hispanic 

(B = -.147, p < .01) first generational students exhibited a significant negative influence 

on the earned GPA (Fischer, 2007).  Across the four different populations, high school 

GPA was the strongest factor impacting the earned GPA (White, B = .483, p < .001; 

Asian, B = .610, p < .001; Hispanic, B = .506, p < .001; and Black or African American, 

B = .412, p < .001).  Fischer (2007) also noted only Black or African American students 
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benefited from the number of Advanced Placement courses (B =.023, p < .05) (Fischer, 

2007).   

Like her analysis on GPA, Fischer (2007) conducted four logistic regression 

analyses based on students’ race and ethnicity to determine how factors impacted 

students’ decision to depart from the institution.  Only Hispanic students experienced a 

significant contribution of high school GPA (B = -.221, p < .01) in their decision to depart 

from the institution (Fischer, 2007).  Fischer’s (2007) explained while Hispanic students 

have higher departure rates than other students, she mentioned there is a strong 

association between academic preparation and departing from the institution.  She further 

explained Hispanic students with stronger academic preparation, in terms of better high 

school grades, contribute to the student actually not wanting to depart from the institution 

(Fischer, 2007).  Having on campus connections to the students’ own peer group 

contributed significantly to students’ departure decision from the institution for all race 

and ethnicities (White, B = -.889, p < .05; Asian, B = -1.651, p < .001; Hispanic, B =  

-1.559, p < .01; and Black or African American, B = -.1.195, p < .01) (Fischer, 2007).  

The contributions of the findings from Fischer (2007) suggested students in all four race 

and ethnicity groupings having connections to their own social groups assisted in students 

not departing.  Interestingly enough, Asian and Hispanic students’ own peer group have 

stronger impact on departure decisions than Black or African American and White 

students (Fischer, 2007).  

Flores and Park (2013) examined the type of institution underrepresented students 

had a preference to enroll in to obtain their degree in Texas.  The institution preference 

examined whether underrepresented students would prefer to enroll in Historically Black 
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Colleges and Universities (HBCU), Hispanic Serving Institution (HSI), or a 

Predominately White Institution (PWI).  Using the longitudinal data set from Texas 

agencies and supplemental national data, Flores and Park (2013) filtered the population to 

students graduating from high school graduates in 1997, 2000, 2002, 2006, and 2006.  

Utilizing logistic regression, Flores and Park (2013) reported consistent findings with 

previous literature indicating females were more likely than males to enroll in a 

postsecondary institution (males in 2017, B = -.233, p < .001; males in 2000, B = -.220, p 

< .001; males in 2002, B = -.174, p < .001; males in 2006, B = -.211, p < .001; and males 

in 2008, B = -.191, p < .001).  Additionally, they reported Hispanic students are more 

likely to not enroll in any postsecondary institution (2017, B = -.185, p < .001; 2000, B = 

-.179, p < .001; 2002, B = -.328, p < .001; 2006, B = -.288, p < .001; and 2008, B = -.242, 

p < .001) (Flores & Park, 2013).  For high school graduates identified as Black or African 

American, Flores and Park (2013) noted these students exhibited increasing odds of 

enrolling over the years (2017, B = -.061, p < .001; 2002, B = .049, p < .001; 2006, B = 

.247, p < .001; and 2008, B = .232, p < .001).  Flores and Park (2013) next examined the 

types of postsecondary institutions students attend.  They noted White students were 

more likely to enroll in PWI.  Black or African American students are more likely than 

Hispanic or White students to enroll in one of the three types of institutions, while the 

odds are less for attending an HSI (Flores & Park, 2013).  Interestingly, they noted 

Hispanic students were more likely to enroll in an HSI or HBCU than a PWI (Flores & 

Park, 2013).  After examining the differences in persisting toward degree attainment, 

Flores and Park (2013) noted towards the end the academic journey, race and ethnicity no 

longer played a factor in determining successful performance.  One aspect could be 
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drawn from the success of students of color from the Flores and Park's (2013) study could 

be the students enrolling in minority-serving institutions experience self-identification to 

help integrate into postsecondary academic and social communities.  

Stewart et al. (2015) conducted three factorial ANVOAs comparing separately 

how gender, race and ethnicity, and financial aid status along with remediation status 

impacted students’ retention.  In the factorial ANOVA examining the impact towards 

persistence using race and ethnicity and remediation status, only race and ethnicity was 

found to be significant, (F(4, 3,212) = 8.386, p < .01, η2 = .010) (Stewart et al., 2015).  

Remediation status along with race and ethnicity was not found to be significant (Stewart 

et al., 2015).  Stewart et al. (2015) reported the Games-Howell post hoc comparison 

resulted in Asian or Pacific Islanders (M = 4.97, SD = 1.394) had the highest and Black or 

African American students (M = 4.87, SD = 1.604) had the second highest likelihoods of 

persistence. Yet, it is important to note the small effect sizes indicate very limited partial 

applications of the analyses (Stewart et al., 2015).  Stewart et al. (2015) also conducted 

two additional factorial ANOVAs analyzing the impact of gender and financial status 

along with remediation status had on retention.  The gender and remediation status only 

revealed remediation had a significant impact, (F(1, 3,212) = 3.948, p = .047, η2 = .001), 

while gender alone and gender and remediation status were not significant (gender, F(1, 

3,212) = .399, p = .528; gender and remediation, F(1, 3,212) = 1.065, p = .302) (Stewart 

et al., 2015).  The other factorial ANOVA found only financial aid status (F(1, 3,212) = 

12.825, p < .01, η2 = .004) influenced students retaining (Stewart et al., 2015).  In both 

the second and third, remediation and the interaction with remediation were not found to 

be significant (Stewart et al., 2015).  Like the race and ethnicity, the effect size was small 



 

43 
 

in each of the additional findings indicating very little applicable implications (Stewart et 

al., 2015). 

Family educational background.  As post-secondary enrollment increased, 

enrollment of first-generation students also increased, providing different academic 

performance behaviors.  While there are varying definitions, first-generation students are 

considered those individuals with parents or guardians who have not graduated college.  

Obtaining data from a four-year comprehensive university located in the Midwest, 

Ishitani (2003) examined the impact of first-generation status on retention.  Within his 

study, the population focused on new students for Fall 1995.  Ishitani (2003) reported 

first-generational students comprised 58% of the students.  Using a survivor function, 

Ishitani (2003) noticed first generation students experienced a sharp decline compared to 

their counterparts.  First-generational students after the first semester exhibited a .833 

survival rate, while students with one parent exhibited .898 and those with both parents 

exhibited .913 (Ishitani, 2003).  When comparing first generational students to the 

counterparts, the rate difference was -.065 for those with one parent and -.080 for those 

with both parents (Ishitani, 2003).  The rate difference indicated first generational 

students were more likely to depart.  Examining the survival rate beyond the first year, 

Ishitani (2003) reported the gap in the survival rates grew larger for first generation 

students.  Further analyzing the data, Ishitani (2003) conducted a piecewise exponential 

model.  He noted first generation students had higher odds of leaving the institution after 

the first year (B = .534, p < .05) (Ishitani, 2003).  More importantly, he noted first 

generation students' odds of departing decrease as they continue to progress towards 

degree attainment (Ishitani, 2003).  Factoring in additional variables, he reported race and 
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ethnicity (B = -.557, p < .05), annual income of $25,000 or less (B = .400, p < .05), high 

school GPA (B = -.554, p < .05), and college GPA less than 2.00 (B = 1.356, p < .05) were 

significant factors in the first year of students (Ishitani, 2003).  The departure odds of first 

generation students decline after the first year could be attributed to the student 

integrating into the academic and social communities.  First generation students and their 

parents are unfamiliar with how to navigate through the communities which could 

provide hesitancy and anxiety into initially integrating into an institution’s communities. 

Conducting a second study on first-generational students, Ishitani (2006) used the 

NELS and Postsecondary Education Transcript Study data sets.  The population consisted 

of a sample of students from the 1991, 1992, 1993, and 1994 new students from four-year 

postsecondary institutions.  Ishitani (2006) used a two-tier definition of first-generation: 

parents with no college and parents with some but no degree.  This population 

represented 14.7% and 34.8% of the sample (parents with no college and parents with 

some college, respectively).  Ishitani (2006) found similar findings to the study conducted 

in 2003.  He indicated students with parents without any college have the lowest survival 

rate, and the survival gap grows over the years compared to students with both parents 

with a degree (Ishitani, 2006).  In conducting an exponential model, Ishitani (2006) found 

statistically significant higher odds of departing for students with no parents with college 

experience (B = .712, p < .05) and students with at least one parent with some experience 

but no degree (B = .739, p < .01) (Ishitani, 2006).  He also stated family income was 

significant for students with family annual income of less than $35,000 ($0 to $19,999, B 

= 1.193, p < .01 and $20,000 to $34,999, B = .874, p < .01) (Ishitani, 2006).  In terms of 

financial aid, students who received any grants (B = -.465, p < .01) and work study 
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funding (B = -.529, p < .05) had lower odds of departing (Ishitani, 2006).  Students low 

income families who did not receive any grant or work study funding would have higher 

odds of departing.  These students would not be able to afford the cost of attendance.  

Ishitani (2006) also found preschooling academic preparation impacted decisions to 

depart.  He found significant contributions of students with lower high school rank (B = 

1.337, p < .01) and lower academic intensity (3rd quintile, B = .599, p < .01; 4th quintile, 

B = .605, p < .01; and 5th quintile, B = .850, p < .01) significantly contributed to students’ 

departure (Ishitani, 2006).   

A study conducted by Lohfink and Paulsen (2005) analyzed national data from the 

Beginning Postsecondary Student Longitudinal Survey to compare persistence of first 

generation and non-first generation students.  First generation students exhibited a 5.63% 

persistence gap when compared to their counterparts.  Using a logistic regression model, 

Lohfink and Paulsen (2005) found significant findings for first generational and 

continuing generational students who persisted.  For the first generational student model, 

gender (delta-p = .094, p < .01), Hispanic students (delta-p = -.354, p < .01), family 

income (delta-p = .002, p < .05), living at home (delta-p = .183, p < .01), institution 

control (delta-p = -.124, p < .05), institution enrollment size (delta-p = .004, p < .05), first 

year GPA (delta-p = .128, p < .01), grant aid (delta-p = .0272, p < .01), and work study 

funding (delta-p = .064, p < .05) were found to have significant contributions to first 

generational students’ likelihood of persisting (Lohfink & Paulsen, 2005). 

Locale.  With the enrollment increase, students from different regional areas 

began enrolling in postsecondary institutions due to the increased access.  These regional 

areas are urban, suburban, and rural.  Early research from Corley, Goodjoin, and York 
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(1991) indicated how underrepresented urban and rural students performed in their first 

year at a South Carolina postsecondary.  A total of 760 freshmen across 21 course 

sections from 1988 and 1989 were surveyed.  Urban students' mean SAT Verbal scores 

were 349.06 for 1988 and 329.64 for 1989, and mean SAT Math scores were 363.34 for 

1988 and 355.16 for 1989 (Corley et al., 1991).  For the rural students, the mean SAT 

Verbal scores were 327.61 for 1988 and 314.65 for 1989, and the mean SAT Math scores 

were 352.12 for 1988 and 345.83 for 1989 (Corley et al., 1991).  Corley et al. (1991) 

noted rural students' SAT Verbal scores were significantly lower than their urban 

counterparts in 1988.  Corley et al. (1991) also noted the earned GPA in high schools was 

significantly lower for rural students than for urban students.  However, they reported the 

college GPA for rural students was "nearly two-tenths of a point" higher than their urban 

counterparts (Corley et al., 1991, p. 176).  Corley et al. (1991) mentioned the lower 

admission test scores of rural students could be attributed to the availability of test 

preparation for the region.  In their discussion, Corley et al. (1991) stated it appeared as if 

only the strongly motivated rural students would enroll in a postsecondary institution 

based on significantly lower test scores but higher earned GPAs.  According to Corley et 

al. (1991), rural students will struggle to integrate into the social communities due to the 

disparities between the rural and institution environments. 

While research from Corley et al. (1991) examined how underrepresented 

students from urban and rural, the impact extends to students of other races and 

ethnicities from like regions. Schultz (2004) conducted a phenomenological study on the 

first generation rural students enrolled at Mesa State College who came from agricultural 

families and their experiences in their first semester at a postsecondary institution. 
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Schultz (2004) reported students who had parents that supported the student's decision to 

attend college decided to pursue a postsecondary education easier than the other parents. 

He also noted when the support was split between the parents, it made the decision harder 

on whether to attend (Schultz, 2004). The father was the most reported parent who made 

the student's decision harder. The students reported the father either did not want the 

student to "leave the farm" or did not want to sign the required financial aid forms 

(Schultz, 2004, p. 48). While Schultz (2004) noted some students had positive views of 

moving from a small rural area to a larger, more populated area, most students reported 

they experienced anxiety about the move. Schultz (2004) concluded the assimilation 

process into the new community was counterproductive. With the horrible assimilation 

process into the campus community, Schultz (2004) reported the students were unaware 

of the reason they needed to form new relationships, e.g., friends and study peers, to help 

in adjusting to their new environment. 

Fischer (2007) conducted a study using data from the National Longitudinal 

Survey of Freshmen matriculating into selective postsecondary institutions in 1999.  He 

examined how college involvement and academic performance were impacted by the 

race and ethnicity of students (Fischer, 2007).  Using a stratified sample, a total of 3,924 

face-to-face interviews were conducted.  The students underwent two phases of data 

collection.  The first phase was conducted at the beginning of the first year, while the 

second occurred in the first spring semester.  Fischer (2007) used logistic regression to 

produce estimates by race and ethnicity groups by the whether the student departed from 

the institution by the third year.  She noted Black or African Americans from urban areas 

attending a postsecondary institution in a like area experienced a 60% reduction in the 
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probability of departing from the institution when “compared to their counterparts on 

nonurban campus” (Fischer, 2007, p. 151). 

Education in rural areas.  In an NCES published report titled the Status of 

Education, Provasnik, KewalRamani, Coleman, Gilbertson, Herring, and Xie (2007) 

analyzed the impact on education in rural areas.  Around 6% of rural students attended a 

private K-12 school in the 2003-2004 academic year, meaning most rural students attend 

a public school.  These rural public schools receive less federal funding when compared 

to their urban counterparts (6% and 11%, respectively) (Provasnik et al., 2007).  With the 

small amount of federal funding, the remaining portion of the funding would come from 

the state and local governments.  However, around 45% of the public schools in rural 

areas are classified as moderate-to-high poverty schools (Prosvasnik et al., 2007).  This 

would indicate rural area schools may not receive adequate funds to maintain updated 

education resources and to have competitive pay for qualified teachers.  Rural schools 

pay teachers on average 1,000 to 2,000 less than urban and suburban teachers (Provasnik 

et al., 2007).  With how technology has advanced to provide more available resources, 

rural students were reported to suffer lower rates of a computer with internet access than 

urban and suburban counterparts (Provasnik et al., 2007). 

Based on the National Assessment of Educational Progression achievement 

marks, Provasnik et al. (2007) reported the percentage of students in reading, 

mathematics, and science for 2005 by regional areas.  The areas were classified as city, 

suburban, town, and rural.  Further adding to the complexity, they further defined rural as 

fringe, distant, and remote.  The fringe areas were defined as a minimum of five miles, 

the distance was defined as more than five miles but less than or equal to 25 miles, and 
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remote was more than 25 miles from an urbanized area.  For distribution at a basic level 

or below, rural schools' distribution of students ranked third in reading, second in 

mathematics, and second in science in terms of the highest percentage.  Nevertheless, the 

rankings differed when rural schools are further split by their fringe, distant, and remote 

status.  Distant rural schools ranked the second highest in reading proficiency at basic or 

lower.  Remote ranked first, and distant ranked third highest in mathematics proficiency 

levels at basic or lower.  Remote ranked second and distant ranked third highest in 

science proficiency levels at basic or lower (Provasnik et al., 2007). 

 Provasnik et al. (2007) reported only 27% of rural students from ages 18 to 24 

were found enrolled in any program in a postsecondary institution.  Of the same age 

group, males from rural locations were reported at lower rates than females from rural 

locations (23.1% and 31.5%, respectively).  Even though rural females were enrolling in 

postsecondary institutions, they lag females from the other locations (Provasnik et al., 

2007).  The low percentages of rural students attending postsecondary institutions could 

be impacted by the parents or family’s expectation of the student to pursue a degree.  

Students from rural areas are more likely to come from a household in which both parents 

do not have a bachelor’s degree (Grace et al., 2006; Provasnik et al., 2007).  More 

specifically, Black or African American rural students' parents may not have even 

graduated from high school (Grace et al., 2006).  Provasnik et al. (2007) reported 42% of 

parents from a rural expect their children to earn less than a bachelor’s degree. This 

expectation is lower when compared to their urban and suburban counterparts (30% and 

25%, respectively) (Provasnik et al., 2007).   
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 While conducting an epistemological qualitative study consisting of 21 students 

at the University of Louisville, Phillips (2015) reported rural students are more likely to 

be first generation students.  Additional findings from his research indicated these 

students typically have very limited to no support from family and others back home.  

This is due to those back home being unfamiliar with life on a postsecondary campus.  

For rural students not receiving support from those back home, they made valuable 

connections on campus with faculty, staff, and peers.  Using a logit model on a sample of 

6,748 observations from the National Longitudinal Study of Youths, Velez (2014) 

reported a bleak outlook in postsecondary education for students from rural locations.  

She reported 91.9% of students from rural areas who never attended and 62.3% of rural 

students who dropped out of a four-year postsecondary institution had a probability of 

50% or less to obtain a bachelor's degree (Velez, 2014).  For students initially starting at a 

community college, Velez (2014) found 86.5% of rural students had a probability of 

earning a bachelor's degree at 50% or less.   

In an article published by the Lumina Foundation (2019), the foundation reported 

students from rural areas were graduating from high school above the national rate but 

just under the students from the suburban regions.  While students from rural regions 

were graduating from high schools above the national rate, the rate of matriculating into a 

postsecondary institution lags their urban and suburban counterparts (Lumina 

Foundation, 2019).  The Lumina Foundation's (2019) review of the National Center for 

Educational Statistics (NCES) found only 59% of rural students who graduate matriculate 

into a postsecondary institution, which is 3% lower when compared to urban students and 

8% lower when compared to urban and suburban, respectively, students.  Furthermore, 
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the Lumina Foundation reported, based on the most recent National Student 

Clearinghouse report, rural students are more likely to depart from a postsecondary 

institution.   

Additionally, less than 20% of individuals living in rural communities have at 

least a bachelor's degree (Lumina Foundation, 2019).  According to the Lumina 

Foundation (2019), historically, there have been multiple obstacles contributing to why 

rural students do not matriculate and eventually earn some form of postsecondary 

credential.  The main overarching reason for the lack of wanting to attend and eventually 

earn a degree is the problem with access.  This access comes in either the physical 

distance to the postsecondary institution or a lack of broadband internet (Lumina 

Foundation, 2019). In an Inside Higher Ed article, Fain (2019) stated only 14% of the 

postsecondary institutions are in rural areas, even though rural counties comprise 97% of 

the land in the U.S.  This lack of institutions in rural areas has created what is known as 

‘education deserts’ (Fain, 2019, Lumina Foundation, 2019).  Fain (2019) indicated 

students located in the rural education deserts present a barrier to which students feel 

there is no possibility of obtaining a degree and thus “perpetuating the cycle of poverty.” 

  As most of the occupation in rural areas are blue-collar and requiring no further 

education beyond high school, the available job market within the area could contribute 

to the low postsecondary attendance and degree attainment rates (Lumina Foundation, 

2019).  Lastly, the Lumina Foundation (2019) reported impacting rural students' 

attendance and success in a postsecondary institution was the high school in the area.  

More specifically, the foundation mentioned the high school curriculum quality left them 

ill-prepared to handle the postsecondary coursework (Lumina Foundation, 2019).  The 
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Lumina Foundation (2019) also mentioned the same reason impacting rural students is 

often the reason expressed by low-income urban student. 

Precollege characteristics. 

 High school curriculum quality.  Spady (1970, 1971) and Tinto (1975, 1988, 

1993) mentioned precollege schooling characteristics are important factors in 

determining academic performance in a postsecondary institution.  As Tinto (1993) 

mentioned incongruences in terms of mismatching attributes between students and 

postsecondary institutions, a connection between a weaker high school curriculum could 

cause students to feel as if they are mismatched, resulting in an inferior ability to perform 

at a higher rigor of postsecondary coursework.  Alternatively, students from a higher high 

school curriculum rigor could also result in a mismatch to which the student departs as 

the postsecondary coursework rigor is not challenging enough.  One of the most 

overlooked precollege schooling characteristics is the quality or characteristics of the 

high school.  A multitude of research has only focused on the individual’s ability in high 

school based on the HS GPA, per se, rather than including the overall quality of the high 

school’s curriculum.  In her book, McDonough (1997) used a qualitative approach to 

examine college choice using a sample of 24 females from four high schools.  She noted 

explanations or reasons driving students to select a college are diverse and cannot fit 

neatly into one category.  Furthermore in her book, McDonough (1997) noted educational 

settings are not on an equal playing field.  She stated students attending more selective 

postsecondary institutions have higher chances of graduating and more opportunities after 

obtaining their degree than their counterparts.  McDonough (1997) extended the same 

reasoning to the high schools, where she indicated more elite secondary schools lead to 
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better opportunities down the road for attending postsecondary institutions.  The 

attributing factors for the students who attend more elite secondary schools having better 

opportunities are the parents and the school's available resources (McDonough, 1997).  

The connection back to the high school would indicate the quality of the curriculum to 

prepare students could potentially limit the students’ availability to postsecondary 

institutions and eventually be connected to the impact on the actual or perception of their 

ability to have successful academic performance while enrolled in the institution.   

In their report for NCES, Horn and Kojaku (2001) published findings regarding 

the impact of high school curriculum had on persisting at a postsecondary institution.  

Using data from the Beginning Postsecondary Students Survey of the 1995 to 1996 

cohort, they found only 8% of Black or African Americans and 9% of students with 

parents’ education had high school education or less and took a more rigorous high 

school curriculum (Horn & Kojaku, 2001).  Students taking the advanced high school 

curriculum were more likely to attend more selective institutions, while the students who 

took the mid-level high school curriculum or less were more likely to attend less selective 

institutions (Horn & Kojaku, 2001).  Around 19.3% of students with the bare minimum 

high school curriculum were enrolled in remedial coursework, compared to only 2.7% of 

students with a rigorous curriculum.  Horn and Kojake (2001) reported the average first 

year GPA was 2.53 for students with the basic curriculum, 2.67 for students with a mid-

level curriculum, and 3.10 for students with a more rigorous curriculum.  They noted the 

only measurable difference appeared when comparing the basic or mid-level to the more 

rigorous students.  Students in the basic or mid-level curriculum were three times more 

likely to earn a lower first year GPA than students with a more rigorous high school 
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curriculum.  In examining the impact on first-year retention at the initial institution, Horn 

and Kojaku (2001) reported 71% of students from the more rigorous curriculum were 

retained as compared to 62% of the mid-level curriculum and 55% of the basic 

curriculum. 

Choy (2002) produced a report regarding her findings examining 10 years of 

longitudinal data.  From the National Education Longitudinal Study of eighth grade 

cohort data set in 1988, students who took more intense classes, especially Mathematics 

courses, in high school helped offset the students’ likelihood of attending college, even 

when their parents did not (Choy, 2002).  Examining the impact of advanced 

Mathematics courses, Choy (2002) reported 64% of students with parents with no 

college, 70% of students with parents with some college, and 85% of students with 

parents with at least a bachelor’s degree enrolled in four-year postsecondary institution.  

Choy (2002) further indicated students with parents who did not attend college but took 

advanced Mathematics courses were twice as likely to attend college than their 

counterparts who only took up to Algebra II.  Further elaborating, students who took the 

more rigorous Mathematics courses were academically prepared from the beginning 

rather than later in their high school academic journey (Choy, 2002).  Using the 

Beginning Postsecondary Student Longitudinal study of the 1995 to 1996 cohort of 

students, Choy (2002) also found the curriculum contributed to students’ persistence once 

attending a postsecondary institution.  She reported after three years of matriculating into 

the institution, 87% of students who had a more rigorous high school curriculum were 

persisting at their initial institution or transferred to another institution (Choy, 2002).  In 
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comparison, only 62% of students who only had the basic high school curriculum were 

found to be persisting or transferred (Choy, 2002). 

DeNicco, Harrington, and Fogg (2015) examined factors impacting student first 

year retention status of 1,800 students in a public state community college.  One of the 

factors they examined was the high school characteristics and the impact they had on the 

students' academic performance.  Due to the limitation of only examining the high 

schools from the same state as the attended institution, the sample size was reduced to 

1,638.  DeNicco et al. (2015) incorporated seven characteristics into their analysis.  The 

characteristics were graduation rates, dropout rates, number of suspensions, attendance 

rates, and proficiency rates in Mathematics, English & Languages Arts, and Writing 

(DeNicco et al., 2015).  DeNicco et al. (2015) indicated the proficiency rates were the 

school's overall rates due to their inability to have access to the individual student 

proficiency ratings.  They indicated the result involved with these factors are attributed 

towards the high school's environment the students went to rather than to the students' 

abilities.  In other words, the results could contribute back the environment in terms of 

the quality of education provided to all students attending the high school.  When they 

averaged out the rates by students' retention status, DeNicco et al. (2015) noticed the 

rates were significantly different at the 1% threshold for graduation rates, dropout rates, 

attendance rates, and English & Language Arts and Mathematics proficiency rates.  The 

average Writing proficiency rate was significant at the 5% threshold.  English & 

Language Arts proficiency rate for retained students was 3.3% higher than students who 

did not retain, while the difference was 2.1% for Mathematics, and 1.9% for Writing 

proficiency rates (DeNicco et al., 2015).  Using a logistic regression model for marginal 
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effects, DeNicco et al. (2015) found only two proficiency rates to have significant 

marginal effects (English & Language Arts, marginal effect = .003, p < .001 and 

Mathematics, marginal effect = .003, p < .001). 

High school GPA.  In the formation of their theoretical models on student 

retention, high school GPA was a major component of academic preparation in the 

precollege schooling characteristics (Astin, 1975, 1993; Bean, 1980, 1983; Spady, 1970, 

1971; Tinto, 1975, 1988, 1997).  A study conducted by Bridgeman, Pollack, and Burton 

(2008) confirmed the relationship between high school GPA and first year GPA when 

examining a sample consisting of three different cohorts from 26 colleges totaling 

110,468 students.  In addition to the high school GPA, Bridgeman et al. (2008) included 

SAT test scores as predictors of first year GPA.  In using regression analyses, they 

denoted a strong correlation between high school GPA and freshmen year GPA (B = .58, 

p < .05) (Bridgeman et al., 2008).  The correlation for males was slightly lower than 

females (B = .56, p < .05 and B = .59, p < .05, respectively) (Bridgeman et al., 2008).  

White students exhibited the highest correlations (males, B = .57, p < .05 and females, B 

= .61, p < .05), while Black or African American (males, B = .41, p < .05 and females, B 

= .48, p < .05) and Hispanic (males, B = .51, p < .05 and females, B = .55, p < .05) 

students were the lowest (Bridgeman et al., 2008).  The correlation of the freshmen's GPA 

strengthens when combining high school GPA and admission test scores (B = .65, p < 

.05) (Bridgeman et al., 2008).   

In explaining the relationship of high school GPA to academic performance, Chen 

and St. John (2011) found it was a significant predictor for students with lower high 

school GPAs are more likely not to persist when compared to those with higher GPAs.  
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Chen and St. John (2011) obtained a sample of new students in 1996 from the Beginning 

Postsecondary Students database.  They also obtained the students’ data for the following 

five years after the matriculation year.  Overall, the population for the study consisted of 

6,383 students from 422 postsecondary institutions.  Chen and St. John (2011) 

supplemented the data from additional national databases to incorporate financial 

indicators in the study.  In analyzing the data, a hierarchical generalized linear model 

examined the impact of factors on students’ persistence towards degree attainment (Chen 

& St. John, 2011).  Only 12.0% of the students had a low high school GPA.  Additionally, 

46.0% of students were in a middle level high school GPA.  Within their full model, only 

high levels of high school GPA were found to be significant (OR = 1.54, p < .01) (Chen 

& St. John, 2011).  While Chen and St. John’s (2011) examined persistence toward 

degree attainment, the study indicated high school GPA has a greater impact on the 

academic performance beyond the first year of study.   

In 2012, the Governor’s Office of Student Achievement (GOSA) (2012) in the 

State of Georgia analyzed the strength of the academics in high school impact on first 

year academic performance in an in-state public postsecondary institution.  GOSA (2012) 

obtained data on new freshmen in 2006, 2007, and 2008 from USG.  GOSA (2012) 

supplemented the sample data with high school characteristics.  Splitting the data into 

two samples, GOSA (2012) conducted a linear regression model to examine the effects of 

(1) high school graduation test (HSGT) and (2) end-of-course test (EOCT) along with 

student characteristics on the first year GPA (HSGT, N = 75,761; EOCT, N = 55,833) 

(GOSA, 2012).  The mean high school GPA of the two samples were the same (HSGT, M 

= 3.20, SD = .513; EOCT, M = 3.19, SD = .516) (GOSA, 2012).  In both models, high 
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school GPA contributed the strongest contributions to the first year GPA (HSGT, B = 

1.305, p < .01; EOCT, B = 1.256, p < .01) (GOSA, 2012).  GOSA (2012) indicated the 

marginal effect of high school GPA on first year GPA was .535 points.  Additionally, 

GOSA’s (2012) found female students were more likely to have higher first year GPA for 

both models (HSGT, B = .108, p < -.01; EOCT, B = .119, p < .01).  Students identified as 

other race exhibited a negative significant factor in both models (HSGT, B = -114, p < 

.01; EOCT, B = -109, p < .01).  While statistically significant in both models, students 

identified as Black or African American, disabled, and economically disadvantaged in 

addition to the admissions test scores and the high schools’ percentage of Asian and 

Hispanic students exhibited a small impact on first year GPA.  

With concerns about providing a more rigorous and college-preparatory 

curriculum, Allensworth and Clark (2020) confirmed high school GPA continues to be the 

strongest predictor of academic performance until degree completion in a postsecondary 

institution.  Allensworth and Clark (2020) examined the impact of high school GPA on 

persistence towards degree attainment.  The population utilized in the study was recent 

high school graduates from Chicago Public Schools and consisted of 17,753 students.  In 

the first model, Allensworth and Clark (2020) examined the impact of grouped high 

school GPA on persistence until degree attainment.  Without controlling for any 

demographics and institutional characteristics, students with at least a 3.25 had 

significant odds of persisting (HS GPA 3.25-3.50, OR = 1.15; HS GPA 3.50-3.75, OR = 

3.65; and HS GPA 3.75-4.00, OR = 6.23) (Allensworth & Clark, 2020).  When factoring 

in demographics and institutional characteristics, odd ratios for HS GPA 3.50-3.75 (OR = 

2.56) and 3.75-4.00 (OR = 3.74) lessened (Allensworth & Clark, 2020).  Elaborating on 
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why high school GPAs were a more significant predictor of academic performance, 

Allensworth and Clark (2020) argued the high school GPA aggregates the performance 

across different schooling components, thus being a better indicator of students' ability to 

perform successfully in postsecondary coursework.  They further indicated students who 

worked to improve their high school GPA exhibit signs of preparedness to successfully 

handle the rigor of postsecondary course work (Allensworth & Clark, 2020).  While they 

did not factor in the impact of more rigorous courses, Allensworth and Clark (2020) 

suggested Advanced Placement and honors may impact high school GPA.  They 

suggested the more rigorous the course in high school may result in lower high school 

GPA, yet students would be more prepared for postsecondary coursework (Allensworth 

& Clark, 2020). 

Grade inflation concerns.  According to a study conducted by Bowers (2011), he 

reported high school grading systems are based on teachers’ perception of how well a 

student does at playing school and the lack of a consistent, systematic grading structure.  

He also included the grading system may incorporate how well the student plays or fits 

within the model of student behavior (Bowers, 2011).  Furthermore, Bowers (2011) noted 

even some well-gifted students were given low grades due to failure to meet the 

perceived model of exemplary behavior.  Bowers (2011) examined a multi-dimensional 

relationship between teachers assigning grades versus standardized testing using data 

from the Education Longitudinal Study.  He reported high school grades and the English 

and Mathematics standardized test scores exhibited a strong, moderate correlation 

(r(14,520) = .572) (Bowers, 2011).  This finding indicated teachers’ grading assignments 

for core courses are related to the core concepts and knowledge.  Using a multi-
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dimensional scaling, Bowers (2011) indicated the initial fit was well with a low stress 

value (.097), which explains 96.6% of the variation in the data.  He stated grades from 

9th and 10th grade clustered closer to the standardized test scores than the 11th and 12th 

grade grades.  Bowers (2011) contributed this distinction related to the timing of testing 

and the spacing of when core courses are taken in the early high school grade levels 

compared to the later high school grade levels.  In a deeper analysis of high school 

grading by subjects, Bowers (2011) examined the impact of grading in Mathematics, 

English, Science, Social Studies, Art, Foreign Language, and Physical Education courses.  

He reported the multi-dimensional scaling fit extremely well with a very low stress value 

(.012), accounting for 99.9% of the variance (Bowers, 2011).  Bowers (2011) suggested 

the placement of the core subject being diagonal to the standard test could be associated 

with non-cognitive knowledge in grade assignment.   

A concern of grade inflation is prevalent in any discussion of high school GPAs, 

especially when a state offers merit-based financial aid related to high school graduates' 

GPAs (e.g., Georgia's HOPE Scholarship).  Studies have consistently confirmed high 

school GPAs have increased over time (Camara et al., 2004; Gershenson, 2018; Hiss & 

Franks, 2014; Hurwitz & Lee, 2018), but some of the research does not contribute to the 

rise in the GPAs to grade inflation (Pattison et al., 2013).  While high school GPAs 

increased over the years, Camara et al. (2004) found no relative change in the admission 

test scores when analyzing data from SAT Student Descriptive Questionnaire data.  

Camara, Kimmel, Scheuneman, and Sawtell (2004) reported the mean high school GPA 

from 1981 to 2002 grew .31 points, with noticeable differences in gender, race and 

ethnicity, and parents' education.  While Camara et al. (2004) noticed a sizable increase in 
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HS GPA, they compared it to the changes in SAT scores.  They reported SAT verbal has 

not increased and SAT math has increased over the years.  Hurwitz and Lee (2018) 

reported comparable results on the increase in GPA, indicating grade inflation has 

increased, but they reported test scores have made no significant changes during the same 

period.  Gershenson (2018) analyzed grades and EOCT from high school students in 

2005 and 2016 using the North Carolina Education Research Data Center.  While 

confirming the existence of grade inflation affecting high school GPAs, Gerhsenson 

(2018) found the inflation was not evenly distributed amongst high schools as grade 

inflation was more noticeable in schools with more affluent students than their 

counterparts.  He reported the GPA gap was .41 points (Gerhsen, 2018).  According to 

Gershenson (2018), he concludes the educational achievement gaps could be attributed to 

the existing grade inflation.   

Contrary to the findings of grade inflation, Pattison et al. (2013) disagreed with 

grade inflation as they found there was no support from their analysis in the high school 

and postsecondary settings.  Pattison, Grodsky, and Muller (2013) examined data from 

four different databases: National Longitudinal Study of High School Class of 1972, 

High School and Beyond sophomore cohort, the National Educational Longitudinal 

Study of 1988, and the Educational Longitudinal Study of 2002.  Pattison et al. (2013) 

indicated the mean high school GPA had been steadily increasing from 1982 to 2002, 

while the mean postsecondary GPA declined from 1972 to 1992 for students attending a 

four-year institution.  Pattison et al. (2013) revealed the correlation analysis indicated a 

constant correlation between high school GPA and test scores. Hiss and Franks (2014) 

presented findings from a study analyzing the impact of admissions standings on students 
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who did and did not submit test scores.  Within the study, 20 private, six public, five 

minority-serving, and two art institutions participated, resulting in a population of 

122,916 records (Hiss & Franks, 2014).  Even if grade inflation occurs at the high school 

level, Hiss and Franks (2014) noted it had no impact on the students’ postsecondary GPA.  

They noted moderate correlations between high school and postsecondary GPA.  In 

further examination of the public institutions, Hiss and Franks (2014) stated admissions 

policies guaranteeing admission based on high school GPA experience significant 

contributions to the postsecondary institution. 

Admission test scores.  Another major component of students' academic 

preparedness used in the development of the theoretical models is the admissions test to 

measure the scholastic intellectual abilities (Astin, 1975, 1993; Bean, 1980, 1983; Spady, 

1970, 1971; Tinto, 1975, 1988, 1997).  These scholastic tests are the Scholastic 

Assessment Test—SAT—and American College Test—ACT.  Research has been a bag of 

mixed results regarding the admission test scores having any impact on academic 

performance.  Most of the impact found indicates that of a small impact when compared 

to high school GPA.  Alternatively, Chen and DesJardins (2008) utilized a survival 

analysis on factors impacting students persisting to graduation and revealed admission 

test scores were not significant predictors of academic performance in retaining 

university students.  A study by Stewart et al. (2015) confirmed admission test scores 

have no impact on students' persistence. Unlike Chen and DesJardins' (2008) study, 

Stewart et al. (2015) examined the impact on one year retention. They reported admission 

test scores exhibited a small correlation (r(3,213) = .118, p < .01) in retention status. Yet, 

in a stepwise regression analysis, they found admission test scores were not significant, 
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while first semester GPA (B = .999, p < .01) and high school GPA (B = -.731, p < .01) 

were the two largest significant contributing factors (Stewart et al, 20015).   

In 2020, Allensworth and Clark (2020) examined the impact of high school GPA 

and test scores admissions requirements on students' academic performance to persist 

until degree attainment.  Using data collected from Chicago Public Schools graduates 

from 2006 to 2009 attending a four-year postsecondary institution, they analyzed the 

impact of persistence using hierarchical linear models.  While the model examining high 

school GPA's impact on persistence indicated a strong contribution, they also examined 

the impact of ACT scores on persistence.  Without controlling for student characteristics, 

the results indicated students in higher ACT bins have higher odds of persisting than 

those in lower ACT bins (ACT less than 14, OR = .20; ACT 30 or higher, OR = 4.86) 

(Allensworth & Clark, 2020).  However, the odds ratios decreased significantly for higher 

ACT bins when controlling for student characteristics (ACT less than 14, OR = .39; ACT 

30 or higher, OR = 1.66) (Allensworth & Clark, 2020).  While the odds ratio of the 

highest bin of high school GPA also decreased when controlling for student 

characteristics, the high ACT bin experienced a more significant decrease in odds.  The 

highest GPA bin experienced a 1.67 times likelihood decrease, while the same bin of ACT 

experienced a 2.93 times decrease (Allensworth & Clark, 2020).  Allensworth and Clark 

(2020) conducted another model to examine the effects of high school GPA and ACT 

scores on persistence towards graduation.  The findings from this model revealed the high 

school GPA (four-year model, B = .666, p < .001, OR = 1.95; six-year model, B = .768, p 

< .001, OR = 2.16) exhibited a higher contribution to the model in impacting persistence 

than ACT (four-year model, B = .107, p < .05, OR = 1.11).  ACT scores were not found to 
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be significant in the six-year model.  Allensworth and Clark (2020) suggested "students 

with higher [ACT] scores are more likely to attend the types of colleges where students 

are more likely to graduate" to explain why ACT is not a strong predictor of persistence 

(p. 207).  They continued to state students earning higher ACT scores are more likely to 

earn higher grades (Allensworth & Clark, 2020).   

Typically, proponents of the inclusion of admission tests scores as predictors of 

academic success state the inclusion of the test in connection with high school GPA but 

still admit to the inferior predictive ability of the test scores (Bowen et al., 2009; Korbin 

et al., 2008; Lotkowski et al., 2004; Noble & Sawyer, 2002; Rothstein, 2004).  Further 

confirming the insignificant of being a predictor, Korbin, Patterson, Shaw, Mattern, and 

Barbuti (2008) found changes to the admission test scores, specifically SATs, have not 

made the test more predictive of the first year academic performance.  Krobin et al. 

(2008) analyzed a sample of 151,316 students from submissions to CollegeBoard for 

students entering in Fall 2006.  Using correlation analysis, they reported high school GPA 

and SAT total scores exhibited a correlation (r(151,316) = .28, r-adj.= .53), but also 

suggested the two different admission criteria also measured different aspects of student 

ability to perform successfully (Korbin et al., 2008).  Examination of the correlation to 

first year GPA revealed high school GPA (r(151,316) = .36, r-adj.= .54) has the strongest 

correlation than SAT scores (SAT math, r(151,316) = .26, r-adj.= .47; SAT critical 

reading (r(151,316) = .29, r-adj.= .48); SAT writing (r(151,316) = .33, r-adj.= .51); SAT 

total, (r(151,316) = .35, r-adj.= .53)) (Korbin et al., 2008).  The correlation of the 

interaction of high school GPA and SAT total to first year GPA strengthened (r(151,316) 

= .46, r-adj.= .62) (Korbin et al., 2008).  Korbin et al. (2008) argued the utilization of 



 

65 
 

both high school GPA and SAT scores should be continued because of the strengthened 

correlation in its ability to measure the first year of academic performance.  Major 

proponents of the continued utilization of admission test scores in the assessment of 

academic preparedness for postsecondary institutions argue the tests scores are a way:  

1. to provide neutral measurement to guard against high school grade inflation 

(Buckley et al., 2018), 

2. to provide an assessment on students for selected materials as compared to 

high schools' wide range of materials (Allensworth & Clark, 2020), and 

3. to provide a supplemental predictor to counter the high school GPA's under-

predictability of students with high test scores (Mattern et al., 2010a). 

Financial situations. 

 Family financial income or situations.  According to Tinto (1982), one most 

cited explanation and impacts of student departures are financial situations.  Financial 

situations in terms of impact on students may be short-term, long-term, and indirect 

(Tinto, 1982).  Specifically for students from a low socioeconomic status background, 

Tinto (1975, 1982) stated finances play a vital role in retaining or departing decisions.  

Students from lower socioeconomic status are more likely to depart, while students from 

higher status are more likely to retain (Tinto, 1975).  Furthermore, financial situations are 

often cited as strong predictors of attrition in a student's early academic career rather than 

later (Tinto, 1982).   

St. John, Paulsen, and Carter (2005) conducted a logistic regression analysis in 

sequential steps on the impact of the cost of attending college and the persistent rate 

differences between Black or African American and White students.  The first model did 
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not examine the impact of financial aid, the second model included the amount of 

financial aid, and the third model included the room and board costs (St. John et al., 

2005).  Using data obtained from the National Postsecondary Aid Survey of 1987, St. 

John et al. (2005) found more Black or African American students were in the lower to 

lower-middle income levels (36% and 37%, respectively) when compared to White 

counterparts (15% and 27%, respectively).  In their model for Black or African American 

students, their family income levels were not significant in the three sequential logistic 

regression models (St. John et al., 2005).  However, St. John et al. (2005) reported Black 

or African American students who were financially independent were less likely to persist 

in the first two models (delta-p = -.065, p < .01; delta-p = -.046, p < .05). They further 

explained the federal need analysis might not be appropriately factoring all the conditions 

contributing to the cost of attendance for independent students (St. John et al., 2005).  For 

White students, family income levels and students’ independent status were not found to 

be significant (St. John et al., 2005).   

Using a sample of 6,733 students from the Beginning Postsecondary Student 

survey data set from the 1996 and 2001 cohorts, Chen and DesJardins (2008) examined 

the impact of income level had on students' risk of dropping out of a postsecondary 

institution.  Of the students examined in the analysis, 19% were from an income level 

less than $25,000, 50% from an income greater than or equal to $25,000 but less than 

$75,000, 27% were from an income greater than or equal to $75,000, and 5% were 

missing income information (Chen & DesJardins, 2008).  They also noted 72% received 

Pell grants, 60% received loans, and 21% received work-study aid for low-income 

students in their first year (Chen & DesJardins, 2008).  Middle income students had 17% 
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receiving Pell grants, 58% receiving loans, and 20% receiving work-study aid, while the 

upper income students had 0.1% receiving Pell grants, 36% receiving loans, and 8% 

receiving work-study aid (Chen & DesJardins, 2008).  They continued to note the low-

income students continued to receive a higher percentage of aid throughout the six years 

in the analysis (Chen & DesJardins, 2008).  Results of the survival analysis indicated the 

high level income students (OR = .611, p < .001) showed a significant difference when 

compared to the low income students (Chen & DesJardins, 2008).  To measure what other 

factors may cause a student to drop out, they noted parents' education was a significant 

factor.  Students with parents with at least a bachelor's degree had lower odds of dropping 

out (OR = .643, p < .001) than students with parents without a bachelor's degree (Chen & 

DesJarins, 2008).  Chen and DesJardins (2008) predicted the dropout probability for low 

income students receiving Pell grants was .208 and those not receiving was .566.  Also, 

they predicted the dropout probability for the middle income level students receiving Pell 

grants was .250 and for those not receiving was .153 (Chen & DesJardins, 2008).  The 

assistance of the Pell grant was able to help lower the dropout probability by .358 points 

for the low income students.  Pell grant assistance only slightly improved the dropout 

probability for middle income levels.  More importantly, lower income students not 

receiving Pell have a .413 points higher dropout probability than their middle income 

counterparts (Chen & DesJardins, 2008).   

Using a sample of 6,383 students from the Beginning Postsecondary Student data 

set of students from 1996 and 2001 and financial indicators of 49 states from the national 

higher education database, Chen and St. John (2011) examined the relationships between 

state-level financial policies and persistence to the institution.  They further examined 
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how the relationship is based on the students' socioeconomic status (SES) and racial and 

ethnic backgrounds.  Student SES status was split into quartiles in which the first quartile 

was the lowest level SES, the second and third quartiles were combined to form the mid-

level SES, and the fourth quartile was the highest level SES (Chen & St. John, 2011).  In 

the study, persistence was defined as either graduating or still enrolled at the first 

institution by the sixth year.  Approximately 70.6% of students from the highest SES 

level persisted, while 57.1% of the mid-level and 44.1% of the lowest level SES groups 

persisted (Chen & St. John, 2011).  Using a hierarchical generalized linear model, Chen 

and St. John (2011) reported mid-level SES (OR = 1.32, p < .01) and high level SES were 

(OR = 1.55, p < .001) times more likely to persist to graduation than the lower SES 

students.   

In her data analysis from the National Longitudinal Study of Youths from 1997, 

Velez (2014) analyzed a sample of 6,748 students using a logit model to predict students’ 

degree attainment.  Of the 1,062 students who dropped out of a four-year postsecondary 

institution, 27% were from a household income of less than $33,000 (Velez, 2014).  From 

the logit model’s prediction of students from low income households, 96.2% of students 

are predicted to never enroll in a four-year postsecondary institution, and for those who 

do enroll, 81.8% are predicted to drop out (Velez, 2014).  She even found a high 

percentage (98.7%) of low-income students are predicted to not even attend a two-year 

institution (Velez, 2014).  However, the predictions only indicated about 63.5% were 

predicted to drop out of the two-year institution (Velez, 2014). 
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Financial aid.  After being accepted, the ability to attend a post-secondary 

institution with the continuous increasing expansion of a diverse set of students has 

greatly been assisted through the form of financial aid.  According to the Common Data 

Set (2020) definitions, need-based aid involves grants, campus jobs, or loans resulting 

from the student's need for financial aid.  In other words, need-based aid fills in the gaps 

in the student's ability to pay the tuition and fees to attend.  Non-need-based aid, also 

called merit-based aid, involves a student qualifying to receive the aid (Common Data 

Set, 2020).  Qualifying could range from scholastic ability, talent, or specific 

characteristics to be offered the aid.  In 2020, approximately 86.4% of first-time, first-

year undergraduate students received some form of financial aid, with an estimated 

growth of .09% each year (Hanson, 2020).  Hanson (2020) also reported female students 

were 40% more likely to accept financial aid than their counterparts.  When reporting the 

acceptance rate by race and ethnicity, he reported around 80% of Black or African 

American and 62% of Asian students accepted financial aid (Hanson, 2020).  Across the 

nation, postsecondary students received an average loan of $8,285, with 40% of students 

between the ages of 23 or younger receiving loans (Hanson, 2020).  In comparison, 

Hanson (2020) reported 46% of undergraduates accept financial loans with an average 

amount of $6,575 within the State of Georgia attending four-year institutions.   

One of the most common forms of need-based aid is the federal PELL grant.  

According to the National Center for Education Statistics' (n.d.b) available data, 

approximately 34.0% of undergraduates receive the PELL grant.  Bettinger (2004) 

analyzed data from the Ohio Board of Regents to examine the impact of the Pell grant on 

the 1999 incoming freshmen persistence in the states' public postsecondary institutions 
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who completed the Free Application for Federal Student Aid (FAFSA).  From the data 

Bettinger (2004) reported 35,233 initially filed a FAFSA form, with 12,143 did not file 

the second year.  In the initial model, he examined the impact the dollar amount of 

financial had on students not returning to the institution.  The amount of financial aid was 

significant, (B = .033, p = .002) (Bettinger, 2004).  When adding student background and 

family income level, the amount of financial aid award impact lessened (B = .006, p = 

.003) (Bettinger, 2004).  The third model included the first year GPA earned.  While the 

first year GPA (B = -.138, p = .003) had a significant impact on a student's likelihood not 

to persist, the amount of financial aid awarded was reported to be still significant (B = 

.0002, p = .003) (Bettinger, 2004).  Even though the financial aid award was significant 

in the third model, the strength of the impact was lessened.  Bettinger (2004) indicated 

this could be related to the students' ability to do well in the postsecondary classroom.   

St. John et al. (2005) conducted a logistic regression analysis in sequential steps 

on the impact of the cost of attending college and the persistent rate differences between 

Black or African American and White students.  The data was obtained from the National 

Postsecondary Aid Survey of 1987.  From the sample of 24,271 students, more financial 

aid had been awarded to the Black or African American students.  Compared to White 

Students, Black or African American students received $837 more dollars in grants, $177 

in loans, and $99 more dollars for the work study program (St. John et al., 2005).  

Additionally, St. John et al. (2005) reported more Black or African Americans were in the 

lower to lower-middle income levels (36.0% and 37.3%, respectively) when compared to 

White counterparts (15.0% and 27.3%, respectively).  The first model did not examine 

the impact of financial aid, the second model included the amount of financial aid, and 
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the third model included the room and board costs (St. John et al., 2005).  In the second 

and third models for Black or African Americans, only the amount of grant dollars were 

found to be significant (second model, delta-p = -.033, p <= .01; third model, delta-p = -

.0327, p <= .01) (St. John et al., 2005).  In the second and third model for White students, 

grant dollars were found to be significant (second model, delta-p = -.0135, p < .01; third 

model, delta-p = -.0131, p <= .01) (St. John et al., 2005).  Moreover, the second model 

for White students found loans to have a significant impact on persistence (delta-p = -

.0089, p <= .01) (St. John et al., 2005).  In other words, the models factoring in financial 

aid and living expenses found the amount of grant aid for African American and White 

students had a negative relationship in persisting.  Moreover, the model not factoring in 

living expenses found the amount of loans had a negative relationship with persistence 

for White students.  St. John et al. (2005) further explained the impact of for every $1,000 

increase in the loan amount, the persistence probability decreased by 5%.  In their model 

for Black or African Americans, students’ family income levels were not significant in the 

three sequential logistic regression models (St. John et al., 2005).  However, St. John et 

al. (2005) reported Black or African American students who were financially independent 

were less likely to persist in the first two models (first model, delta-p = -.065, p < .01; 

second model, delta-p = -.046, p < .05). They further explained the federal need analysis 

might not be appropriately factoring all the conditions contributing to the cost of 

attendance for independent students (St. John et al., 2005).  For White students, family 

income levels and students’ independent status were not found to be significant (St. John 

et al., 2005). 
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Using a sample of 6,733 students from the Beginning Postsecondary Student 

survey data set from the 1996 and 2001 cohorts, Chen and DesJardins (2008) examined 

the impact income level had on students’ risk of dropping out of a postsecondary 

institution.  Of the students examined in the analysis, 19% were from an income level 

less than $25,000, 50% from an income greater than or equal to $25,000 but less than 

$75,000, 27% were from an income greater than or equal to $75,000, and 5% were 

missing income (Chen & DesJardins, 2008).  They also noted for the freshmen year of 

the low income students, 72% received Pell grants, 60% received loans, and 21% 

received work-study aid (Chen & DesJardins, 2008).  Middle income students had 17% 

receiving Pell grants, 58% receiving loans, and 20% receiving work-study aid, while the 

upper income students had .1% receiving Pell grants, 36% receiving loans, and 8% 

receiving work-study aid (Chen & DesJardins, 2008).  Chen and DesJardins’ (2008) 

initial model indicated Pell grant recipients had a negative impact on the risk of dropping 

out, even though no significance was indicated.  However, further examination of the 

interaction between income levels and Pell grant status revealed the interaction between 

middle income level and Pell grant to be significant (OR = 1.864, p < .05) (Chen & 

DesJardins, 2008).  Chen and DesJardins (2008) indicated the likelihood of departing is 

moderated by the amount of Pell grant received.  Chen and DesJardins (2008) predicted 

the probability of departing based on income level and the Pell grant recipient status.  The 

departing probability was .208 for low income students receiving Pell and .566 for low 

income students not receiving Pell.  Additionally, they predicted the probability of 

departing for the middle income level and Pell grant recipient status.  Those receiving 

Pell had a predicted probability of .250, and those not receiving was .153 (Chen & 
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DesJardins, 2008).  The assistance of the Pell grant was able to help lower the dropout 

probability by .358 points for the low income students (Chen & DesJardins, 2008).  Pell 

grant assistance only slightly improved the dropout probability for the middle income 

level.  More importantly, lower income students not receiving Pell have a .413 higher 

dropout probability than their middle income counterparts (Chen & DesJardins, 2008). 

Stater (2009) analyzed 18,748 new students from 1994 to 1996 from three 

flagship institutions in Colorado, Indiana, and Oregon to measure how financial aid 

impacts the yearly earned GPA as a measure of academic integration.  He also collected 

data on how well the students did after the first year in college (Stater, 2009).  The mean 

GPA of the first year was 2.80 (SD = .6533) (Stater, 2009).  Stater (2009) reported for the 

next three years the mean GPA experienced a significant increase from the prior years 

(year two, M = 2.90, SD = .5192; year three, M = 2.96, SD = .4753; and year four, M = 

3.02, SD = .4510).  Within the first year, 56.2% were female, 94.9% were White or Asian, 

and 65.8% lived in the institution's state (Stater, 2009).  The average SAT total score was 

1084, while the average high school GPA was 3.37 (Stater, 2009).  Using an ordinary 

least squares model, the model not including the tuition amount was found to be 

significant in impacting first year earned GPA (F(18,748) = 280.1, p < .01, R2 = .2330) 

(Stater, 2009).  When controlling for the tuition amount, the model was also found to be 

significant (F(18,748) = 268.1, p < .01, R2 = .2330) (Stater, 2009).  The model found both 

need-based and merit-based aid were significant when tuition was not included, (need-

based aid, B = .0361, p < .1; merit-based aid, B = .2329, p < .001) (Stater, 2009).  

However, when the amount of tuition was introduced to the model, only the amount of 

merit-based aid was found to be significant (B = .2290, p < .001) (Stater, 2009).  Stater 
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(2009) reported an increase between .10 to .19 points in GPA was predicted per $1,000 

increase in any financial aid.  In both models, merit-based aid had a stronger contribution 

to predicting the GPA of the financial aid variables.  From the contribution of the merit-

based aid, the amount of financial aid could conclude the impact on successfully 

integrating into the academic communities as students must successfully perform in 

classes to continue receiving this aid.  Stater (2009) further indicated merit-based aid is 

likely to foster institutional commitment as it typically is not transferable to another 

institution, unlike need-based aid. 

In a multilevel event analysis, Chen (2012) examined the dropout risk using data 

from the Beginning Postsecondary Students from 1996 and 2001, with additional data 

coming from the Integrated Postsecondary Education Data Systems (IPEDS).  The 

sample consisted of 5,762 students classified as first-time, full-time, degree-seeking 

freshmen attending a four-year institution.  Chen (2012) reported around 40.7% of the 

students depart from their initial institution.  On average, the students received $1,141 of 

Pell grant, $2,623 in subsidized loans, and $2,466 in unsubsidized loans (Chen, 2012).  

Additionally, an average of $3,309 were awarded in merit-based aid (Chen, 2012).  From 

the analysis, four types of aid were reported to have significant contributions to students 

departing from the initial institution.  Subsidized loans (OR = .92, p < .001), unsubsidized 

loans (OR = .95, p < .05), work-study programs (OR = .81, p < .01), and merit-based aid 

(OR = .94, p < .001) were the financial indicators found to be significant negative 

relationship in terms of dropping out (Chen, 2012).  Chen (2012) further explained 

underrepresented students from lower socioeconomic status have a lower risk of 

departing from the institution when awarded higher financial aid amounts.  In other 
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words, the funding gap for these students is alleviated to allow them to focus on their 

studies.  

Gross, Hossler, Zikin, and Berry (2015) analyzed a sample of data consisting of 

12,301 first-time, degree-seeking students obtained from the Indian Commission for 

Higher Education’s longitudinal data system to measure the impact of institutional merit-

based aid on student departure.  A second sample of 4,254 was obtained using a 

coarsened exact matching method (Gross et al., 2015).  While 52% qualified for merit-

based financial aid, only 18% received the form of aid (Gross et al., 2015).  Females and 

males had the same percentage of students receiving merit aid. They reported around 

82% of the students receiving merit-aid were White.  Based on family income, 54% of 

the students receiving merit-aid were from the highest family’s adjusted gross income 

level (Gross et al., 2015).  Around 89% and 70% of the students receiving merit-based aid 

were from the high SAT total score grouping and the top quartile of the HS GPA (Gross et 

al., 2015).  Using a discrete-time event history model, Gross et al. (2015) found merit-

based aid recipients to have a lower risk of departing than those who did not receive the 

aid.  In using the full sample, they reported for a $1,000 increase in merit-based aid, there 

was a 6.5% decrease in the departure odds, while need-based aid was a 6.0% decrease 

(Gross et al., 2015).  More importantly, the matching sample results no longer indicated 

merit-based aid was significant while still indicating need-based aid was significant 

(Gross et al., 2015).  The matched sample analysis indicated for a $1,000 increase in 

need-based aid, the departure likelihood was reduced by 5% (Gross et al., 2015).  In 

explaining how other student characteristics are connected to the likelihood of dropping 

out, Gross et al. (2015) indicated less than 15% of the students who received merit-based 
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aid are from the lower two income levels.  These students were more likely to have 

received lower grades in high school and lower admissions test scores which would not 

qualify them to receive merit-based aid.  Also, they noted, these students tended to be 

underrepresented or first-generational (Gross et al., 2015). 

HOPE scholarship.  One form of merit-based aid specific to Georgia is the HOPE 

scholarship.  As the form of financial aid the been modified over recent years, the 

overarching requirement is a minimum 3.00 GPA from a high school within the state 

(Georgia Student Finance Commission, 2021a).  Renewal of HOPE scholarship depends 

on students' academic performance of their cumulative earned grades at specific 

thresholds in their academic journey.  Recipients of the HOPE scholarship must maintain 

a 3.00 GPA throughout their post-secondary journey (Georgia Student Finance 

Commission, 2021b).   

Henry, Rubenstein, and Bugler (2004) analyzed data of Georgia high school 

graduates in 1995 to analyze the impact of the HOPE scholarship across four years 

enrolled in the public institutions in the state.  Of the data, they limited the students they 

considered to be borderline HOPE scholarship recipients.  In other words, students who 

barely had above a 3.00 high school GPA.  The borderline HOPE recipients were a 

sample size of 1,915 students.  Henry et al. (2004) reported these students earned a mean 

GPA of 2.44 across the core courses in the institutions.  They next matched students who 

did not receive HOPE based on the GPA of the course courses to generate a total of 1,817 

students.  The second sample size consisted of 3,732.  Around 48% of the students were 

female, 32% were Black or African American, and 53.5% were full-time students (Henry 

et al., 2004).  Of those who received the scholarship, 47% were female, 28% were Black 



 

77 
 

or African American, and 61% were enrolled full-time (Henry et al., 2004).  Using a 

linear regression model, adj. R2 = .096, Henry et al. (2004) analyzed the impact of the 

HOPE scholarship on the earned college GPA.  They found HOPE scholarship to be a 

significant indicator (B = .17, p < .01) (Henry et al., 2004).  Also, SAT total score (B = 

.001, p < .001), earning a college prep high school diploma (B = .24, p < .05), core high 

school GPA (B = .40, p < .01), and gender (B = .14, p < .01) were found to be significant 

(Henry, et al., 2004).  Using a logistic regression model (Max-rescaled R2 = .11), they 

analyzed the impact of HOPE scholarship on persisting to graduation (Henry et al., 

2004).  For students enrolled in the four-year institutions, the HOPE scholarship was 

found to be a significant contribution to the model (B = .54, p < .01) (Henry et al., 2004).  

Also, enrolled in remedial courses (B = -1.03, p < .01), core high school GPA (B = 1.63, p 

< .01), and gender (B = .66, p < .01) were reported as significant indicators for persisting 

to graduation (Henry et al., 2004). 

In a Georgia Budget and Policy Institute report on higher education, Suggs (2016) 

wrote the HOPE scholarship and grant is the state’s largest financial assistance for 

students enrolled in postsecondary institutions.  In reviewing data from the University 

System of Georgia on the Fall 2013 undergraduate population, Suggs (2016) excluded 

students who were not eligible to receive the scholarship—out-of-state students, dual 

enrollment students, and post-baccalaureate students.  She reported around 36% of 

students enrolled in the state’s public institutions benefit from the scholarship.  She also 

noted 64% of HOPE recipients are White students who only account for 54% of 

undergraduate enrollment within the states’ institutions (Suggs, 2016).  Continuing to 

note the disparities amongst underrepresented students, she noted only 20% of Black or 
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African American and 36% of Hispanic students receive the HOPE scholarship, while 

46% of Asian and 45% of White students receive it (Suggs, 2016).  She further analyzed 

the percentage using the HOPE scholarship by income level to determine the Pell Grant 

status.  Approximately 30% of low income students benefited from the scholarship, 

which is around 12% less than their counterparts (Suggs, 2016).  Even when low income 

students receive the HOPE scholarship, they continue to struggle financially and 

eventually drop out.  Suggs (2016) reported 61% of low-income students using the HOPE 

scholarship persisted until graduation, while 75% of their counterparts persist until 

graduation.  As the HOPE scholarship is a merit-based financial aid, students’ academic 

performance impacts whether a student continues to receive the benefit of the 

scholarship.  Suggs (2016) found low income students are more likely to lose HOPE 

scholarships than middle to high income students.  Approximately 47% of low income 

students will lose the HOPE scholarship, while only 39% of middle to high income 

students lose HOPE (Suggs, 2016). 

Major declaration and grouping.  In an online Forbes Magazine article, Onink 

(2010) linked current workforce changes to students having a hard time making a major 

declaration.  He indicated some of the “hot fields of study” cause students to stand in line 

at the unemployment office due to a lack of jobs (Onink, 2010).  With the increasing 

number of undeclared majors, Onink (2010) indicated the lack of opportunities at the 

high school level, allowing students to have the possibility to explore possible majors 

before attending a postsecondary institution.  At post-secondary institutions, majors or 

programs of studies are grouped into overarching fields of study, resulting in the 

programs being housed in specific colleges or departments.  These groupings may be 
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based on the type of degree, concentrations, or potential job-market opportunities after 

graduation. 

Leppel (2001) examined the impact of grouping a major declaration by gender of 

the students exhibited on students’ likelihood of persisting.  Using data collected from the 

1990 Beginning Postsecondary Student (BPS) database, Leppel (2001) analzyed a 

population of 2,426 males and 2,521 females.  Descriptive analysis indicated males had 

higher persistence rates than females in business (males, 93.13%; females, 92.01%) and 

engineering (males, 93.43%; females, 92.31%) related majors (Leppel, 2001).  Females 

exhibited higher rates in education (males, 88.72%; females, 94.39%) and health (males, 

89.02%; females, 97.46%) related majors (Leppel, 2001).  The gender gap was the same 

for art and sciences-related majors (males, 95.02%; females, 95.62%) and undeclared 

(males, 78.81%; females, 77.58%) (Leppel, 2001).  Leppel (2001) conducted two logit 

analyses to examine the major declaration by gender.  She reported both models to be 

statistically significant (males, χ2(2,426) = 298.124, p < .01; females, χ2 (2,521) = 

734.911, p < .01) (Leppel, 2001).  For the model examining males, business (B = .070, p 

< .1), education (B = -.542, p < .01), and undeclared (B = -.261, p < .01) majors were 

found to be statistically significant (Leppel, 2001).  Business-related majors were found 

to have a positive influence, while education and undeclared were found to exhibit a 

negative influence.  The model examining major declaration for females found business 

(B = -.303, p < .01), education (B = .084, p < .1), health (B = .635, p < .01), and 

undeclared (B = -.733, p < .01) to be statistically significant (Leppel, 2001).  Females 

declaring an education or health-related major have a positive likelihood of persistence, 

while business and undeclared have a negative likelihood.  One interesting finding 
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amongst the male and female undeclared majors, females are more likely to not persist 

than the males.  

Additionally, Leppel (2001) examined the impact of a major declaration by 

gender on the first year earned GPA.  Using linear regression analysis to examine the 

impact for males and females, both models were found to be statistically significant 

(males, adj. R2 = .149, F(2,426) = 7.493, p < .01; females, adj. R2 = .167, F (2,521) = 

7.722, p < .01) (Leppel, 2001).  Business-related major (B = 14.856, p < .01) exhibited a 

significant positive impact on the first year GPA, while undeclared majors (B = -26.972, p 

< .01) exhibited a significant negative impact for female students (Leppel, 2001).  In 

terms of major grouping, only undeclared majors (B = -43.285, p < .01) negatively 

influenced the earned GPA (Leppel, 2001).  Leppel’s (2001) findings indicated males and 

females who are undeclared are negatively impacted regarding earned GPA and 

persistence and attributed the cause to possible low educational commitment.  In other 

words, the findings from Leppel’s (2001) study suggested there are natural tendencies 

based on major declarations, and students who fall within these tendencies are more 

likely to have successful academic performance. 

In comparing science, technology, engineering, and mathematics (STEM) 

groupings to non-STEM, Gansemer-Topf, Kallasch, and Sun (2017) examined the effects 

these major groupings exhibited on first year academic performance.  Gansemer-Topf et 

al. (2017) obtained data for Fall 2008 to Fall 2012 first time freshmen living on campus 

at a Midwestern research university.  The population size consisted of 17,850 students.  

Gansemer-Topf et al. (2017) conducted a one-way analysis of variance (ANOVA) to 

determine if any statistical significance occurred between STEM and non-stem.  The one-
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way ANOVA conducted did not find any statistical significances between STEM majors 

(M = 2.80, SD = .910) and non-STEM majors (M = 2.82, SD = .861), F(2, 17,850) = 

1.818, p = .178 (Gansemer-Topf et al., 2017).  For cumulative earned GPA at the end of 

the first spring, the one-way ANOVA found a statistically significance between STEM 

majors (M = 2.82, SD = .823) and non-STEM majors (M = 2.86, SD = .773), F(2, 17,850) 

= 9.405, p = .002 (Gansemer-Topf et al., 2017). Additionally, the one-way ANOVA found 

statistically significance for retention status between STEM majors (M = .884, SD = .320) 

and non-STEM majors (M = .874, SD = .332), F(2, 17,850) = 4.051, p = .012 (Gansemer-

Topf et al., 2017).  Their findings suggested STEM majors have a higher retention rate 

than non-STEM majors.  Gansemer-Topf et al. (2017) alluded to students’ commitment, 

aspirations, and academic preparedness may play an important role in the earned GPA at 

the end of the first spring and eventually the decision to return to the institution. 

However, Spight (2020) reported statistically no difference in the likelihood of a student 

persisting past the first year based on the major declaration.  In his study, Spight (2020) 

sought to examine the relationship between a major declaration and academic 

performance using data collected from a Carnegie Doctoral/Research-Extensive 

institution.  The population consisted of 4,489 first-time freshmen enrolled in Fall 2010. 

Spight (2020) first conducted an independent t-test on the number of terms enrolled by 

major declaration status. The test showed a statistically significant finding of undeclared 

majors (M = 11.71, SD = 2.800) tend to be enrolled for more terms than declared majors 

(M = 11.44, SD = 3.064), t(4,489) = 2.586, p < .01 (Spight, 2020).  While the results 

indicated a significant difference, Spight (2020) indicated the difference of .27 in the 

mean terms enrolled has no practical difference. Additionally, Spight (2020) conducted a 
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logistic regression analysis to determine the impact on first-year persistence. In the 

examination of the major declaration status, the logistic regression analysis was found to 

be statistically significant, χ2(15) = 120.334, Nagelkerke R2 = .079, p < .001 (Spight, 

2020).  Spight (2020) also reported the Hosmer and Lemeshow’s test for goodness of fit 

(χ2 (8) = 11.589, p = .171) not to be significant, indicating the model was a good fit 

overall.  He noted major declaration status did not contribute to a students’ likelihood of 

persisting past the first year. Within the model student demographics and preschooling 

performance influenced students’ persistence (HS GPA, B = 1.177, p < .001; in-state 

residency, B = .820, p < .01; female, B = .260, p < .05; and SAT composite score, B = 

.001, p < .01) (Spight, 2020). 

Institutional financial expenditures.  Most postsecondary institutions have some 

support services to assist students in academic or social communities.  Services such as 

tutoring centers to assist students with classroom concepts and subjects, libraries for 

assistance in research projects, and student union centers for social engagement activities 

are examples of how institutions expend resources to assist with the students’ integration 

into the communities.  As institutions synchronize their expenditures and resources to 

their mission, studies have shown the institutions make improvements in service areas to 

increase academic performances. 

Ryan (2004) examined the impact of expenditures on academic performance 

regarding students’ retention towards degree attainment.  Data was gathered from IPEDS 

and College Board for Carnegie Baccalaureate I or II institutions, which totaled 363 

institutions in the sample.  Using a regression analysis, Ryan (2004) reported the model 

was statistically significant (R2 = .725, adj. R2 = .75, F(363) = 70.791, p < .001).  Of the 
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expenditures included in the model, only instruction (B = .281, p < .001) and academic 

support (B = .119, p = .007) were found to have a significant contribution to students 

retaining until degree completion (Ryan, 2004).  Ryan (2004) reported student services 

and instructional support did not significantly impact academic performance.  He stated 

student services expenditures might be impacted by a few services (e.g., admissions and 

financial aid) included in the IPEDS expenditure classifications (Ryan, 2004).  Ryan 

(2004) suggested instructional and academic support expenditures contribute significant 

influence to predicting academic performance.  This could assist in integrating students 

into the institutions’ communities. 

Gansemer-Topf and Schuch (2006) analyzed the relationship of institutional 

expenditures on retention and graduation rates of various private institutions by 

selectivity type available from IPEDS.  Using a multiple regression analysis, they 

reported significant findings on the expenditures and prediction of academic 

performance.  Overall, the regression model found a statistically significant in predicting 

academic performance (retention, R2 = .635, adj. R2 = .629, F(6,369) = 107.02, p < .001) 

(Gansemer-Topf & Schuch, 2006).  Continuing to examine impact of expenditures 

amounts, they noted instruction (B = .33, p < .001) and institutional grant (B = .22, p < 

.001) had positive interactions, while student service expenditures (B = -.13, p < .001) 

exhibited a negative impact on retention rates (Gansemer-Topf & Schuch, 2006).  

Gansemer-Topf and Schuch (2006) also conducted a multiple regression analysis on the 

percent of expenditures by classification exhibited on academic performance.  This model 

also indicated statistically significant results for retention (R2 = .588, adj. R2 = .581, 

F(6,369) = 87.74, p < .001) (Gansemer-Topf & Schuch, 2006).  Of the percentage of 
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expenditures, student services (B = -.17, p < .001) exhibited a negative and institutional 

grant (B = .17, p < .001) exhibited a positive were ranked the highest in impact on 

retention rates (Gansemer-Topf & Schuch, 2006).  Additionally, percentage of instruction 

(B = .13, p < .001) and academic support (B = .13, p < .001) exhibited a positive impact 

on academic performance (Gansemer-Topf & Schuch, 2006).  The findings from 

Gansemer-Topf and Schuch (2006) suggested allocating resources and available funds to 

align with the institution’s mission and strategic plan improve academic performance of 

enrolled students. 

Webber and Ehrenberg (2009) obtained data from IPEDS consisting of 1,160 

four-year institutions regarding institutional expenditures and the persistence and 

graduation rates of the first-time, full-time freshmen from the academic year 2002 to 

2003 through 2005 to 2006.  Using an econometric analysis, Webber and Ehrenberg 

(2009) found an increase of $500 in student services expenditures exhibited a .7% 

increase, while the same increase in academic and instruction expenditures only 

experienced a .3% increase of students persisting towards graduating.  Due to the wide 

range of IPEDS definitions of student services expenditures, Webber and Ehrenberg 

(2009) cautioned postsecondary institution administrators to examine student service 

expenditures carefully.   

Chen (2012) conducted a longitudinal study investigating the student dropout 

phenomenon within four-year postsecondary institutions.  The study examined two 

research questions in which one examined how student characteristics impacted students 

retaining or departing, and the other examined institutional characteristics (Chen, 2012).  

Using data collected from Beginning Postsecondary Students (BPS96/01) and Integrated 
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Postsecondary Education Data System (IPEDS) 1995 to 2000, the population in the study 

consisted of 5,762 first-time, full-time freshmen from 400 four-year institutions from Fall 

1995 and Fall 1996 (Chen, 2012).  Chen (2012) utilized a multilevel event history 

analysis to examine the impact of student and institutional characteristics on student’s 

attrition towards degree completion.  Chen (2012) noted within the student characteristics 

the college GPA (OR = .59, p < .001) exhibited the largest impact dropping out. In other 

words, students who earned higher GPAs had lower odds of the students dropping out 

from the institution.  Additionally, he reported certain types of financial aid had 

significant negative impacts on students’ departing decisions (subsidized staff loans, OR 

= .92, p < .001; unsubsidized staff loans, OR = .95, p < .05; work-study aid, OR = .81, p < 

.01; and merit aid, OR = .94, p < .01) (Chen, 2012).  Of the institutional expenditures 

analyzed, Chen (2012) found only student services expenditures (OR = .85, p < .05) had 

an impact on student dropout.  The amount of student services expended reduced the odds 

of students departing.  With only student services expenditures found to be significant, 

Chen (2012) suggested postsecondary administrators may need to look beyond the 

traditional educational structures to assist in retaining students; yet, he indicated the 

findings regarding student services do not provide strong justifications for a total funding 

change. 

Data Science 

 A Harvard Business Review article mentioned one of the current century's sexist 

occupations had become a data scientist, stemming from the popularization of the 

buzzword data science (Daveport & Patil, 2012).  While the explosion of the usage of 

data science has become new, the field of study has its roots reaching back to the early 
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1960s.  In 1962, John Tukey predicted the use of data analysis to become a science 

produced by computing technological advancements (UW Data Science Team, 2017).  As 

technology advanced, the time to conduct analyses was shortened as computations of 

statistical methods, and other algorithms became easier to execute.  Until the 2000s, data 

science was not considered a field of study (UW Data Science Team, 2017).  According 

to Conway (2014, 2015), data science is a field of study with a delicate balance of 

knowledge of mathematics and statistics, substantive expertise, and hacking skills, as 

displayed in Figure 2.  In the hacking sphere, Conway (2014, 2015) argued data scientists 

are not using their skills to hack into companies but possess the knowledge of 

manipulating data files in an active and algorithmic line of thinking.  He continued once 

the data files have been prepared, the knowledge of mathematics and statistics is utilized 

in building predictive models.  Lastly, Conway (2014, 2015) stated data science has the 

investment into the data to explore and discover the findings while building modeling 

tools. 

 

Figure 2. Drew Conway's venn diagram  

of data science. 
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As another explanation of data science, CEO of Metamarkers Mike Driscoll stated 

“data science is the civil engineering of data.  Its acolytes possess a practical knowledge 

of tools and materials, coupled with a theoretical understanding of what’s possible” 

(O’Neil & Schutt, 2014, p. 7).  As a conference speaker, Driscoll (2013) explained data 

science incorporates social science aspects into the process and job duties.  He stated, 

“data science, as a discipline, is fundamentally about human behavior” (Driscoll, 2013).  

Continuing about the inclusion of social science methods, he argued data science is never 

a black box method, but the tools need to be examined and explained to understand the 

action of predicted human behavior (Driscoll, 2013).  In further a breakdown of his Venn 

diagram, Driscoll (2013) elaborated while, at times, 80% of the world may involve the 

hacking skills in obtaining and preparing the data sets, in reality, 80% of the hard work 

lies in the substantive expertise area.  Within the substantive expertise area, he reiterated 

individuals spend half of their time asking questions about the data and figuring out 

which tools to use (Driscoll, 2013).  The other half involves interpreting the results to 

know when the desired or predicted results are achieved (Driscoll, 2013). 

Data mining and its application in higher education.  Tracing the origins of the 

data mining process, individuals have been doing it since the late 1980s (Coenen, 2011).  

According to Coenen (2011), data mining, in a broad sense, is the extraction of 

information hidden.  Within data science, data mining involves utilizing techniques to 

leverage findings previously unknown to produce valuable information (Tierney, 2014).  

In other words, data mining combs through large data sets to discover patterns hidden due 

to the sheer size of the information (Talend, n.d.).  According to Coenen (2011), data 

mining is not comprised of scriptwriting.  Data mining involved simple tabulations in the 
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early stages as the processing time was large; however, because of technological 

advancements, data mining has grown into a discovery process of patterns and trends 

(Coenen, 2011; Tierney, 2014).  While common data sets are maintained in structured 

files, data mining also allows individuals to discover patterns and trends found within 

unstructured data files, sound bites, and visual images (Attewell & Monaghan, 2015, 

Coenen, 2011).  Overall, Tobin (2022) indicated there are five stages of data mining 

consisting of understanding the goals of the project, understanding where data is located, 

data preparation processes, analysis and model building, and sharing information 

discovered. 

As data science and data mining techniques advanced, higher education began to 

adopt the discipline to assist in discovering trends and patterns for improvements 

regarding institutions’ performance indicators, in addition to identifying prospective 

students, peer interaction, tracking health concerns, and alumni engagement (Belani, 

2019; Data Science Degree Program, 2021; Matthews, 2018, 2019).  As graduation rates 

within postsecondary institutions have become one of the most published and discussed 

facts, institutions incorporating data science and mining have the advantage of assisting 

students before academic performance issues arise (Data Science Degree Program, 2021).  

Using data mining techniques, administrators and policy-makers have been able to 

identify students who would be considered at-risk for not retaining and progressing 

towards degree attainment (Data Science Degree Program, 2021).  Data science and 

mining techniques to predict at-risk students would assist postsecondary institutions in 

better utilizing academic and student support staff and resources (Matthews, 2018, 2019).  

Data science’s application in higher education has also unlocked a great potential to assist 
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in areas other than students’ academic performance.  Postsecondary institutions have 

begun to use data science in admissions offices to attract students and identify the 

available market of recruits and in health services to identify potential outbreaks 

concerning health issues (Belani, 2019; Data Science Degree Program, 2021; Matthews, 

2018, 2019).  DiMaggio (2021) argued data science goes beyond just predicting what will 

occur and involves the recommendations to optimize the potential impact.  In using a 

coin analogy, he explained data sciences using both predictive analytics and prescriptive 

analytics to get the most out of the data (DiMaggio, 2021). 

Cross-validation methods.  Intending to build predictive models, data splitting 

into training and testing sets occurs with the goal of the testing data set resembling 

unseen real world events (Bose, 2019; Goyal, 2021; Soni, 2019).  However, there is 

concern regarding predictive models to overfit or underfit (Attewell & Monaghan, 2015; 

Kuhn & Johnson, 2013; Tripathi, 2020).  Tripathi (2020) indicated overfitting occurs 

when a model performs too well on the training data set but exhibits poor performance in 

the testing or unseen data.  In overfitting, he stated the model focuses more on the noise 

than the true signals in the training data set (Tripathi, 2020).  Drakos (2019) stated 

overfitting results in poor generalization of unseen data.  Tripathi (2020) mentioned while 

underfitting occurs when the model performs poorly on the training data set, it is 

commonly not referred as with its identification.  As a result of the easy identification of 

underfitting, it is recommended to try another model (Tripathi, 2020).  However, 

overfitting involves more than building a new predictive model.  The remedy to prevent 

overfitting is through cross-validation (Attewell & Monaghan, 2015; Drakos, 2019; 

Tripathi, 2020).  Drakos (2019) stated cross-validation allows one to generate the 
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accuracy of a model in practice in the training phase to limit problems of the predictive 

model, either underfitting or overfitting.   

There are several cross-validation methods to test the model for overfitting during 

the model training phase.  The most common cross-validation method is k-fold (Bose, 

2019).  Bose (2019) stressed the importance of cross-validation is performed on the 

training data set rather than the testing data set.  Within k-fold cross-validation, the 

training data set is split into an equal number of smaller sets or folds, and the model’s 

accuracy is tested on each fold (Bose, 2019).  As a rule of thumb, folds are typically kept 

at either five or 10 as empirical results indicate these thresholds do not experience high 

bias or variance within the data (Drakos, 2019).  Additionally, more folds in a cross-

validation method result in the increased computational time to find the best model 

(Dantas, 2020; Drakos, 2019).  The final accuracy of the k-fold cross-validation is 

reported as the average across the folds (Drakos, 2019). 

Model evaluation methods.  As multiple models are developed in data science, 

model evaluation becomes important to discern which model produces the highest 

accuracy.  Evaluation metrics depend on the type of output or predictor variable 

produced.  For regression models producing a continuous output variable, tests for 

goodness-of-fit and examination of the residuals historically were accuracy metrics 

(Boehmke & Greenwell, 2020).  Nevertheless, Boehmke and Greenwell (2020) indicated 

these values could produce misleading conclusions about the accuracy of the models.  

Boehmke and Greenwell (2020) argued the evaluation of loss functions metrics produces 

a more accurate method of evaluating regression models.  Loss functions evaluate errors 

between the predicted values to the actual values.  One of the most popular metrics in 
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regression models is the R2 value.  This value represents the degree of variance the model 

accounts for within the data set.  Moreover, R2 has several limitations.  Boehmke & 

Greenwell (2020) mentioned two models for two data sets could have the same root mean 

squared error but two different R2 values.  The lower R2 value will be produced from the 

less variability found within the data.  Boehmke & Greenwell (2020) recommended one 

not emphasize the value of R2 but continued to recommend additional metrics for 

evaluating regression models.   

Root mean squared error (RMSE) measures the accuracy of predicted values to 

the actual values for ratio or interval dependent variables (Boehmke & Greenwell, 2020; 

Kuhn & Johnson, 2013).  In squaring the errors between the predicted and actual values, 

the larger errors have greater penalties (Boehmke & Greenwell, 2020).  The additional 

metric involves taking the square root of the MSE to produce the root mean squared error 

(RMSE), resulting in the same value as the response variable (Boehmke & Greenwell, 

2020).  Chugh (2020) stated the MSE examines the error between the predicted and 

actual values, while RMSE examines the standard deviation of the errors.  When 

comparing the accuracy of multiple regression models, he further reiterated MSE and 

RMSE are better metrics for accuracy than the R2 and R2 adjusted values (Chugh, 2020).   

 Classification models produce different accuracy metrics than regression models.  

One of the most common classification metrics for evaluating a model’s accuracy is the 

confusion matrix, as displayed in Table 1.  The confusion matrix is a crosstabulation 

comparison of the predicted and actual outcomes.  The matric reveals the performance of 

the models by revealing the true and false predictions.  In the matrix, a true positive 

would indicate the model correctly predicted the event, while a false positive means the 
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model incorrectly predicted the event.  A true negative would mean the model correctly 

predicted the event not to occur, while a false negative would incorrectly predicted the 

event not to occur (Boehmke & Greenwell, 2020).  From the matrix, multiple metrics can 

be calculated to evaluate the accuracy.  The accuracy rate in which the truths or hits are 

displayed as a percentage of total events providing how the model performs overall at its 

maximum capacity (Boehmke & Greenwell, 2020).   

Table 1  

 

Classification Model's Confusion Matrix 

 

Actual 
Predicted 

Event Non-Event 

Event True Positive False Negative 

Non-Event False Positive True Negative 

 
However, the accuracy rate does not consider metrics such as precision, 

sensitivity, and specificity.  The model’s precision calculates the accurate classification of 

the events occurring.  As a ratio, the precision value compares the true positive to the 

false positive to evaluate the correct prediction of events that occurred.  A model’s 

sensitivity examines the true positives as a ratio to the false negatives to analyze the 

model’s performance in correctly classifying the actual events (Boehmke & Greenwell, 

2020).  In other words, sensitivity produces a percentage of the true predictive positive 

cases divided by the total actual true cases (Kuhn & Johnson, 2013).  In analyzing the 

performance of classifying the events not occurring, specificity provides a ratio of true 

negatives to false positives (Boehmke & Greenwell, 2020; Kuhn & Johnson, 2013).  The 

last two metrics utilized in evaluating classification models is the receiver operating 

curve (ROC), in which the area under the curve (AUC) can be calculated.  According to 

Dey (2021), the ROC and AUC provide a metric examining the “tradeoff between true 
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positive rate and the predictive value.”  In other words, the ROC curve plot displays the 

true-positive and true negative rates (Boehmke & Greenwell, 2020).  The point closest to 

the upper left corner is the most accurate within the plot (Kuhn & Johnson, 2013).  Also 

known as the identity line, a diagonal line represents a model’s accuracy equivalent to a 

coin flip of random guessing (Boehmke & Greenwell, 2020).  AUC can be calculated 

from the ROC graph to determine how accurate the model can classify the events from 

either occurring or not occurring.  Of the metrics used in measuring the accuracy of 

classification models, Dey (2021) recommended the AUC as the metric to compare and 

determine which model produces the best results. 

Summary 

As successful academic performance within the pivotal first year continues to 

puzzle postsecondary administrators and policy-makers, many retention and attrition 

models have been theorized to help understand the reason students retain and depart from 

an institution (Astin, 1984, 1993; Bean, 1980; Spady, 1970, 1971; and Tinto, 1975, 1993).  

While considered the workhorse for providing state and regional areas with a credentialed 

workforce, Regional comprehensive universities are unique as they do not get the 

attraction research universities get from the media but still offer affordable education to 

students to prepare students for the workforce.  These institutions have and continue to 

face growing concerns impacting the overall enrollment headcounts in recent years.  

These concerns include the decline of the traditional-age student population coming out 

of high school, changing demographics of the regional areas, and growing public 

perception (Barshay, 2018; Henderson, 2016; Lederman, 2019; Livingston & Cohn, 

2010; & Nietzel, 2019a).  
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Variable selection in developing and understanding the first year academic 

performance is important as it allows for an understanding of what impacts the students 

in their integration into the academic and social communities.  In focusing on the RCUs' 

student body, variable selection focused on student characteristics, precollege 

characteristics, financial situations, major declaration, and institutional financial 

expenditures to identify which students would be at-risk of departing from the institution 

before a student registers for a class.  In the precollege characteristics, incorporating high 

school characteristics of the curriculum and college readiness index could provide 

information regarding how well the high school prepares students for life after high 

school in a postsecondary setting.  DeNicco et al. (2015) found English & Language Arts 

and Mathematics schools' proficiency rates were impactful in persisting to the second fall 

semester.   

Additionally, this study incorporated data science and data mining techniques 

when previous studies may have only conducted one or two statistical method tests.  Data 

science over the recent years has gained popularity in multiple fields, including higher 

education in the ability to use data mining techniques to unlock previously hidden 

information in large data sets.  A black-box model approach or one statistical analysis no 

longer applies in building models to predict outcomes in data science. With building 

multiple models, accuracy metrics for continuous and dichotomous variables have 

become important to distinguish which model has the best performance. 
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Chapter III 

METHODOLOGY 

 The research methods employed in this study are presented in this chapter, which 

comprises seven sections.  The first section delves into the research design, encompassing 

the independent and dependent variables.  The second section provides a description of 

the population.  The third section elucidates the instrumentation and the data collection 

process.  Additionally, within the third section, there is a discussion on the validity and 

reliability of the data collected.  The fourth section outlines the procedures for data 

analysis concerning each research question.  Statistical considerations and assumptions 

are addressed in the fifth section.  The summary of the chapter is presented in the sixth 

section. 

 The following research questions guided this study: 

1. Are student characteristics, precollege characteristics (including high school 

curriculum quality), financial situations, major or program of study, and 

institutional financial expenditures significant predictors in first-time, full-time 

freshmen’s academic performance in their first year? 

a.  Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 
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program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s first-fall GPA? 

b. Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 

program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s first-year GPA? 

c. Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 

program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s one-year retention status? 

2. Does one machine learning algorithm (regression, support vector machine, 

random forest, and extreme gradient boosting) or an ensemble learning algorithm 

produce a higher accuracy based on the evaluation metrics for accuracy in 

examination of first-year academic performance? 

a. Does one machine learning algorithm (linear regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 

metrics of the root mean squared error (RMSE) for first semester GPA? 
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b. Does one machine learning algorithm (linear regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 

metrics of the RMSE for first-year GPA? 

c. Does one machine learning algorithm (logistic regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 

metrics of accuracy, sensitivity, specificity, f measure scores, and AUC 

value for one-year retention status? 

Research Design 

 As a nonexperimental, ex post facto, correlational research design, this study 

sought to analyze the effects on first year academic performance through the use of 

archival data obtained from USG, GaDOE, GOSA, and IPEDS.  As the study involved 

assessing the correlations on first year academic performance, research design focused on 

analyzing the predictability of input variables influencing earned GPAs within the first 

year and one year retention status.  This study was also considered a forecasting and 

classification study.  The forecasting part examined the influence of the independent 

variables on the earned GPAs within the first year, while the classification part examined 

the influence of the independent variables on one year retention status. 

Independent variables.  In this study, 36 independent variables were classified 

into five distinct groups: student characteristics, precollege characteristics, financial 

situations, major or program of study, and institutional financial expenditures.  Student 

characteristics variables included gender, race/ethnicity, family educational background, 
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and locale.  Precollege characteristics comprise admission test scores, high school GPA, 

AP advanced standing hours, IB advanced standing hours, CLEP advanced standing 

hours, and other advanced standing hours.  The high school curriculum quality indicators 

comprised of CCRPI content mastery, CCRPI readiness, EOC mean English and 

Language Arts, EOC mean Mathematics, EOC mean Science, and EOC mean Social 

Studies.  Financial situation variables encompassed expected family contribution, GA 

HOPE scholarship dollars, Zell Miller indicator, PELL grant dollars, federal subsidized 

and unsubsidized loans dollars, and other loans dollars.  The major or program of study 

variable represented the student's primary major in the initial fall semester.  Institutional 

expenditures included instruction, research, public service, academic support, student 

services, institutional support, and other core expenses. 

 Overall, the independent variables consisted of 11 nominal and 25 interval 

variables.  Nominal variables consisted of student characteristics (gender, race and 

ethnicity, family educational background, and locale), pre-college characteristics (five 

subject areas of the college preparatory curriculum requirements),  financial status (Zell 

Miller recipient), and major or program of study.  Within the nominal variables, the race 

and ethnicity category was based on the required reporting to IPEDS, which combines 

students’ responses to their race, ethnicity, and nationality (NCES, n.d.a).  Additionally, 

race and ethnicity of the available population under 5% were grouped into an "Other" 

category to protect student anonymity within the data set.  Family educational 

background responses were collected through the admissions process, to which first 

generation status is given to students indicating neither parent has at least a bachelor’s 

degree (USG, 2023).  
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The interval level data consisted of precollege characteristics (high school GPA, 

admission test scores, four advanced standing hours), high school curriculum (CCRPI 

content mastery, CCRPI readiness, EOC mean English and Language Arts, EOC mean 

Mathematics, EOC mean Science, and EOC mean Social Studies), financial situations 

(EFC, HOPE Scholarship, PELL Grant, federal subsidized and unsubsidized loans, and 

other loans), and institutional expenditures (instruction, research, public service, 

academic support, student services, institutional support, and other core expenses). 

The regional comprehensive universities (RCU) permit students to submit either 

SAT or ACT test scores.  To facilitate this, ACT composite scores were converted to SAT 

total scores using a concordance crosswalk table.  If a student submitted both SAT and 

ACT scores, the highest value was selected as the student’s admissions test scores.  HS 

GPA was measured as a weighted mean with two decimals.  This calculation was based 

on quality points assigned to the grades earned in the classes and the course hours during 

a student’s high school career. 

The quality of the high school curriculum was determined by components from 

the CCRPI and the EOC mean scores.  The CCRPI content mastery was measured on an 

interval scale ranging from 0 to 100 with one decimal place, assessing achievements in 

the four main high school curriculum subjects—English and Language Arts, 

Mathematics, Science, and Social Studies.  Similarly, CCRPI readiness measured 

achievements preparing students for either postsecondary education or the workforce.  

The EOC mean scores were a derived variable from the mean of the total proficient and 

distinguished scores in corresponding subjects.  Mean English was calculated from the 

mean of 9th-grade Literature and Composition and American Literature and Composition 
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rates.  Mean Mathematics was derived from the mean of Algebra I and Geometry rates. 

Mean Science was determined by the mean of Biology and Physical Science rates.  Mean 

Social Science was computed from the mean of US History and Economics rates.  

Institutional expenditures were derived values obtained from IPEDS, indicating the 

amount of dollars rounded to the nearest dollar that the university expends per one full-

time equivalent student. 

Dependent variables.  The dependent variables consisted of three different 

measurements of academic performance.  These measurements were two interval and one 

nominal levels.  The interval levels were comprised of the first-fall and first-year GPAs, 

while the nominal level comprised of the one-year retention status.  The GPA variables 

were a weight mean calculated based on quality points assigned to the grades earned in 

the classes and the course hours.  The retention status was the nominal variable in which 

a value of zero indicated a student retained and a value of one indicated a student did not 

retain to the second fall semester. 

Participants 

 The target population comprised FTFTF cohorts pursuing bachelor’s degrees from 

the four RCUs within USG.  According to RPA, a total of 26,356 FTFTF students were 

enrolled in bachelor’s degree programs during the Fall of 2018 and 2019.  The gender 

distribution was 55.1% female and 44.9% male.  Demographic breakdown indicated that 

among the cohorts, 0.2% were American Indian or Alaskan Native, 3.3% were Asian, 

27.2% were Black or African American, 10.4% were Hispanic, 0.1% were Native 

Hawaiian or Other Pacific Islander, 0.8% had an unknown ethnicity, 4.8% identified as 

two or more races, and 53.1% were White (USG 2022a, 2022b).  Reports on academic 
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readiness revealed a mean high school GPA of 3.28 across the cohorts (USG, 2018b, 

2019d), a mean SAT composite score of 1012 (USG, 2018a, 2019a), and a mean ACT 

Composite score of 22 (USG, 2019b, 2019c). 

 The accessible population enrolled in the four RCUs was the FTFTF pursuing a 

bachelor’s degree who graduated from a public high school within the State of Georgia in 

2018 or 2019.  The following three criteria needed to be met for students to qualify: 

1. IPEDS classification of first-time, full-time freshmen (determined by USG for 

IPEDS reporting) 

2. Pursuing a bachelor’s degree (determined by USG for IPEDS reporting) 

3. Graduated from a Georgia public high school in 2018 or 2019 (calculated from 

high school code in RPA census files) 

The accessible population included only recently high school graduates to investigate the 

quality of high school curriculum on first-year academic performance.  From the data 

provided from USG, a total of 21,797 students were identified to have graduated from a 

GA public high school in 2018 or 2019 and enrolled in one of the four RCUs. 

Instrumentation 

 The study focused on understanding how student characteristics, precollege 

factors, financial situations, academic engagement, social engagement, and institutional 

financial expenditures influence the first-year academic performance of FTFTF students 

enrolled in the University System of Georgia's RCUs.  Ary et al. (2019) and Creswell 

(2014) emphasized the significance of ensuring the validity and reliability of data 

instrumentation to guarantee the accuracy of results.  In this context, validity pertained to 

the precise measurement of the concept, while reliability refered to the internal 
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consistency of the measured data (Ary et al., 2019; Creswell, 2014).  After IRB approval, 

data were collected from four distinct sources.  The first source involved a data request 

submitted to RPA.  The second source wase obtained through the GaDOE's CCRPI 

website.  The third source was acquired from the Governor’s Office of Student 

Achievement’s website, and the final source acquired through the IPEDS data center. 

USG institutional data.  Within Georgia's public sector institutions, the USG’s 

RPA office is responsible for overseeing the collection of census and other data files from 

each institution. Student enrollment data are collected twice a semester.  To maintain the 

consistency of the data, archival data for FTFTF students was retrieved from RPA, and 

these census files are stored in the USG's data warehouse.  USG has established a reliable 

process for data collection, adhering to rigorous standards outlined in the data element 

dictionary (USG 2021c).  These standards not only ensure consistency in the collected 

data for reporting but also facilitate robust data analysis.  Furthermore, each institution is 

required to validate and certify the accuracy of the data submitted to the system-wide 

database, as per USG guidelines (USG 2021b).  The data obtained from USG for FTFTFs 

enrolled in the RCUs included student-level variables, with a masked ID number and 

personally identifiable information excluded to preserve students' anonymity. 

High schools’ CCRPI data.  The GaDOE provides information on the CCRPI for 

public consumption.  According to the GaDOE's website, the CCRPI is a metric that the 

state utilizes to assess the level of college and career readiness of students in accordance 

with the ESSA law (GaDOE, 2021b).  In a published report, the GaDOE's analysis of the 

validity for content mastery and post-high school readiness shows high levels of 

confidence (Georgia State University, 2016).  The CCRPI scores for each public school 
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are available as downloadable Microsoft Excel files, and these files provide a breakdown 

of the components that make up the CCRPI.  Due to data safeguard procedures, some 

schools may not have information reported, especially if the student population is small 

(Data Quality Campaign, 2021).  The downloadable data consist of derived or calculated 

variables for each public school, ensuring no personally identifiable information is 

contained in the spreadsheets. 

High schools’ EOC data.  According to the GaDOE’s Student Assessment 

Handbook, the EOC tests are considered valid measurements of student achievement for 

specific subjects.  These assessments not only gauge the content learned but also factor 

into the test taker's final grade.  The Official Code of Georgia Annotated emphasizes that 

all assessment tests must be verified for reliability and validity by a nationally 

recognized, research-based, third-party evaluator (GaDOE, 2021b, p. 149).  In the most 

recent brief regarding the assessment and accountability of the Georgia Milestone 

assessment test, validity is examined in terms of "the degree to which evidence and 

theory support the interpretations of test scores entailed by proposed uses of tests" 

(GaDOE, 2019, p. 1).  The evaluation of the validity of the EOC test was conducted by 

edCount, LLC.  In a recent report published by GaDOE, edCount, LLC, commended the 

department for the validity of the content measured in the assessments.  The third-party 

company found GaDOE's assessments align with The Standards for Educational and 

Psychological Testing (Forte et al., 2017). 

 In the brief from the GaDOE, Cronbach’s alpha was employed as a measure of 

reliability to assess the consistency of the EOC tests (GaDOE, 2019).  Within this 

context, scores are evaluated as "the ratio of true score variance to observed total score 
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variance" (GaDOE, 2019, p. 4).  The mean reliability scores for the high school EOC 

tests from 2016-17 to 2018-19 are presented in Table 2.  Across the three reporting years, 

the scores range from .88 to .93.  Utilizing the industry standard rules of thumb for 

interpreting Cronbach’s alpha, all of the scores fall within the range considered 

acceptable for reliability values (Glen, 2021).   

Table 2  
 
Coefficient Alpha Summary of ECOT Reliability Testing 

 

High School EOC Test 2016-17 2017-18 2018-19 

9th Grade Literature .89 .90 .91 

American Literature .88 .90 .89 

Algebra I .90 .91 .91 

Geometry .91 .92 .92 

Biology .91 .92 .92 

Physical Science .88 .90 .91 

US History .92 .93 .92 

Economics .91 .91 .91 

Note: Adapted from “An Assessment & Accountability Brief: 2016-17 Validity and 
Reliability for the Georgia Milestones Assessment System,” by Georgia Department of 
Education, 2017, p. 4-5. Copyright 2017 by the Georgia Department of Education. 
Adapted from “An Assessment & Accountability Brief: 2017-18 Validity and Reliability 
for the Georgia Milestones Assessment System,” by Georgia Department of Education, 
2018c, p. 4-5. Copyright 2018 by the Georgia Department of Education. Adapted from 
“An Assessment & Accountability Brief: 2018-19 Validity and Reliability for the Georgia 
Milestones Assessment System,” by Georgia Department of Education, 2019, p. 4-5. 
Copyright 2019 by the Georgia Department of Education. 
 
 Similar to the CCRPI data, the EOC data was obtained through downloadable 

Microsoft Excel spreadsheets hosted on the GOSA’s website (n.d.).  The EOC data 

contained in these spreadsheets include the total number of students and percentages for 

each achievement level.  The spreadsheets do not contain any personally identifying 

information, as the data is aggregated to the school and subgroups within the school.  

Data protection procedures to safeguard students' information are incorporated into the 

spreadsheets (Data Quality Campaign, 2021; GOSA, n.d.).  Schools and subgroups with 
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fewer than 10 students taking the assessments do not have any numbers or percentages 

reported.  For achievement levels with less than 10 students, only the percentages are 

reported, as the actual numbers are not disclosed (GOSA, n.d.).   

Institutions’ financial expenditures.  Each year, the National Center for 

Education Statistics (NCES) collects data related to postsecondary education institutions.  

The data collected are aggregated numbers pertaining to 12 distinct aspects of the 

institutions.  This three-part collection cycle covers survey components ranging from 

admissions, degrees conferred, financial information, graduation rates, human resources, 

library information, to student body information (NCES, n.d.c).  Within the financial 

survey, institutions are required to submit expenses for the fiscal year by function areas.  

These areas include instruction, research, public service, academic support, student 

services, institutional support, scholarships and fellowship expenses, auxiliary, hospital 

services, independent operations, and other expenses (NCES, 2021).  The NCES survey 

collection of financial data mandates institutions to submit information based on either 

the Governmental Accounting Standards Board (GASB) or Financial Accounting 

Standards Board (FASB) standards to ensure reliability in the collected data (NCES, 

2021).  Public institutions are obligated to report information based on the GASB 

standards, while private institutions must report using FASB standards.  These 

standardized reporting practices allow institutions to submit data consistently with each 

other, facilitating reliable and comparable financial information across the higher 

education landscape. 

 Information collected by the National Center for Education Statistics (NCES) is 

available for public consumption and analysis.  The data was downloaded in Microsoft 
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Excel spreadsheets from the IPEDS’ data center.  Within the IPEDS data center, the 

system provided derived or calculated variables related to expenses divided by the 12-

month full-time equivalent headcount for seven functions.  These functions included 

instruction, research, public service, academic support, student services, institutional 

support, and other core expenses (NCES, n.d.d).  The data available for download 

contained aggregated derived variables, no personally identifiable information was 

collected from the IPEDS data center.   

Data collection.  Once IRB granted permission (Appendix A), a data request was 

made to RPA at USG (Appendix B).  This request was to obtain data from the four RCUs 

regarding the FTFTF first-year academic performance for three cohorts.  The data 

received from RPA had the personal identification removed, eliminating the need for 

informed consent.  The provided data contained unmanipulated information regarding 

student variables in a Microsoft Excel file.  A new scrambled identification variable was 

created to maintain students' anonymity.  Data related to high schools were obtained 

through downloadable Microsoft Excel files hosted on the GaDOE and GOSA websites.  

Institutional expenditures was acquired through a downloadable Microsoft Excel file 

from the IPEDS’ data center (NCES, n.d.d).  To enhance security, the data was encrypted 

with a password and stored with multiple backups created for replication of the study.  

The same data was used for the study's research questions examining the first-year 

academic performance of FTFTFs enrolled in the USG RCUs.  The saved data contained 

no personally identifiable information to ensure the maintenance of students' anonymity. 
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Data Analysis 

 Data analysis consisted of two phases based on the research questions, utilizing 

the current version of R, a statistical programming software, along with the current 

tidyverse and tidymodel packages (Korkmaz et al., 2014; Kuhn & Johnson, 2019; Kuhn 

& Wickham, 2020).  The data analysis section had four components to address the 

research questions.  The first section discussed data preparation, explaining how the four 

data sets was merged into one cohesive data set for analysis.  The second section covered 

the utilization of descriptive statistics to provide an overview of the data.  Following that, 

a discussion of the four predictive algorithms used in inferential statistics was presented.  

In this third section, each algorithm generateed feature importance to elucidate which 

input variables impact first-year academic performance for the first research question.  

Finally, the fourth section described the data science approach for the second research 

question, aiming to determine which predictive algorithm has the highest accuracy. 

Data preparation.  As the data for this study originates from four distinct 

sources, data set mergers were implemented to create a unified data source (Appendix C).  

One of the variables employed for merging the data sets is the high school code, also 

known as the College Entrance Examination Board (CEEB) codes.  These CEEB codes 

facilitated the merging of the data obtained from the USG and high school curriculum 

data.  The data sets collected from the GOSA and GaDOE utilize a combination of 

system and school identification numbers, which are unrelated to CEEB codes (GaDOE, 

2021a).  To integrate HS curriculum data, an unduplicated list of system and school ID 

numbers were compiled from the downloaded data sets.  Downloadable list produced 

from WebAdMIT by Liaison (2021) and the NCES HS lookup tool were utilized to 
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develop an up-to-date master list of CEEB codes.  Connecting CEEB codes to the system 

and school ID numbers involved a manual process.  After links between CEEB codes and 

HS data are established, the curriculum variables were merged into the USG data set 

based on the student's graduation year and CEEB codes.  Data obtained from IPEDS was 

specific to each institution, resulting in a merger based on the institution’s name for the 

corresponding year. 

Descriptive statistics.  The first part of the data analysis section included 

descriptive statistics to describe the data set.  Descriptive statistics offered a 

representation or summary of the data rather than any generalization based on probability 

theory (Chaudhari, 2018; Sha, 2021).  For interval variables, the generated statistics 

measured the central tendency and dispersion of the variables.  Central tendency metrics, 

such as the mean, median, and mode, were employed to describe the symmetry of the 

data.  Symmetrical data exhibited equal mean, median, and mode values (Chaudhari, 

2018).  Metrics for dispersion, including variance, standard deviation, range, quartiles, 

skewness, and kurtosis values (Chaudhari, 2018; Sha, 2021), were utilized to examine the 

spread of the data.  These metrics contributed to a comprehensive understanding of the 

distribution characteristics.  Descriptive statistics for categorical variables involved the 

frequencies and percentages of data within each category of the variable.  Categorical 

descriptive statistics also encompassed the mode of the variable.  The functions 

summary() and skim() was employed to generate descriptive statistics for subsequent 

review and analysis. 

Inferential statistics.  A total of four algorithms were employed to analyze the 

impact of the independent variables on the three dependent variables for the first research 
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question (Appendix D).  These algorithms included linear regression, logistic regression, 

support vector machines, random forest, and extreme gradient boosting.  Additionally, the 

algorithms were integrated into an ensemble learning method.  Overall, the models 

followed a supervised learning approach (James et al., 2013).  According to James et al. 

(2013), supervised learning involves developing a model based on predictor variables and 

an outcome variable with the aim of accurately predicting the outcome and understanding 

the influence between the variables. 

 Linear regression, one of the most widely used statistical tools for modeling 

continuous variables, aims to investigate the influence of predictor variables on outcome 

variables (James et al., 2013).  Similarly, logistic regression is employed to examine the 

impact of predictor variables on a dichotomous outcome based on conditional likelihood 

(James et al., 2013; Schmidt-Thieme, 2007).  As a modeling tool, the support vector 

machine seeks to create margins of separations, known as hyperplanes, to discover the 

maximum margin for optimal explanation (Gandhi, 2018; James et al., 2013).  The 

random forest algorithm develops a collection of decision trees over multiple subsets of 

the training data set through recursive partitioning (Richmond, 2016).  The extreme 

gradient boosting (XGBoost) algorithm uses a combination of boosted trees and 

conditional random fields (Brownlee, 2016). 

 Linear regression.  A multiple linear regression model was constructed using the 

linear_reg() function within the parsnip package.  The model was configured for 

regression, and the engine was set to lm by default (Kuhn & Wickham, 2020).  Utilizing 

the slope-intercept formula, the linear regression function generated a linear line of 

predictive outcomes. 
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끫뢘 =  끫뷺0 +  끫뷺1끫뢖1 + ⋯+ 끫뷺끫뢶끫뢖끫뢶 

 Before linear regression can be employed, considerations and assumptions were 

reviewed.  Missing data and outliers were factors to be taken into account for linear 

regression.  Addressing missing data were essential, as some data may be structurally 

missing due to safeguard protections to preserve individual anonymity (Bock, nd; Data 

Quality Campaign, 2021).  Another consideration involved the examination of univariate 

and multivariate outliers, as they could introduce unnecessary bias to model parameters 

and estimates, potentially leading to Type I or Type II errors (Osborn & Overbay, 2004).  

Data visualizations, z-score review, and statistical tests were employed to identify 

univariate outliers.  Grubbs’ test is a statistical test used for identifying univariate 

outliers.  For multivariate outliers, the Mahalanobis distance test, measuring the distance 

between two points based on the covariance of the data, was utilized (Cansiz, 2020).  

Values flagged as outliers underwent an individual case review to determine whether they 

are valid data points or outliers. 

 Linear regression relied on a total of four assumptions that must be met to draw 

meaningful research conclusions based on reality (Field et al., 2012; Garson, 2012).  The 

observation independence assumption asserts there are no duplicated records for the 

event, as duplication could introduce bias toward observations appearing more than once 

(Heidel, 2022).  Univariate normality, another assumption, pertains to the equal 

distribution of the data (Merler & Vannatta, 2002).  This assumption was assessed 

through data visualizations such as histograms and Q-Q plots, as well as statistical tests 

like Shapiro-Wilks, Jarque-Bera, and Kolmogrovo-Smirnov tests (Kuhn & Johnson, 

2019; Mishra et al., 2019).  Multivariate normality was a crucial assumption checked by 
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observing the combined effect of multiple variables on the distribution of the data.  An 

elliptical shape in scatterplots would indicate multivariate normality (Fife, 2019; Oppong 

& Agbedra, 2016).  Additionally, Royston’s and Mardia’s tests were employed to make a 

statistical decision regarding multivariate normality (Oppong & Agbedra, 2016).  The 

linearity assumption asserts the relationship between input and output variables resembles 

a straight line (Merler & Vannatta, 2002).  Pearson’s R correlation coefficients were used 

to assess linearity between input and output variables (Glen, 2022).  Multicollinearity 

were examined using the VIF test to determine whether independent variables are highly 

correlated, violating the multicollinearity assumption (James et al., 2013; Leung, 2021).  

VIF values exceeding the rule of thumb thresholds of five or 10 suggest multicollinearity 

violation (Bhandari, 2020; James et al., 2013).  Variables exceeding the thresholds 

underwent a process to eliminate the multicollinearity, starting with the highest VIF score 

(Bhandari, 2020).  The homoscedasticity assumption requires equal variance within the 

data.  The Levene’s test was employed to test for homoscedascity (Merler & Vannatta, 

2002). 

 The linear regression model produced an F-statistic, R2, R2 adjusted, RMSE, and 

p-value.  These values aided in assessing the accuracy of the model.  The R2 and R2 

adjusted were values accounting for the variance found within the data.  The value ranged 

from zero to one.  A value of zero indicates the model accounts for no variance, resulting 

in a poor model, while a perfect model would exhibit the value of one (James et al., 

2013).  While the R2 is an easy interpretation of the models fit, a drawback occurs from it 

ability to not measure the fit of the predictions (Hiregoudar, 2020; James et al., 2013).  
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The RMSE values relates to the overall fit of the predicted outcomes compared to the 

actual outcomes.  Values close to zero indicate an overall good fit (Hiregoudar, 2020).   

For each of the independent variable, linear regression produced coefficients, 

standard error, t-statistics, and p-values (James et al., 2013).  Predictor variables with a p-

value less than or equal to the significant threshold were considered influential to the 

outcome variable.  Moreover, significant independent variables’ strength and direction of 

the relationship to the dependent variable were determined by the coefficients.  The larger 

the value of the predictor indicated the more of an influence in the model.  The value’s 

positive or negative sign determined the direction of the relationship (James et al., 2013).   

 Logistic regression.  Multiple logistic regression model were developed using the 

logistic_reg() function within the parsnip package.  The model was set to classification 

and the engine was set to glm, which is the default (Kuhn & Wickham, 2020).  The 

logistic regression algorithm modeled the probability of the student retaining to the 

second fall semester (James et al., 2013). 

Pr ( default = retained|balance) 

Using the logistic function, the outcome was produced the probability in an S-shaped 

curve of the student retaining ranging from zero to one in which student who would be 

classified as retained receiving the value of one (James et al., 2013). 

끫뢺(끫뢖) =  
끫뢤끫뷺0+ 끫뷺1끫뢖1+⋯+끫뷺끫뢶끫뢖끫뢶

1 +  끫뢤끫뷺0+ 끫뷺1끫뢖1+⋯+끫뷺끫뢶끫뢖끫뢶 

Generally, the decision threshold of the produced probabilities would indicate values less 

than or equal to .50 would be considered retaining, while values greater than .50 would 

be considered not retaining (James et al., 2013).   
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 In the application of logistic regression, certain assumptions must be met.  

Logistic regression also required the assumptions of observation independence and 

outliers to not be violated.  The independence of observation assumption stipulated there 

should be no duplication of records for the event (Leung, 2021).  The presence of strong 

outliers, which can influence the estimates, were assessed using Grubb’s test (James et 

al., 2013; Leung, 2021).  The evaluation of outliers was conducted on a case-by-case 

basis, considering that values may genuinely reflect true data points.  In addition to these 

shared assumptions, logistic regression had distinct requirements compared to linear 

regression.  The outcome variable needed to be dichotomous (Leung, 2021), and the 

independent variables needed to exhibit a linear relationship with the log odds (James et 

al., 2013; Leung, 2021).  The absence of multicollinearity was another crucial assumption 

for logistic regression, wherein independent variables should not be highly correlated 

with each other (Leung, 2021). This relationship were examined through VIF.  The VIF 

tested for multicollinearity between the independent variables and the collinearity of the 

independent and dependent variables (James et al., 2013; Leung, 2021).  Rule-of-thumb 

values of five or 10 are considered violations of the multicollinearity assumption 

(Bhandari, 2020; James et al., 2013).  Variables exceeding these thresholds underwent a 

process to eliminate the multicollinearity, starting with the highest VIF score (Bhandari, 

2020). 

 The logistic regression model produceed beta values, standard errors, p-values, χ2 

values, degrees of freedom, and odd ratios (James et al., 2013).  These values indicated 

the significant factors impacting the student’s probability of retaining or not retaining.  

The Hosmer and Lemeshow goodness-of-fit, Akaike Information Criteria (AIC), 
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Bayesian Information Criteria (BIC), and the pseudo-R2 outputs assisted in determining 

how the logistic regression model fits.  As a goodness-of-fit, Hosmer-Lemeshow statistic 

provided a value indicating whether the model reflects the true outcomes within the data 

(Hosmer et al., 2013).  Within the Hosmer-Lemeshow goodness-of-fit, the logistic 

regression model would not be a good fit if the p-value is significant (i.e., less than or 

equal to .05) (Hosmer et al., 2013).  Like the Hosmer-Lemeshow, the AIC and BIC values 

provided a goodness-of-fit value, with BIC penalizing the more complex model.  The 

larger the value of AIC and BIC indicated the model is not a good fit (Brownlee, 2019).  

Logistic regression also had multiple proposed pseudo-R2 values to produce an equivalent 

to linear regression’s R2 value measuring the variance within the regression model.  

While there are multiple ways of calculating the pseudo-R2, the consensus indicated the 

McFadden’s pseudo-R2 is the best value (Abhigyan, 2020). 

 Additionally, a confusion matrix was produced based on the predict outcomes 

compared to the actual outcomes.  From the matrix, the overall accuracy, sensitivity, 

specificity, and F-score were produced (James et al., 2013; Narkhede, 2018).  More 

accuracy metrics produced from the logistic regression model were the ROC and the 

resulting AUC value.  The values of the AUC ranged from zero to one.  A value of .50 

was considered the events occurring by chance or a coin flip, while a value of 1.00 was 

considered a perfect model (James et al., 2013; Narkhede, 2018). 

 Support vector machine for regression and classification.  Support vector 

machine (SVM) algorithms were adept at handling both continuous and categorical 

outcome variables (Yadav, 2018).  Utilizing hyperplanes to establish decision criteria, 

SVM aimed to achieve optimal results by maximizing margins (Gandhi, 2018; James et 
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al., 2013; Yadav, 2018).  SVM gained popularity in assessing the impact of predictors on 

outcome variables due to its capability to use multiple kernels, enabling analysis of 

different relationship shapes—linear, nonlinear, and radial-based functions (Awasthi, 

2020).  Attewell and Monaghan (2015) recommended using multiple kernels to optimize 

SVM performance.  The SVM algorithms were employ linear, polynomial, and radial-

based functions.  Using the parsnip package, three different functions were performed 

based on the type of SVM (Kuhn, 2019). 

For the three dependent variables, SVM used the svm_linear() function for the 

linear model, svm_poly() function for the polynomial model, and svm_rbf() function for 

the radial-based function model (Kuhn & Wickham, 2020).  Each model used the cost 

function to determine the optimal value in the accuracy of predictions (James et al., 

2013).  Unlike linear and logistic regression, SVM had no assumptions must be reviewed, 

but were vulnerable to large class imbalance for classification models (Batuwita & 

Palada, 2012; Dwivedi, 2020).  Machine learning algorithms, like SVM, do not produce 

coefficient values akin to general linear models that measure the impact on the variable in 

the model.  To gain insight into the factors influencing the model, a variable importance 

analysis was conducted.  The scores from the variable importance analysis indicated the 

impact the factor contributes to the outcome variable (Shin, 2021).  For the GPA 

dependent variables, accuracy metrics involved the calculation of the RMSE to indicate 

the overall fit of the model.  Accuracy for the SVM models for the retention variable 

analyzed the confusion matrix, producing the overall accuracy rate, sensitivity, 

specificity, and F-score.  Additional accuracy metrics involved the ROC and more 

specifically, the AUC (James et al., 2013; Narkhede, 2018). 
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 Random forest.  Random forest has emerged as one of the most popular 

predictive algorithms in contemporary data science.  The random forest algorithm was a 

collection of decision trees developed to predict outcomes.  Each tree within the 

algorithm was built using multiple subsets of the training data set, preventing overfitting 

for both classification and regression analyses.  Unlike general linear models, random 

forest had no formal assumptions, making it capable of handling skewed and multi-modal 

data sets (Richmond, 2016).  Due to its lack of formal assumptions, random forest 

algorithm required minimal data transformations (Ravindran, 2021).  

The parsnip package's rand_forest() function from the tidymodel library utilized 

with the regression model for GPA predictions and the classification model for retention 

predictions.  In the rand_forest() function, mtry referred to the number of random 

samples of variables, and trees refers to the number of trees developed.  A variable 

importance analysis was conducted to understand the impact of features on the predicted 

outcome.  Random forest accuracy was evaluated using two methods based on the type of 

dependent variable.  For first-fall and first-year GPA dependent variables, accuracy was 

measured using the RMSE value, describing the overall fit of the predicted outcomes 

(Hiregoudar, 2020; James et al., 2013).  Values close to or at zero indicated a good model.  

The random forest model for the dichotomous dependent variable—one-year retention 

status—were assessed using an analysis of the confusion matrix and the ROC.  The 

confusion matrix provided overall accuracy, sensitivity, specificity, and F-score.  

Additionally, the ROC plot and AUC served as additional accuracy metrics (James et al., 

2013; Narkhede, 2018). 
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Extreme gradient boosting.  Like random forest, extreme gradient boosting 

(XGBoost) has gained popularity in recent years.  The XGBoost algorithm was capable 

of handling both continuous and categorical outcome variables (Brownlee, 2016; 

Xgboost Developers, 2021).  Developed by Tianqi Chen, XGBoost combines boosted 

trees and conditional random fields, showcasing improved computation speed and model 

performance.  Pafka (2015) highlighted XGBoost's speed outperforming other random 

forest models across various statistical tools, and it has become a favored algorithm in 

data science competitions, often used by winners due to its accuracy (Brownlee, 2016).  

Within the tidymodel parsnips package, the boost_tree() function were employed 

with the xgboost engine to create the model.  The regression model was used for 

predicting the dependent variables related to the first-fall and first-year GPAs, while the 

classification model was applied for the retention status (Kuhn & Wickham, 2020).  A 

variable importance analysis was conducted to understand the impact of features on the 

predicted outcome.  Accuracy measurements for XGBoost mirrored those for random 

forest, involving two evaluations based on the type of dependent variable.  For the two 

continuous variables—first-fall and first-year GPAs—accuracy was measured using 

RMSE, describing the overall fit of the predicted outcomes (Hiregoudar, 2020; James et 

al., 2013).  Values close to or at zero indicated a good model.  The XGBoost model for 

the dichotomous dependent variable—one-year retention status—was assessed using an 

analysis of the confusion matrix and the ROC.  Within the confusion matrix, overall 

accuracy, sensitivity, specificity, and F-score was considered.  Additionally, the ROC plot 

and AUC was used as additional accuracy metrics (James et al., 2013; Narkhede, 2018). 
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Ensemble learning.  Ensemble learning involved the construction of multiple 

predictive algorithms to generate a single predictive outcome.  Combining predictive 

outcomes from various algorithms offered several advantages.  Ensemble learning 

algorithms often achieve higher accuracy compared to individual models, reduce bias and 

variance to avoid underfitting or overfitting, and demonstrate increased stability in 

predictive outcomes (Makhijani, 2020; Ravanshad, 2018).  However, ensemble learning 

has drawbacks.  It diminished the interpretability of the model, making it challenging to 

understand the factors influencing predictions.  Although variable importance analysis 

helps discern impactful factors, Ravanshad (2018) noted ensemble learning often 

involves non-linear and interaction effects that variable importance analysis cannot fully 

explain.  Additionally, ensemble learning increased computation time for prediction 

(Ravanshad, 2018).  For regression analyses, a common ensemble method involved 

simple averaging of predicted outcomes.  Simple averaging can also be used to average 

probabilities for classification outcomes.  In classification analyses, the max voting 

method helps assign the classification based on the majority vote from predictive models 

with the same classification (Singh, 2018).  The stacks package, developed by Couch and 

Kuhn (2022), was suitable for ensemble learning and integrated well with the tidymodels 

package to create a new model from the outputs of multiple models. 

Data science approach.  In the data science approach to data mining, the 

optimization for achieving the highest accuracy in addressing the second research 

question involved comparing the accuracy of different machine learning algorithms 

(Calvo & Santafé, 2016; Horthorn et al., 2005).  In data science, the significance of 

having an accurate model lied in its out-of-sample predictive power (Kuhn & Johnson, 
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2013; Kuhn & Johnson, 2019).  Calvo and Santafé (2016) noted some differences 

between models may not be obvious, emphasizing the importance of using assessment 

tools to determine the optimal model and avoid misleading conclusions.  By comparing 

accuracy metrics and the ROC, each model was thoroughly assessed to identify the best-

performing one (James et al., 2013). 

 The evaluation of regression and classification models was based on their 

performance on the test data set, which provided an unbiased assessment of how the 

models performed on unseen, simulated real-world data (Goyal, 2021; Shah, 2017; Soni, 

2019).  Ten-fold cross-validation was conducted on the training data set to assess 

potential accuracy before evaluating each model's real accuracy on the test data set.  The 

same cross-validation was applied to the test data set, producing 10 accuracy metrics 

from which an average accuracy metric was derived.  For the assessment of models 

predicting continuous dependent variables, the evaluation involved the RMSE (Boehmke 

& Greenwell, 2020; James et al., 2013).  These metrics represented an overall measure of 

the difference between predicted and actual outcomes, with a value of zero indicating a 

perfect model that accurately predicts the outcome variable (James et al., 2013; Plagata, 

2020).  Boehmke and Greenwell (2020) highlighted the significance of RMSE values in 

determining the accuracy of regression outputs over other metrics.  In contrast, 

classification models were evaluated using different accuracy metrics, including overall 

accuracies, sensitivities, specificities, F-scores, and AUCs to assess out-of-sample 

predictive power (Calvo & Santafé, 2016; Horthorn et al., 2005; James et al., 2013; Kuhn 

& Johnson, 2013; Kuhn & Johnson, 2019).   
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The accuracy of the models were examined through three statistical tests: Mann-

Whitney test, Friedman’s test, and Wilcoxon signed-ranked test (Demšar, 2006; 

Fernández-Delgado et al., 2014).  The Mann-Whitney test measured the validity between 

differences in the training and testing data sets.  Friedman’s test identified statistically 

significant differences between the data sets’ accuracy metrics.  The Wilcoxon signed-

ranked test, conducted as a pairwise comparison through an ad hoc test to determine the 

most accurate model (Demšar, 2006; Fernández-Delgado et al., 2014). 

Statistical Considerations and Assumptions 

 During the data analysis, it was essential to thoroughly review statistical 

considerations and assumptions to ensure the validity and reliability of the results 

obtained from the predictive models.  The nature of these considerations and assumptions 

can vary depending on the type of statistical analysis being conducted.  For instance, 

some analyses, like general linear models, may have more rigid rules compared to others 

such as random forest.  As stated by Garson (2012), violations of assumptions may not 

impact conclusions in some less stringent analyses, but in others, they can undermine 

meaningful research.  Field et al. (2012) emphasized that assumption violations can 

hinder the ability to draw meaningful conclusions based on reality.  To review 

considerations and assumptions, various avenues were explored, employing data 

exploration techniques that utilize data visualization tools and statistical tests (Appendix 

E).  These methods aimed to uncover potential issues or violations that could affect the 

robustness of the models and their outcomes. 
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Considerations.  Descriptive statistics played a crucial role in reviewing the data 

to identify any instances of missing data.  The summary() function in R provided a quick 

overview of the data variables, allowing for a preliminary examination.  Additionally, the 

skim() function from the skimr package were employed to present descriptive statistics, 

including histograms, alongside results for each variable, providing a comprehensive 

view of multiple data types (Medcalf, 2018).  Both summary() and skim() functions 

reported the number of missing data points for each variable.  In the context of archival 

educational data sets, missing data could have occurred due to various reasons, including 

structural missing data designed to protect individual anonymity and ensure effective data 

use for student support (Bock, nd; Data Quality Campaign, 2021).  Other types of 

missing data may have been manifested as missing completely at random or missing at 

random in the data set provided by RPA.  To identify missing data, a count of the rows 

and visualizations was examined.  Imputation strategies were employed for handling 

missing data.  For continuous variables, methods such as mean, median, and k-nearest 

neighbor were utilized to provide the best fit for missing data.  Categorical missing 

variables were imputed using the “other” method.  The primary goal of imputing missing 

data was to avoid skewing the central tendencies of the data.  Observations containing 

missing values within the dependent variables were excluded from the data set to 

maintain data integrity and reliability in subsequent analyses. 

 Examining outliers within the data was another critical consideration, as the 

presence of outliers may lead to Type I or Type II errors, introducing biased influences on 

predictive models' parameters and estimates (Osborne & Overbay, 2004).  Outliers can 

significantly impact the reliability of the analysis.  The assessment for outliers 
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encompassed various techniques, including the evaluation of summary statistics, 

distribution of z-scores, histograms, boxplots, and Q-Q plots (Korkmaz et al., 2014; Kuhn 

& Johnson, 2019; Soetewey, 2020).  During the review of z-scores, any value less than  

-3.00 or greater than 3.00 was flagged as a potential outlier.  While z-scores are effective, 

they can be sensitive to extreme values, impacting the mean (Alam, 2020).  Moreover, z-

scores were not suitable for evaluating potential outliers in categorical data.  To 

complement this, visualizations allow for the identification of extreme values as they 

provided a method to examine predictor variables' data concerning the impact on the 

outcome variables (Silge, 2020).  

 To identify outliers in the continuous variables, the Grubbs’ test was employed 

from the outliers package (Soetewey, 2020).  From the Grubbs’ test, values as potential 

outliers were identified (Soetewey, 2020).  Notably, a univariate outlier may not 

necessarily signify an outlier, as it could be a multivariate outlier when compared to 

another variable.  For detecting multivariate outliers, the Mahalanobis distance test was 

highly effective.  The test measured the distance between two points based on the 

covariance of the data, calculating the number of standard deviations two points are away 

from each other (Cansiz, 2020). Utilizing the mahalanobis() function from the stats 

package, the analysis explored multivariate outliers.  Any values flagged as outliers 

underwent individual case review to ascertain whether the value was a valid data point or 

an outlier.   

Assumptions.  Observation independence was a critical consideration in 

statistical analyses, and adherence to the assumption that no record occurs more than 

once in the data set was crucial (Heidel, 2022).  Violations of this independence 



 

123 
 

observation assumption can introduce bias in favor of duplicated observations, potentially 

distorting the results (Heidel, 2022).  To assess compliance with this assumption in the 

data collected for each institution, a count of the masked identification numbers was 

examined.  This count helped to determine whether any records have been duplicated, 

providing insight into the adherence to the observation independence assumption. 

 Beyond observation independence, three additional assumptions were vital for 

examining the data distribution to ensure no violations have occurred, enabling accurate 

conclusions.  Skewness affected many statistical models significantly, as data with 

considerable skewness can disproportionately influence the model's estimates (James et 

al., 2013; Sharma, 2019).  Normality pertained to the even distribution of data (Merler & 

Vannatta, 2002).  Histograms and Q-Q plots were among the most common visualizations 

used to assess normal distribution (James et al., 2013; Kuhn & Johnson, 2019).  

Histograms allowed for the visualization of the distribution across the x-axis, enabling 

researchers to observe the spread and shape of the data.  Q-Q plots compared the 

distribution of observed values (on the x-axis) with the expected values under a normal 

distribution (on the y-axis).  A deviation from a straight line in a Q-Q plot indicated a 

violation of normality, suggesting the data may not be normally distributed (Merler & 

Vannatta, 2002). 

 Additionally, the descriptive statistics generated by the summary() function 

included skewness and kurtosis values.  Skewness values measured the symmetry, while 

kurtosis values measured the height or peakedness of the distribution.  Skewness and 

kurtosis values around zero typically indicated normality.  A positive skewness value 

suggested a distribution with a long right tail, whereas a negative skewness value points 
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to a long-left tail. A positive kurtosis value indicated a distribution with a high peak and 

short tails, whereas a negative kurtosis value suggested a flatter distribution with longer 

tails (Merler & Vannatta, 2002).  Furthermore, even when visual inspections might not 

reveal skewness, statistical tests were able to detect it.  The Shapiro-Wilk and Jarque-

Bera tests were two statistical methods used for assessing normality.  The Shapiro-Wilk 

test is grounded in frequentist statistics, whereas the Jarque-Bera test is based on 

moments (Tomšik, 2019).  According to Tomšik (2019), among all normality tests, the 

Shapiro-Wilk test was the most effective at detecting normality, with the Jarque-Bera test 

being the second most powerful.  A normality violation was indicated when the p-value is 

less than or equal to .05 (Merler & Vannatta, 2002; Mishra et al., 2019).  Variables 

identified with skewness were subjected to various data transformations to determine the 

most suitable transformation method.  These methods included the Box-Cox, Yeo-

Johnson, and logarithmic transformations.  For negatively skewed data, inverse 

transformations were required before applying Box-Cox and logarithm functions to 

function correctly.  These data processing techniques aimed to transform the data into a 

symmetric distribution to minimize the undue influence of extreme values or distributions 

on the estimates (James et al., 2013; Kuhn & Johnson, 2019). 

 With the normality assumption, checks for multivariate normality were also a 

crucial assessment of the distribution.  Like univariate normality, multivariate normality 

evaluated the skewness of the data; however, unlike univariate normality, multivariate 

normality examined the skewness by combining more than one variable (Wang, 2020).  

In essence, multivariate normality evaluated the combined effect multiple variables have 

on the distribution of the data (Sucky, 2020).  One method to detect a violation of 
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multivariate normality was through the analysis of scatterplots of the independent 

variables.  An elliptical shape in the scatterplot distribution indicated multivariate 

normality (Fife, 2019; Oppong & Agbedra, 2016).  Fife (2019) cautioned against 

confirmation bias when evaluating scatterplots and recommended the inclusion of either 

regression or lowess lines in the scatterplot.  Additionally, Oppong and Agbedra (2016) 

suggested using Royston’s and Mardia’s tests to conclude any violation of the 

multivariate normality assumption.  They explained that Royston’s test was analogous to 

the Shapiro-Wilk test for univariate normality and Mardia’s test calculates skewness and 

kurtosis values (Oppong & Agbedra, 2016).  According to Oppong and Agbedra (2016), a 

violation of multivariate normality was indicated by a p-value less than or equal to .05 in 

Royston’s test.  For Mardia’s test, skewness and kurtosis values at or near zero indicated 

a normal distribution (Merler & Vannatta, 2002). 

 Linearity, as a statistical assumption, referred to the relationship between the 

independent and dependent variables resembling a straight line (Merler & Vannatta, 

2002).  The presence of linearity in variables was crucial because a large portion of 

statistical analyses rely on the "linear combination of variables" (Merler & Vannatta, 

2002, p. 32).  One common method for assessing linearity was through the examination 

of the Pearson’s R correlation coefficient, which determined the strength and direction of 

the relationship between the variables.  In the psych package for R, the setCor() function 

assessed the correlation of the variables at each level (Revelle, 2020).  Values at or close 

to zero indicated no linear relationship, thus violating the linearity assumption.  

Conversely, values of negative one or positive one indicated a perfect or very strong 

linear relationship (Glen, 2022).  Additionally, evaluating linearity also involved 



 

126 
 

examining the residuals or prediction errors.  Residual plots that show no violation of 

linearity would have values evenly distributed along the zero line (Merler & Vannatta, 

2002). 

Finally, homoscedasticity refered to the variance within the data set to be equal.  A 

violation of the equal variance would indicate the data is heteroscedastic (Merler & 

Vannatta, 2002).  Testing for homogeneity of the variance was through using the 

Levenne’s test.  A violation of homoscedasticity occurred when the p-value is less than 

.05.  This would mean the null hypothesis of equal variance was rejected (Merler & 

Vannatta, 2002).  Merler and Vannetta (2002) indicated the analysis was not necessarily 

doomed when the Levene’s test indicates heteroscedasticity. 

Data imbalance.  Data imbalance may be the result of small numbers of 

observations within one group of a classification study (Google Developers, 2021; Rocca, 

2019).  As a result of the data imbalance, predictive algorithms developed may 

automatically default to one classification over the other leading to a greater potential of a 

Type II error (Nallamuthu, 2020; Rocca, 2019).  One sign of the greater potential for 

Type II error is identified from poor sensitivity found within the confusion matrix (Kuhn 

& Wickham, 2020; Sharma et al., 2009).  Countering the imbalance is the need to have 

more representational data in the training data set to improve the accuracy of the 

algorithm (Rocca, 2019).  In data science, the utilization of upsampling or downsampling 

are techniques to correct the dataset imbalance.  The upsampling technique deals with the 

imbalance within the data set pertaining to the minority class, while downsampling deals 

with the imbalance in the majority class.  Upsampling inserts new data into the minority 

class to the extent where both classifications are almost equal in size.  In upsampling, one 
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concern is the deliberate bias induced from adding more data in the minority class.  

Conversely, downsampling reduces the size of the majority class.  Like upsampling, 

downsampling introduces bias towards the minority through a reduction of data in the 

majority class (Nallamuthu, 2020). 

Data leakage.  Within machine learning, the impact of data leakage becomes a 

major concern during data preprocessing.  Soni (2019) defined data leakage as the 

sharing of information used in building the model between the training and testing data 

sets.  If data preprocessing occurs before data splitting, it goes against the goal of having 

a testing data set that represents unseen or real-world data for the model to make 

predictions (Goyal, 2021; Soni, 2019).  To split the data, the set.seed() function was used 

for the replication of the data split (James et al., 2013).  In the tidymodel package, the 

initial_split() function was used to split the data into training and testing sets.  The prop 

option in the initial_split() function was set to reserve 60% of the data for the training 

data set and the remaining 40% for the testing data set.  The training() and testing() 

functions within tidymodels, called from the initial_split() result, allow the data splits to 

be saved as objects in the R environment (Kuhn & Wickham, 2020). 

Data preparation.  The tidymodel package's recipe() function was utilized to 

build the preprocessing method on the training data set.  Additionally, the recipe() 

function preserved the methods used to ensure the same processes are applied to the 

testing data set.  The initial step in constructing the recipe() function involved addressing 

any class imbalances resulting from the data splitting (Kuhn & Wickham, 2020; Silge, 

2020). 
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For the retention data set, the step_upsample() function performed random 

upsampling or oversampling of the minority classes, with the default over_ratio setting of 

1 to introduce more instances of the minority classes to equalize their numbers with the 

majority classes.  Similarly, the step_downsample() function conducted random 

downsampling or undersampling of the majority classes, with the default under_ratio 

setting of 1 to reduce the instances of the majority classes to match the minority classes 

(Kuhn & Wickham, 2020; Silge, 2020).  The correction of the imbalance was examined 

through both upsampling and downsampling methods. 

 Variables with missing data were either deleted or imputed.  Only records with 

missing dependent variables were deleted using step_filter(), where the dependent 

variable was processed through the is.na() function.  For missing data in categorical 

variables, step_impute_unknown() were used, while continuous variables with missing 

data were imputed using step_impute_mean(), step_impute_median(), and 

step_impute_knn().  These options allowed for the exploration of the best method for 

handling missing data in the data set.  All predictor numerical values were normalized 

using the step_normalize() function (Kuhn & Wickham, 2020).  According to Kuhn and 

Wickham (2020), this function normalized the data so the mean of the variable is zero, 

and the standard deviation is one.  In other words, it standardized numerical values with 

respect to the variable’s standard deviation and mean to prevent high values from 

exerting undue influence on the estimates (Browne-Anderson, 2016; Kuhn & Wickham, 

2020; Roy, 2020).  To address heterogeneity, step functions used in the recipe were built 

to correct the distribution.  These transformation functions included step_BoxCox(), 

step_YeoJohnson(), and step_log() (Kuhn & Wickham, 2020). 
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 To ensure optimal performance, resampling methods or cross-validation 

techniques were employed.  One of the most common cross-validation techniques was 

the k-fold method.  In this approach, the data was separated into specified equal partitions 

or folds, which were then used to assess the performance of the developed models.  The 

function utilized for cross-validating the training and testing data sets was vfold_cv(), 

with the number of folds set to 10 (Kuhn & Wickham, 2020).  

Summary 

  In this nonexperimental, correlational study, three research questions investigated 

the academic performance of two cohorts of FTFTF students enrolled in RCUs in the 

State of Georgia.  The analysis involved a total of 36 independent variables, 

encompassing student characteristics, precollege attributes, financial situations, academic 

engagement, social engagement, and institutional financial expenditures.  A data science 

approach were employed to examine the relationships and accuracy of each model 

concerning the dependent variables of first-year academic performance, including first-

fall GPA, first-year GPA, and one-year retention status.  The study's analysis was 

conducted using the R software and the tidymodel package. 

 The first research question in this study aimed to assess the predictability of 36 

independent variables on three distinct first-year academic performance measures.  These 

academic performance variables included first-fall GPA, first-year GPA, and one-year 

retention status.  Four models, each tailored to a specific dependent variable, were 

constructed to investigate the influence of input variables on each output variable.  Before 

developing the models, necessary considerations and assumptions were examined.  The 

data underwent a 60/40 partitioning for training and testing data sets, employing a 10-fold 
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cross-validation method.  This cross-validation approach created 10 different data sets to 

enhance the validity of estimates within each model.  The models were developed using 

the training data, and their accuracy was evaluated against the testing data set.  The 

metrics obtained from the testing data set were used to assess the performance of the 

models, addressing the second research question. 

 The second research question employed a data science approach to analyze 

various predictive models, aiming to identify the most accurate model.  For the dependent 

GPA variables, the model accuracy was assessed using metrics such as R2 and RMSE.  

Evaluation of the one-year retention models utilized overall accuracy, sensitivity, 

specificity, F-score, and AUC.  The comparison of accuracy metrics across models 

involved the use of significant tests and visual comparisons. This comprehensive analysis 

aided in determining which model exhibits the highest level of accuracy for the specified 

criteria. 
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Chapter IV 

RESULTS 

The chapter serves a three-fold purpose.  First, the chapter aims to identify 

significant factors for first-year academic performance by examining several factors, such 

as student characteristics, pre-college characteristics, financial situations, major of study, 

and institutional expenditures.  The second purpose is to identify which predictive 

algorithm exhibits the best accuracy amongst those utilized in the study.  Lastly, the 

chapter aims to explore whether ensemble learning methods could enhance the predictive 

power of the algorithms.  The research questions guiding this study are as follows: 

1. Are student characteristics, precollege characteristics (including high school 

curriculum quality), financial situations, major or program of study, and 

institutional financial expenditures significant predictors in first-time, full-time 

freshmen’s academic performance in their first year? 

a.  Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 

program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s first-fall GPA? 

b. Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 
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curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 

program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s first-year GPA? 

c. Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 

program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s one-year retention status? 

2. Does one machine learning algorithm (regression, support vector machine, 

random forest, and extreme gradient boosting) or an ensemble learning algorithm 

produce a higher accuracy based on the evaluation metrics for accuracy in 

examination of first-year academic performance? 

a. Does one machine learning algorithm (linear regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 

metrics of the root mean squared error (RMSE) for first semester GPA? 

b. Does one machine learning algorithm (linear regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 

metrics of the RMSE for first-year GPA? 
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c. Does one machine learning algorithm (logistic regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 

metrics of accuracy, sensitivity, specificity, f measure scores, and AUC 

value for one-year retention status? 

The data utilized for the study were from four different sources.  The primary data 

source originated from the USG, encompassing the Fall 2018 and Fall 2019 FTFTF 

bachelor's degree seeking cohorts from the system's four RCUs.  The second data set 

came from the GaDOE’s website containing information about the CCRPI for 2018 and 

2019.  The third data set came from the Georgia GOSA’s website containing information 

on the end of course's (EOC) subject proficiency levels for 2018 and 2019.  The final data 

set was acquired from the IPEDS data center, which stores institutional expenditures per 

FTE for FY2018 and FY2019.  After processing the four data sets, they were 

consolidated into a single data set for the analysis of the study. 

The chapter contains the results of the data analysis for each research question 

and is comprised of six sections.  The characteristics of the population section are 

comprised of demographic and descriptive statistics of the entire FTFTF population, and 

the population identified to have graduated from a GA public high school.  Data splitting 

and imbalance correction methods are addressed in the second section.  The next section 

contains the critical review of the preliminary considerations and assumptions for 

statistical analysis to ensure the validity and reliability of the statistical inferences 

produced in the findings.  The next two sections encompass the analyses of two research 

questions on the significant factors impacting academic performance—first-fall GPA, 
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first-year GPA, and one-year retention status—and the predictive power of the predictive 

algorithms.  The summary of the results is in the last section. 

Population Characteristics 

GA public high school represented.  The HS curriculum data were collected 

through combining the CCRPI content mastery and readiness rates and EOC subject 

proficiency levels together in one data set.  Table 3 displays the rates of the GA public 

HS.  Moreover, the schools were filtered down to the GA public HS represented in the 

four RCUs within USG.  Of the GA public HS represented in the RCUs for the Fall 2018 

and Fall 2019 FTFTF students, the mean content mastery (M = .639, SD = .185) was 

slightly higher than the overall (M = .600, SD = .222).  Likewise, the readiness scores 

were higher for the students enrolled in an RCU (M = .726, SD = .112) than the overall 

(M = .707, SD = .169).  The difference in the EOC proficiency levels for the four subjects 

ranged between .027 to .030 higher for students enrolled in an RCU.  The English 

proficiency levels (M = .467, SD = .179) were the highest, while mathematics proficiency 

levels (M = .345,  

SD = .198) were the lowest. 

Table 3  
 
Descriptive Statistics on GA Public High Schools  

 
  All GA Public High Schools   Represented in RCUs 

  N M SD   N M SD 

CCRPI               
   Content Mastery 471 .600 .222   398 .639 .185 
   Readiness 497 .707 .169   398 .726 .112 
EOC Proficiency Levels               
   English 464 .439 .205   398 .467 .179 
   Mathematics 459 .318 .210   398 .345 .198 
   Science 454 .391 .208   398 .421 .188 
   Social Studies 453 .406 .206   396 .436 .185 

Note.  CCRPI = college and career ready performance index.  EOC = end of course. 
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Institutional expenditures per FTE.  The IPEDS data center provides data for 

public consumption on information nationwide for postsecondary institutions.  One 

aspect of the data center provides derived variables.  The derived variables utilized in the 

data analysis were the institutional expenditures per FTE for each RCUs within USG.  

The expenditures data is provided by fiscal year, which spans from July 1 of the prior 

year to June 30 of the current year.  In relation to academic terms, fiscal year (FY) 2019 

was for Fall 2018, while FY2020 was for Fall 2019.  Table 4 displays the expenditures 

per FTE by area and institution for each FYs, along with the mean and standard deviation 

for each variable.  The University of West Georgia expended the most for academic 

support  (M = 2,594.00, SD = 157.6).  Valdosta State University expended the most for 

institutional support (M = 2,732.50, SD = 26.16).  For instruction, the University of West 

Georgia expended the most (M = 7,692.50, SD = 340.12).  For research, Georgia 

Southern University expended the most (M = 551.50, SD = 28.99).  Valdosta State 

University expended the most on student support (M = 2,092.50, SD = 229.81). 
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Table 4  
 

Institutional Expenditures per Full-time Equivalency by Institution 

 
Institution Name FY2019 FY2020 M SD 

Georgia Southern University        
   Academic Support  2,255.00  2,265.00  2,260.00  7.071  
   All Other  2,179.00  3,124.00  2,651.50  668.216  
   Institution Support  1,580.00  2,411.00  1,995.50  587.606  
   Instruction  6,671.00  6,628.00  6,649.50  30.406  
   Public Service  111.00  114.00  112.50  2.121  
   Research  572.00  531.00  551.50  28.991  
   Student Services Support  1,586.00  1,546.00  1,566.00  28.284  
Kennesaw State University         
   Academic Support  2,588.00  2,311.00  2,449.50  195.869  
   All Other  2,572.00  3,368.00  2,970.00  562.857  
   Institution Support  1,878.00  2,375.00  2,126.50  351.432  
   Instruction  5,449.00  5,844.00  5,646.50  279.307  
   Public Service  450.00  363.00  406.50  61.518  
   Research  67.00  79.00  73.00  8.485  
   Student Services Support  1,559.00  1,283.00  1,421.00  195.162  
University of West Georgia        
   Academic Support  2,483.00  2,706.00  2,594.50  157.685  
   All Other  1,467.00  2,710.00  2,088.50  878.934  
   Institution Support  2,439.00  3,303.00  2,871.00  610.940  
   Instruction  7,452.00  7,933.00  7,692.50  340.118  
   Public Service  28.00  33.00  30.50  3.536  
   Research  187.00  213.00  200.00  18.385  
  Student Services Support  1,668.00  1,683.00  1,675.50  10.607  
Valdosta State University          
   Academic Support  1,682.00  1,359.00  1,520.50  228.396  
   All Other  1,442.00  4,694.00  3,068.00  2,299.511  
   Institution Support  2,714.00  2,751.00  2,732.50  26.163  
   Instruction  6,845.00  5,315.00  6,080.00  1,081.873  
   Public Service  162.00  158.00  160.00  2.828  
   Research  24.00  23.00  23.50  0.707  
   Student Services Support  2,255.00  1,930.00  2,092.50  229.810  

 
Demographic characteristics.  Demographics of the students enrolled in one of 

the four RCUs who graduated from a GA public HS in 2018 or 2019 are displayed in 

Table 5.  The table displays the information for students in each cohort in addition to the 

total.  For the Fall 2018 cohort, 10,441 students fit the study's profile, and 11,356 students 

fit the profile for the Fall 2019 cohort.  In total, the population consisted of 21,797 

students.  Overall, females represented 55.5% of the population, while their male 
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counterparts represented 44.5%.  Across the four RCUs for the two cohorts, 11,306 

(51.9%) students were identified as White, 6,130 (28.1%) students were identified as 

Black or African American, 2,313 (10.6%) were identified as Hispanic, and the remaining 

2,048 (9.4%) students were underrepresented groups.  For the two cohorts, 13.1% of the 

students were identified as first generational students, while the remaining 86.9% 

students were non-first generational students.  A total of 11,606 (53.2%) students 

graduated from a GA public HS classified in a suburban location, as identified by the 

National Center for Education Statistics.  Approximately, 27.0% or 5,887 students 

graduated from a rural public HS.  In comparison, 11.3% of the students graduated from a 

public HS in a city, and 8.5% of the students from a public HS in a town. 

Table 5  

 

Demographic Characteristics of Students in Fall 2018 and Fall 2019 Cohorts 

 

  
Fall 2018   Fall 2019   Total 

N %   N %   N % 

Gender                 
   Female 5,752  55.1%   6,342  55.8%   12,094  55.5% 
   Male 4,689  44.9%   5,014  44.2%   9,703  44.5% 
Race/Ethnicity                 
   Black or African American 2,934  28.1%   3,196  30.6%   6,130  28.1% 
   Hispanic 1,014  9.7%   1,299  12.4%   2,313  10.6% 
   Other 936  9.0%   1,112  10.7%   2,048  9.4% 
   White 5,557  53.2%   5,749  55.1%   11,306  51.9% 
First Generation Status                 
   No 9,106  87.2%   9,831  86.6%   18,937  86.9% 
   Yes 1,335  12.8%   1,525  13.4%   2,860  13.1% 
High School Locale             
   City 1,168  11.2%   1,293  11.4%   2,461  11.3% 
   Rural 2,926  28.0%   2,961  26.1%   5,887  27.0% 
   Suburb 5,448  52.2%   6,158  54.2%   11,606  53.2% 
   Town 899  8.6%   944  8.3%   1,843  8.5% 
Received Zell Miller                 
   No 9,367  89.7%   10,113  89.1%   19,480  89.4% 
   Yes 1,074  10.3%   1,243  10.9%   2,317  10.6% 

Note.  Interdisciplinary studies also contain students who were undeclared majors as their 
CIP codes are classified in the interdisciplinary studies classification. 
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Table 5 (continued) 

Demographic Characteristics of Students in Fall 2018 and Fall 2019 Cohorts 

 

  
Fall 2018   Fall 2019   Total 

N %   N %   N % 

One-year Retention Status               
   Retained 8,052  77.1%   8,860  78.0%   16,912  77.6% 
   Not Retained 2,389  22.9%   2,496  22.0%   4,885  22.4% 

Major Grouping               

   Business 1,427  13.7%   1,718  15.1%   3,145  14.4% 
   Education 511  4.9%   550  4.8%   1,061  4.9% 
   Fine Arts 835  8.0%     969  8.5%   1,804  8.3% 
   Interdisciplinary Studies  1,470  14.1%   1,068  9.4%   2,538  11.6% 
   Healthcare 1,547  14.8%   1,846  16.3%   3,393  15.6% 
   Human Services 167  1.6%   153  1.3%   320  1.5% 
   Humanities 218  2.1%   219  1.9%   437  2.0% 
   Social Sciences 922  8.8%   1,182  10.4%   2,104  9.7% 
   STEM 3,344  32.0%   3,651  32.2%   6,995  32.1% 

Note.  Interdisciplinary studies also contain students who were undeclared majors as their 
CIP codes are classified in the interdisciplinary studies classification. 
 

Around 10.6% of students who graduated from a GA public HS were awarded the 

second tier of the HOPE scholarship, known as the Zell Miller Scholarship.  From the 

two cohorts, 77.6% of students were retained for the next fall semester, while 22.4% of 

students did not retain.  The STEM majors, at 32.1% of students, were the most popular 

major grouping from both cohorts, with healthcare (15.6% of students) and business 

(14.4% of students) being the second and third popular major grouping.  Human services 

(1.5% of students) and humanities (2.0% of students) were the two least popular majors. 

Figure 3 illustrates the characteristics of the students' reported satisfaction of the 

college preparatory curriculum (CPC) for English, foreign language, mathematics, 

science, and social science.  Of the CPC variables, a total of 20,355 (93.4%) students 

satisfied the English requirements, 20,939 (96.1%) students satisfied the foreign language 

requirements, 20,385 (93.5%) students satisfied the mathematics requirements, 20,595 

(94.5%) satisfied the science requirements, and 20,887 (95.8%) students satisfied the 
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social science requirements.  A small percentage of students were reported with a 

deficiency in English (3.3%), foreign language (0.6%), mathematics (3.1%), science 

(2.2%), and social studies (0.8%). 

 
Figure 3. Bar chart of college preparatory curriculum satisfaction.  This bar chart displays 
the number of students who did and did not satisfy the admissions requirements.  
Satisfied at Inst. = satisfied at institution.  Satisfied in HS = satisfied in high school. 
 

Descriptive statistics.  Table 6 displays the initial descriptive statistics of the 

continuous independent and the two dependent GPA variables for Fall 2018 and Fall 2019 

cohorts who graduated from a GA public HS.  The table displays the number of 

observations, mean, standard deviation, median, and range.  The initial skewness and 

kurtosis values are also displayed in the table.  For the pre-college characteristics, the 

mean HS GPA was 3.34 (SD = 0.42), and the mean admissions test score was 1126.75 

(SD = 116.54) for the two cohorts.  On average, students earned 9.35 AP hours (SD = 
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7.89), 5.70 CLEP hours (SD = 4.33), 9.08 IB hours (SD = 7.51), and 4.38 other advanced 

standing hours (SD = 2.86). 

Table 6  

 

Descriptive Statistics of Continuous Independent and Dependent Variables 

 
Variable N M SD Mdn 

GPA Dependent Variables 
   First-Fall GPA 21,782           2.80           1.02  3.05  
   First-Year GPA 21,709           2.82           0.97  3.06  
Pre-college Characteristics       
   HS GPA 21,678           3.34           0.42  3.36  
   Test Scores 21,761  1,126.75  116.54  1,110.00  
   AP Hours 4,843           9.35           7.89  6.00  
   CLEP Hours 63           5.70           4.33  4.00  
   IB Hours 212           9.08           7.51  6.00  
   Other Hours 52           4.38           2.86  3.00  
Financial Situations 
   EFC 20,727  20,724.57  47,643.25  7,451.00  
   Federal Subsidized Loans 9,048 1,681.39  278.07  1,732.00  
   Federal Unsubsidized Loans 10,251  1,644.55  896.64  990.00  
   HOPE 16,612  2,367.02  235.11  2,430.00  
   Other Loans 1,162  4,797.76  2,523.51  3,950.00  
   PELL Grant 9,060  2,520.88  806.01  3,048.00  

Note. HS = high school. GPA = grade point average. EFC = expected family contribution. 
 
Table 6 (continued) 

Descriptive Statistics of Continuous Independent and Dependent Variables 

Variable Min Max Skew Kurtosis 

GPA Dependent Variables 
   First-fall GPA 0.00              4.00  -1.07        0.54  
   First-year GPA 0.00              4.00  -1.13        0.76  
Pre-college Characteristics         
   HS GPA 1.41 4.00 -0.34 2.40 
   Test Scores 630.00 1,590.00 0.53 3.08 
   AP Hours 0.00 57.00 1.85 7.25 
   CLEP Hours 0.00 24.00 1.58 6.46 
   IB Hours 0.00 34.00 1.07 3.56 
   Other Hours 0.00 12.00 1.51 4.53 
Financial Situations 
   EFC 0.00    999,999.00         10.20     166.09  
   Federal Subsidized Loans        3.00         3,464.00  -2.66      18.98  
   Federal Unsubsidized Loans      28.00         5,938.00          0.80         2.41  
   HOPE Scholarship      86.84         2,781.00  -2.07      15.06  
   Other Loans    197.00       14,352.00          0.69         2.99  
   PELL Grant 0.00        3,098.00  -1.28        3.33  

Note. HS = high school. GPA = grade point average. EFC = expected family contribution. 
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For the two cohorts, the mean HOPE scholarship awarded was $2,367.02 (SD = 

235.11), and the mean PELL Grant awarded wase $2,520.88 (SD = 806.01).  The average 

amount of loans taken out was $1,681.39 (SD = 278.07) for federal subsidized loans, 

$1,644.55 (SD = 896.64) for federal unsubsidized loans, and $4,797.76 (SD = 2,523.51) 

for all other loans.  For the calculated expected family contribution to the student’s 

education, the mean amount was $20,724.57 (SD = 47,643.25). 

Data Splitting and Imbalance 

 Prior to the development of the predictive algorithms, the data set was partitioned 

into two data sets.  The initial set, known as the training data set, encompassed 60% of 

the data, while the remaining 40% constituted the testing data set.  Both sets underwent a 

10-fold cross-validation process, facilitated by the set.seed() function for the replication 

of the results.  The cross-validation data sets were employed to evaluate the predictive 

performance of the algorithms.  The optimal predictive algorithms were derived using the 

training data sets.  After tuning the algorithms, the predictive performance was assessed 

in both cross-validation of both the training and testing data sets.  The mean accuracy 

metric was analyzed to measure predictive power, enabling the selection of the most 

effective model. 

For the one-year retention dependent variable, additional sampling techniques 

were utilized.  Downsampling and upsampling techniques were utilized to address data 

imbalances.  These methods were attempts in improving the model's predictive power, 

given the disparity in data distribution between the majority and minority classes.  

Downsampling involved reducing the instances of the majority class, whereas 

upsampling increased the occurrences of the minority class.  These approaches were 
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aimed in attempts to counteract biases of the models from defaulting to the majority 

class, to ensure a more balanced and accurate prediction. 

Preliminary Considerations and Assumptions 

 Preliminary considerations and assumptions, which may vary across different 

models, were rigorously examined before the algorithm development process.  These 

considerations and assumptions were reviewed on the training data set to prevent any 

data leakage from the testing data set.  Violations of these assumptions were identified 

and rectified during the data cleanup process.  The training data set consisted of 13,078 

observations.  Addressing any consideration and assumption violations is imperative for 

producing meaningful research results, as it allows for the drawing of valid conclusions 

about the real-world phenomena (Field et al., 2012; Garson, 2012).  To ensure 

consistency in handling and rectifying data consideration and assumption violations, the 

recipe() function provided the systematic means to apply the data cleanup process to both 

the training and testing data sets. 

Considerations.  Two preliminary considerations were reviewed.  The first 

consideration was the missing data, and the second was the review for outliers. 

 Missing data.  Before the HS curriculum data was joined to the data set collected 

from USG, the missing data for the HS were reviewed on the CCRPI and EOC variables 

used in the study.  Figure 4 illustrates the number of missing observations within the GA 

public HS represented in the four RCUs.  Specifically, for the CCRPI variables, both 

content mastery and readiness variables were each missing seven observations.  In the 

case of EOC subjects’ proficiency levels, English had eight, mathematics had nine, 

science had seven, and social studies had nine missing observations. 
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Figure 4. HS curriculum quality variables with missing observations.  The bar chart 
illustrates the number of missing observations within the HS curriculum variables.  
CCRPI = college and career ready performance index. EOC = end-of-course. 
 
 Missing HS curriculum observations were imputed before being integrated into 

the complete data set.  This approach was selected to prevent bias or distortion within the 

imputation process, ensuring no duplication of the HS influencing the imputation method.  

In Table 7, the impact of three imputation methods—zero, mean, and median—on HS 

curriculum data summary statistics is presented.  Among these methods, zero imputation 

had the most significant effect on the distribution.  Mean imputation did not alter the 

minimum, mean, or maximum values; however, it influenced the first quartile, median, 

and third quartile.  Although minor noticeable differences were observed in the first and 

third quartiles, as well as the mean, for the median imputation, its minimal impact on the 

distribution led to its utilization to impute the missing data. 
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Table 7  

 

Summary Statistics of HS Curriculum Data with Zero, Mean, and Median Imputations 

 
  Min Q1 Mdn M Q3 Max 

Before Imputation             
   Content Mastery 0.073 0.512 0.633 0.639 0.770 1.000 
   Readiness 0.293 0.664 0.732 0.726 0.800 0.994 
   English 0.000 0.344 0.447 0.467 0.578 0.995 
   Mathematics 0.000 0.199 0.316 0.345 0.463 0.997 
   Science 0.000 0.285 0.406 0.421 0.543 1.000 
   Social Studies 0.011 0.308 0.421 0.436 0.571 0.989 
Zero Imputation             
   Content Mastery 0.000 0.508 0.632 0.633 0.765 1.000 
   Readiness 0.000 0.660 0.731 0.720 0.799 0.994 
   English 0.000 0.338 0.443 0.463 0.578 0.995 
   Mathematics 0.000 0.197 0.314 0.341 0.461 0.997 
   Science 0.000 0.283 0.402 0.417 0.539 1.000 
   Social Studies 0.000 0.306 0.420 0.431 0.571 0.989 
Mean Imputation             
   Content Mastery 0.073 0.513 0.635 0.639 0.765 1.000 
   Readiness 0.293 0.664 0.731 0.726 0.799 0.994 
   English 0.000 0.348 0.450 0.467 0.578 0.995 
   Mathematics 0.000 0.200 0.320 0.345 0.461 0.997 
   Science 0.000 0.288 0.407 0.421 0.539 1.000 
   Social Studies 0.011 0.309 0.425 0.436 0.571 0.989 
Median Imputation             
   Content Mastery 0.073 0.513 0.633 0.639 0.765 1.000 
   Readiness 0.293 0.664 0.732 0.726 0.799 0.994 
   English 0.000 0.348 0.447 0.467 0.579 0.995 
   Mathematics 0.000 0.200 0.316 0.344 0.461 0.997 
   Science 0.000 0.286 0.406 0.421 0.539 1.000 
   Social Studies 0.011 0.309 0.421 0.436 0.571 0.989 

 
After combining the HS curriculum data into the data set, the remaining missing 

observations were analyzed.  Figure 5 provides a visual representation of the number of 

missing data points by variable.  Among the dependent variables, seven observations 

were missing for first-fall GPA, and 62 observations were missing for first-year GPA.  

Since these are dependent variables, these records would be removed from both the 

training and testing data sets.  Additionally, the advanced standing hours variables 

exhibited a substantial number of missing observations.  Specifically, AP hours had 

10,188, CLEP hours had 13,034, IB hours had 12,953, and other hours had 13,054 
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missing observations.  Given these variables represent the number of earned advanced 

standing hours before matriculating into the institution, the selection of zero imputation 

was the most suitable approach.  This decision was influenced by the data collection 

process employed by USG, which only collects records with specific identifying codes 

for each earned advanced hour (USG, 2023). 

 
Figure 5. Distribution of missing variables within training data set.  The bar chart 
illustrates the number of missing observations within the training data set.  CCRPI = 
college and career ready performance index. EOC = end-of-course.  EFC = expected 
family contribution.  Federal Sub. Loans = federal subsidized loans. Federal Unsub. 
Loans = federal unsubsidized loans. GPA = grade point average. HS = high school. 
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Each of the five CPC variables exhibited 231 missing observations.  These 

missing data points were imputed with a new variable to indicate the observation was 

unknown.  The Zell Miller indicator had 3,112 observations missing an indicator.  These 

observations were coded to indicate the students did not receive the second tier of the GA 

HOPE scholarship as the data collection submitted to USG was like the advanced 

standing hours (USG, 2023).  The GA HOPE scholarship (3,112 observations), PELL 

Grant (7,636 observations), federal subsidized loans (7,622 observations), federal 

unsubsidized loans (6,937 observations), and other loans (12,398 observations) variables 

exhibited missing observations.  The financial aid missing observations were imputed 

with a zero as it indicated the student did not receive any dollars of these types of aid 

based on the USG data collection process (USG, 2021e).   

The admissions test scores (24 observations), HS GPA (74 observations), and 

expected family contribution (639 observations) underwent an examination of data 

imputation methods for the missing observations, even though the USG data collection 

process was like the prior variables.  These three variables were subject to three different 

imputation methods: mean, median, and k-nearest neighbor (KNN).  The KNN 

imputation neighbors was set 10.  Table 8 displays the summary of the statistics derived 

from the imputation methods for admissions test scores, HS GPA, and expected family 

contributions.  Comparing the impact of the three imputation methods on admissions test 

scores and HS GPA, no significant alterations to the variable distribution were detectable.  

The unnoticeable impact was due to the small number of missing observations for the 

variables.  Conversely, the three imputation methods exhibited a noticeable impact on the 

EFC’s distribution.  To determine the most suitable imputation method, skewness and 
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kurtosis values for each approach were examined.  The KNN method exhibited skewness 

(10.09) and kurtosis (171.47) values closely resembled the distribution before any 

imputation (skewness = 9.99; kurtosis = 166.20) and was selected for imputation for the 

variable.  For consistency, the KNN imputation method was also selected in imputing 

missing values for HS GPA and admissions test scores variables. 

Table 8  

 

Summary Statistics of HS Curriculum Data with Mean, Median, and KNN Imputations 

 

  
Imputation Methods 

Before Mean Median KNN 

Admissions Test Scores         
   Min 630 630 630 630 
   Q1 1040 1040 1040 1040 
   Mdn 1110 1110 1110 1110 
   M 1127 1127 1127 1127 
   Q3 1210 1210 1210 1210 
   Max 1550 1550 1550 1550 
   Skewness 0.52 0.52 0.53 0.53 
   Kurtosis 0.06 0.07 0.07 0.07 
HS GPA         
   Min 1.43 1.43 1.43 1.43 
   Q1 3.04 3.04 3.04 3.04 
   Mdn 3.36 3.36 3.36 3.36 
   M 3.34 3.34 3.34 3.34 
   Q3 3.69 3.69 3.69 3.69 
   Max 4.00 4.00 4.00 4.00 
   Skewness -0.32 -0.32 -0.32 -0.32 
   Kurtosis -0.65 -0.63 -0.63 -0.64 
EFC         
   Min             0.00               0.00               0.00             0.00    
   Q1 69.50  246.20  246.20  246.20  
   Mdn 7,475.00  8,738.50  7,475.00  8,724.50  
   M 20,152.40  20,152.40  19,532.90  20,754.90  
   Q3 24,578.50  23,134.50  23,134.50  26,473.60  
   Max 999,999.00  999,999.00  999,999.00  999,999.00  
   Skewness 9.99  10.25  10.23  10.09  
   Kurtosis 166.20  174.90  174.06  171.47  

Note. HS = high school. GPA = grade point average. EFC = expected family contribution. 
KNN = k-nearest neighbor. 
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Outliers.  Univariate outliers were identified by examining histograms and 

density curves of the z-scores for each variable.  Analyzing the graphs of the z-scores 

facilitated the easier detection of outliers, especially given the number of observations.  

Figure 6 illustrates the distribution of z-scores for each continuous variable.  Upon 

examination, noticeable outliers were observed in variables such as English proficiency 

levels, federal subsidized loans, GA HOPE scholarship dollars, institutional support 

expenditures, instruction expenditures, mathematics proficiency levels, PELL grant 

dollars, public service expenditures, research expenditures, science proficiency levels, 

and social studies proficiency levels.  While the conventional thresholds for identifying 

outliers are typically set at -3 and +3 z-scores, adjustments are allowed based on the 

specific variable, as suggested by Merler and Vannatta (2002). 
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Figure 6. Histograms and density curves of continuous variables’ z-scores. These 
histograms and density curves illustrate the distribution of the z-scores for outlier 
detection.  The graphs also include the conventional outlier thresholds of -3 and +3.  
CCRPI = college and career ready performance index. EOC = end-of-course.  EFC = 
expected family contribution.  Federal Sub. Loans = federal subsidized loans. Federal 
Unsub. Loans = federal unsubsidized loans. GPA = grade point average. HS = high 
school. 
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 Grubbs’ statistical test for outliers was conducted to identify each variable's 

outliers, as detailed in Table 9.  Among the pre-college characteristics, the four advanced 

standing hours were found to be significant (AP hours, G = 9.846, p < .001; CLEP hours, 

G = 58.856, p < .001; IB hours, G = 25.537, p < .001; and other hours, G = 56.771, p < 

.001).  Upon reviewing the flagged values for outliers, values were determined to be 

acceptable, as students had earned the hours before matriculating into the institution.  

Two financial situation variables were found to be significant, indicating potential 

outliers.  Expected family contribution was significant, G = 23.150, p < .001, with values 

of 0 and 999,999 flagged as outliers.  The values were deemed acceptable as they fell 

within the expected ranges resulting from the calculations (The Scholarship System, 

2023).  Similarly, the other loans variable was found to be significant, G = 11.923, p < 

.001, with 0 and 14,352 flagged as outliers.  These values were considered acceptable, 

reflecting scenarios where some students do not need to take out any dollars in other 

loans, while others may need $14,352 to cover the full cost of attending an institution.  

No institutional expenditure variables were identified as having outliers by Grubb’s test. 
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Table 9  

 

Grubb’s Test for Univariate Outliers 

 

  

       Outliers 

G U p  Value 1 Value 2 

Pre-college Characteristics            
Admissions Test Scores 7.898 .998 1.000  630 1550 
HS GPA 6.113 .998 1.000  1.43 4.00 
AP Hours 9.846 .993 < .001 *** 0 54 
CLEP Hours 58.856 .736 < .001 *** 0 24 
IB Hours 25.537 .950 < .001 *** 0 29 
Other Hours 56.771 .754 < .001 *** 0 12 
CCRPI Content Mastery 5.129 .999 1.000  0.129  1.000  
CCRPI Readiness 7.751 .997 1.000  0.293  0.994  
EOC English 5.333 .999 1.000  0.084  0.995  
EOC Math 4.904 .999 1.000  0.004  0.997  
EOC Science 5.571 .999 1.000  0.000    1.000  
EOC Social Studies 5.601 .999 1.000  0.020  0.989  

Financial Situations            
EFC 23.150 .961 < .001 *** 0    999,999  
GA HOPE Scholarship 2.701 1.000 1.000  0    2,781  
PELL Grant 2.300 1.000 1.000  0 3,098  
Federal Sub. Loans 4.085 .999 1.000  0 3,464  

Federal Unsub. Loans 5.772 .998 1.000  0 5,938  

Other Loans 11.923 .990 < .001 *** 0 14,352  
Institutional Expenditures            

Academic Support 4.434 .999 1.000  1,359  2,706  
All Other 4.275 .999 1.000  1,442  4,694  
Institutional Support 3.770 .999 1.000  1,580  3,303  
Instruction 3.412 1.000 1.000  5,315  7,933  
Public Service 2.701 1.000 1.000  28  450  
Research 2.530 1.000 1.000  23  572  
Student Support 4.201 1.000 1.000  1,283  2,255  

Note.  *** p < .001.  ** p < .01.  * p < .05.  CCRPI = college and career ready 
performance index. EOC = end-of-course.  EFC = expected family contribution.  Federal 
Sub. Loans = federal subsidized loans.  Federal Unsub. Loans = federal unsubsidized 
loans. GPA = grade point average.  HS = high school. 
 

To identify multivariate outliers, a Mahalanobis test was conducted on the 

continuous variables.  Figure 5 depicts the distribution of row level p-values, revealing 

4,326 (33.1%) observations were identified as having multivariate outliers.  Upon careful 

examination, the observations were determined to acceptable value ranges.  

Consequently, no elimination or capping procedures were deemed necessary. 
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Figure 7. Histogram and density curve of the Mahalanobis test of the continuous 
independent variables observation’s p-values. 
 

Assumptions.  Four fundamental assumptions were reviewed to ensure the 

production meaningful research outcomes to establish reliability and validity of the 

findings (Field et al., 2012; Garson, 2012).  Like the considerations, the assumptions 

were examined using the training data set to prevent any data leakage.  The examined 

assumptions encompassed observation independence, linearity and collinearity, univariate 

and multivariate normality, and homogeneity of variance. 

 Observation independence.  Observation independence implies no duplicated 

records existed within the data file.  To validate this, unique identifiers for each 

institution and cohort year were reviewed.  The analysis revealed no student records were 

duplicated.  This finding aligns with the definition of FTFTF, where a student is 

exclusively classified as a first-time, full-time freshman at the initial matriculation into 

any institution.  Consequently, students were not duplicated across institutions within the 

file, ensuring the integrity of the data set. 
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Linearity.  A correlation analysis was conducted on the training data set to 

examine the linear relationship between the independent and three dependent variables 

(See Appendix F).  For the retention dependent variable, 18 independent variables were 

significant.  While the relationship was very weak, 12 variables have a negative 

relationship and 6 have a positive relationship (GA HOPE Scholarship, r(13,078) = -.183, 

p < .001; HS GPA, r(13,078) = -.165, p < .001; gender, r(13,078) = .080, p < .001; 

instruction expenditures, r(13,078) = .057, p < .001; institutional support expenditures, 

r(13,078) = .054, p < .001; student services expenditures, r(13,078) = .054, p < .001; 

public service expenditures, r(13,078) = -.052, p < .001; federal subsidized loans, 

r(13,078) = .045, p < .001; Zell Miller, r(13,078) = -.045, p < .001; content mastery, 

r(13,078) = -.040, p = .001; PELL grant, r(13,078) = .037, p = .006; science proficiency 

levels, r(13,078) = -.037, p = .007; all other expenditures, r(13,078) = -.036, p =.010; 

readiness, r(13,078) = -.035, p =.016; social studies proficiency levels, r(13,078) = -.034, 

p = .025; English proficiency levels, r(13,078) = -.033, p = .039; and admissions test 

scores, r(13,078) = -.031, p < .001). 

The first-fall GPA dependent variable exhibited 29 significant relationships with 

the independent variables.  In the student characteristics, gender, r(13,078) = -.149, p < 

.001, exhibited a slight negative relationship, race and ethnicity, r(13,078) = -.019, p = 

0.32, exhibited a very slight negative relationship, and first generation status, r(13,078) = 

-.032, p < .001, exhibited a very slight negative relationship with the first-fall GPA.  The 

students' HS GPA, r(13,078) = .488, p < .001, exhibited a moderate positive relationship 

on the first-fall GPA, while the admissions test scores, r(13,078) = .257, p < .001, a small 

positive relationship.  The number of advanced standing AP hours, r(13,078) = .219, p < 
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.001, had a small positive relationship with the earned GPA, while the IB hours 

(r(13,078) = .039, p < .001), and CLEP hours (r(13,078) = .033, p < .001), had a very 

slight positive relationship.  Of the CPC, social science, r(13,078) = .020, p = .025, 

exhibited a very slight positive relationship with the fall GPA.  Of the graduating HS 

CCRPI scores, both the content mastery (r(13,078) = .114, p < .001), and the readiness 

(r(13,078) = .096, p < .001), scores exhibited a slight positive relationship on the fall 

GPA.  The four EOC subject proficiency levels had slight relationships with the fall GPA.  

All proficiency levels but science had a positive relationship (social studies proficiency 

levels, r(13,078) = .113, p < .001; mathematics proficiency levels, r(13,078) = .109, p < 

.001; science proficiency levels, r(13,078) = -.102, p < .001; and English proficiency 

levels, r(13,078) = .100, p < .001).   

Students who were awarded GA HOPE scholarship dollars, r(13,078) = .430, p < 

.001, had a moderate positive relationship, and those who earned the Zell Miller, 

r(13,078) = .281, p < .001, had a small positive relationship on the first-fall GPA.  The 

other financial situation variables had a slight negative relationship on the first-fall GPA 

(federal subsidized loans, r(13,078) = -.135, p < .001; federal unsubsidized loans, 

r(13,078) = -.101, p < .001; PELL grant, r(13,078) = -.097, p < .001; and other loans, 

r(13,078) = -.066, p < .001).  Academic support expenditures (r(13,078) = .061, p < 

.001), all other expenditures (r(13,078) = .035, p < .001), and public service expenditures 

(r(13,078) = .122, p < .001) had slight positive relationships on the first-fall GPA, while 

institutional support expenditures (r(13,078) = -.046, p < .001), instruction expenditures 

(r(13,078) = -.102, p < .001), research expenditures (r(13,078) = -.065, p < .001), and 
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student services expenditures (r(13,078) = -.061, p < .001) had slight negative 

relationships. 

For the first-year GPA, only 28 independent variables were found to have 

significant relationships with the dependent variable.  Gender (r(13,078) = -.163, p < 

.001), race and ethnicity (r(13,078) = -.022, p = .011) and first generation status 

(r(13,078) = -.039, p < .001) were the only three student characteristics variables with a 

significant correlational relationship on the first-year GPA.  These variables had a slight 

negative relationship with the dependent variable.  Students HS GPA (r(13,078) = .507, p 

< .001) and admissions test scores (r(13,078) = .254, p < .001) were significant.  HS 

GPA exhibited a solid, moderate positive relationship to the first-year GPA and was the 

variable with the highest correlational strength on the dependent variable.  Admissions 

test scores also had a low positive relationship with the dependent variable.  In examining 

students who enter in with advanced standing hours, the number of AP hours (r(13,078) = 

.215, p < .001), CLEP hours (r(13,078) = .033, p < .001), and IB hours (r(13,078) = .040, 

p < .001), were found to be significant.  The number of AP hours exhibited a low positive 

relationship, while CLEP and IB hours had slight positive relationships.  Examining the 

HS Curriculum scores, both the CCRPI content mastery (r(13,078) = .120, p < .001), and 

readiness (r(13,078) = .102, p < .001), scores had a slight positive relationship.  All four 

subject areas in the EOC proficiency levels were found to have a slight positive 

relationship (English proficiency levels, r(13,078) = .110, p < .001; mathematics 

proficiency levels, r(13,078) = .114, p < .001; social studies proficiency levels, r(13,078) 

=.114, p < .001; and science proficiency levels, r(13,078) = .108, p < .001). 
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Of the financial situations, the GA HOPE scholarship exhibited the highest 

correlation with the first-year GPA, r(13,078) = .452, p < .001.  The relationship is a 

moderately positive one.  The Zell Miller indicator, r(13,078) = .285, p < .001, was found 

to have a slight positive significant relationship with the dependent variable.  The 

expected family contribution, r(13,078) = .070, p < .001, had a slight positive 

relationship.  The remaining financial situation variables exhibited slight negative 

relationships with the dependent variable (PELL Grant, r(13,078) = -.109, p < .001; 

federal subsidized loans, r(13,078) = -.148, p < .001; federal unsubsidized loans, 

r(13,078) = -.101, p < .001; and other loans, r(13,078) = -.061, p < .001).  Of the seven 

expenditure variables, three exhibited a significant slight positive relationship.  The 

remaining four had slight negative relationships (academic support expenditures,  

r(13,078) = .027, p = .002, all other expenditures, r(13,078) = .089, p < .001; public 

service expenditures, r(13,078) =.106, p < .001; institutional support expenditures, 

r(13,078) = -.021, p = .019; research expenditures, r(13,078) = -.042, p < .001; student 

services expenditures, r(13,078) = -.084, p < .001; and instruction expenditures, 

r(13,078) = -.105, p < .001). 

In a review of the correlation matrix, several independent variables exhibited 

strong correlations amongst each other.  These correlating independent variables were 

identified as having potential multicollinearity amongst the variables.  These three areas 

were the CPC variables, the CCRPI and EOC variables, and the institutional expenditures 

variables.  Results of the VIF analysis of the independent variables on the three 

dependent variables was conducted (See Appendix G).  None of the student 

characteristics, financial situations, and major group variables were above the VIF 
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thresholds of five or ten.  In the pre-college characteristics, CPC English (VIF = 44.737), 

CPC foreign language (VIF =24.689), CPC mathematics (VIF = 41.182), CPC science 

(VIF = 20.702), CPC social sciences (VIF = 28.274), content mastery (VIF = 33.242), 

English proficiency levels (VIF = 13.956), mathematics proficiency levels (VIF = 9.207), 

science proficiency levels (VIF = 8.408) and social studies proficiency levels (VIF = 

9.648) were above the thresholds.  Of the institutional expenditures, all other 

expenditures (VIF = 19.205), institutional support (VIF = 20.543), instruction (VIF = 

65.942), public service (VIF = 28.914), research (VIF = 7.9934), and student support 

(VIF = 5.203) were above the thresholds.  These 16 independent variables exhibited 

multicollinearity within the training data set. 

With the variables identified exhibiting multicollinearity in the data set, methods 

were derived to eliminate or lessen the effect.  For the five CPC variables, the 

observations were recoded to zero for unsatisfied and one for satisfied, which the 

variables were added together to produce a single variable with values ranging from zero 

to five.  The CCRPI content mastery and readiness scores were averaged together.  Since 

EOC subject areas are components of the CCRPI calculations, the difference between the 

EOC four subject areas proficiency levels and the content mastery and readiness mean 

were calculated.  Academic and institutional support were added together for the 

institutional expenditures, and likewise for public service and research factors.   

 After data manipulation to remove multicollinearity, the Pearson’s correlation 

analysis was conducted on the revised data set (See Appendix H).  For the one-year 

retention variable, 15 variables were found to be significant with 7 exhibited a weak 

positive correlation and 8 exhibited a weak negative correlation (GA HOPE Scholarship, 
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r(13,078) = -.183, p < .001; HS GPA, r(13,078) = -.165, p < .001; gender, r(13,078) = 

.080, p < .001; public service and research expenditures, r(13,078) = -.071, p < .001; 

instruction expenditures, r(13,078) = .057, p < .001; student services expenditures, 

r(13,078) = .054, p < .001; expected family contribution, r(13,078) = -.043, p < .001; 

content mastery and readiness mean, r(13,078) = -.040, p < .001; academic and 

institutional support expenditures, r(13,078) = .039, p < .001; federal subsidized loans, 

r(13,078) = .045, p < .001; Zell Mill indicator, r(13,078) = -.045, p < .001; admissions 

test scores, r(13,078) = -.031, p < .001; PELL grant, r(13,078) = .037, p = .005; all other 

expenditures, r(13,078) = -.036, p = .008; and science proficiency levels difference from 

content mastery and readiness mean, r(13,078) = -.020, p = .019). 

A total of 24 independent variables were found to have a significant correlation 

with the first-fall GPA dependent variable.  HS GPA (r(13,078) = .488, p < .001) and GA 

HOPE scholarship (r(13,078) = .430, p < .001) were both weak positive correlations and 

were the two highest independent variables with significant correlations to the first-fall 

GPA.  The remaining significant independent variables exhibited a significant but barely 

noticeable correlation to the first-fall GPA (Zell Miller indicator, r(13,078) = .281, p < 

.001; admissions test scores, r(13,078) = .257, p < .001; AP hours, r(13,078) = .219, p < 

.001; gender, r(13,078) = -.149, p < .001; federal subsidized loans, r(13,078) = -.135, p < 

.001; content mastery and readiness mean, r(13,078) = .111, p < .001; instruction 

expenditures, r(13,078) = -.102, p < .001; federal unsubsidized loans, r(13,078) = -.101, p 

< .001; PELL grant, r(13,078) = -.097, p < .001; math proficiency levels difference from 

the content mastery and readiness mean, r(13,078) = .083, p < .001; social studies 

proficiency levels difference from the content mastery and readiness mean, r(13,078) = 
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.074, p < .001; other loans, r(13,078) = -.066, p < .001; student services support 

expenditures, r(13,078) = -.061, p < .001; expected family contribution, r(13,078) = .055, 

p < .001; science proficiency levels difference from the content mastery and readiness 

mean, r(13,078) = .052, p < .001; English proficiency levels difference from the content 

mastery and readiness mean, r(13,078) = .047, p < .001; IB hours, r(13,078) = .039,  

p < .001; all other expenditures, r(13,078) = .035, p < .001; CLEP hours, r(13,078) = 

.033, p < .001; first generation status, r(13,078) = -.032, p < .001; public service and 

research expenditures, r(13,078) = .029, p < .001, and race and ethnicity, r(13,078) = -

.019, p = .032).   

The first-year GPA dependent variable had 24 significant correlations with 15 

positive correlations and nine negative correlations.  The HS GPA (r(13,078) = .507, p < 

.001) variable exhibited a moderate positive correlation and was the strongest 

independent variable.  The second strongest variable was the GA HOPE Scholarship 

(r(13,078) = .452, p < .001).  The remaining 21 variables were found to be significant, 

but exhibited weak correlations to the dependent variable (Zell Miller indicator, r(13,078) 

= .285, p < .001; admissions test scores, r(13,078) = .254, p < .001; AP hours, r(13,078) 

= .215, p < .001; gender, r(13,078) = -.163, p < .001; federal subsidized loans, r(13,078) 

= -.148, p < .001; content mastery and readiness mean, r(13,078) = .117, p < .001; PELL 

grant, r(13,078) = -.109, p < .001; instruction expenditures, r(13,078) = -.105, p < .001; 

federal unsubsidized loans, r(13,078) = -.101, p < .001; all other expenditures, r(13,078) 

= .089, p < .001; math proficiency levels difference from the content mastery and 

readiness mean, r(13,078) = .085, p < .001; student service support expenditures, 

r(13,078) = -.084, p < .001; expected family contribution, r(13,078) = .07,  
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p < .001; social studies proficiency levels difference from the content mastery and 

readiness mean, r(13,078) = .067, p < .001; English proficiency levels difference from the 

content mastery and readiness mean, r(13,078) = .062, p < .001; other loans, r(13,078) = 

-.061, p < .001; science proficiency levels difference from the content mastery and 

readiness mean, r(13,078) = .057, p < .001; public service and research expenditures, 

r(13,078) = .044, p < .001; IB hours, r(13,078) = .04, p < .001; first generation status, 

r(13,078) = -.039, p < .001; and CLEP hours, r(13,078) = .033, p < .001; and race and 

ethnicity, r(13,078) = -.022, p = .011).  Additionally, the VIF analysis for 

multicollinearity after data manipulation resulted in all independent variables exhibiting 

VIF values below five (See Appendix I). 

Normality.  After addressing multicollinearity through data manipulation, 

univariate and multivariate normality were assessed using the training data set.  The Q-Q 

plots of continuous independent variables are illustrated in Figure 8.  Upon review of the 

plots, all variables except the admissions test scores appeared to have violated the 

univariate normality assumption.  Very few independent variables followed a straight line 

except for the tails, indicating deviations from normal distribution. 
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Figure 8. Q-Q plots of the continuous variables.  The figure displays the Q-Q plots of the 
continuous variables to assess normal distribution within the data set. CM & Ready Mean 
= mean value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = 
federal subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high 
school. GPA = grade point average. CMR = mean value of the CCRPI content mastery 
and readiness scores. Acad. & Inst. Sup. = academic and institutional support 
expenditures. College Prep. Curricul = college preparatory curriculum. EFC = expected 
family contribution. Public Serv. & Rsch. = public service and research expenditures. 
Student Serv. Sup. = student services support expenditures. 
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Table 10 displays the results of the Shapiro-Wilks and Jarque-Bera statistical tests 

for univariate normality before any data transformations.  Due to the test’s limitations, the 

first 5,000 observations were sampled for the Shapiro-Wilks.  The results of these two 

statistical tests collectively indicated the continuous independent variables did not exhibit 

a normal distribution.  Furthermore, multivariate normality was examined using Mardia’s 

test.  The results indicated a lack of multivariate normal distribution, as evidenced by 

significant skewness (M(13,078) = 3,093.726, p < .001) and kurtosis (M(13,078) = 

4,354.193, p < .001). 

Table 10  

 

Results of Shapiro-Wilks and Jarque-Bera Univariate Normality Test Before 

Transformations 
 

  

Shapiro-Wilks    Jarque-Bera  

W p    χ2 df p  

Pre-college Characteristics               
   HS GPA 0.972 < .001 ***                        448  2 < .001 *** 
   Admissions Test Scores 0.974 < .001 ***                        606  2 < .001 *** 
   AP Hours 0.452 < .001 ***                 211,512  2 < .001 *** 
   CLEP Hours 0.025 < .001 ***          946,726,989  2 < .001 *** 
   IB Hours 0.046 < .001 ***            47,077,347  2 < .001 *** 
   Other Hours 0.017 < .001 ***       1,962,050,112  2 < .001 *** 
   College Prep. Curriculum 0.264 < .001   ***  157,390 2 < .001  *** 
   CM & Ready Mean 0.977 < .001 ***                        335  2 < .001 *** 
   English (CMR) 0.994 < .001 ***                        141  2 < .001 *** 
   Math (CMR) 0.977 < .001 ***                        652  2 < .001 *** 
   Science (CMR) 0.988 < .001 ***                     340  2 < .001 *** 
   Social Studies (CMR) 0.989 < .001 ***                     724  2 < .001 *** 
Financial Situations               
   EFC 0.436 < .001 ***            16,247,837  2 < .001 *** 
   GA HOPE Scholarship 0.672 < .001 ***                     2,903  2 < .001 *** 
   PELL Grant 0.689 < .001 ***                     2,035  2 < .001 *** 
   Fed Sub. Loans 0.654 < .001 ***                     2,003  2 < .001 *** 
   Fed Unsub. Loans 0.733 < .001 ***                     3,398  2 < .001 *** 
   Other Loans 0.211 < .001 ***                 730,643  2 < .001 *** 

Note. *** p < .001. ** p < .01. * p < .05. CM & Ready Mean = mean value of the 
CCRPI content mastery and readiness scores. Federal Sub. Loans = federal subsidized 
loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. GPA = 
grade point average. CMR = mean value of the CCRPI content mastery and readiness 
scores. Acad. & Inst. Sup. = academic and institutional support expenditures. EFC = 
expected family contribution. Public Serv. & Rsch. = public service and research 
expenditures. Student Serv. Sup. = student services support expenditures.   
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Table 10 (continued) 

Results of Shapiro-Wilks and Jarque-Bera Univariate Normality Test Before 

Transformations 

 

  

Shapiro-Wilks    Jarque-Bera  

W p    χ2 df p  

Institutional Expenditures               
   Acad. & Inst. Support 0.811 < .001 ***                     4,834  2 < .001 *** 
   All Other 0.912 < .001 ***                        126  2 < .001 *** 
   Instruction 0.892 < .001 ***                        809  2 < .001 *** 
   Public & Research 0.875 < .001 ***                        978  2 < .001 *** 
   Student Support 0.809 < .001 ***                     5,353  2 < .001 *** 

Note. *** p < .001. ** p < .01. * p < .05. CM & Ready Mean = mean value of the 
CCRPI content mastery and readiness scores. Federal Sub. Loans = federal subsidized 
loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. GPA = 
grade point average. CMR = mean value of the CCRPI content mastery and readiness 
scores. Acad. & Inst. Sup. = academic and institutional support expenditures. EFC = 
expected family contribution. Public Serv. & Rsch. = public service and research 
expenditures. Student Serv. Sup. = student services support expenditures. 
 

Various transformations, including Yeo-Johnson, logarithmic, and Box-Cox, were 

explored to address the skewed nature of certain variables within the data set.  Initial 

examination revealed six variables were negatively skewed.  These variables were HS 

GPA (skewness = -0.32), CPC (skewness = -4.01), content mastery and readiness mean 

(skewness = -0.30), social studies difference from content mastery and readiness mean 

(skewness = -0.51), GA HOPE Scholarship (skewness = -1.11), and public and research 

expenditures (skewness = -0.36).  For the logarithmic and Box-Cox transformations to 

function properly, these negatively skewed variables underwent the step_inverse() 

function first.  Logarithmic transformations were ineffective for variables with zero 

values in the data set, whereas Box-Cox and Yeo Johnson transformations proved 

successful.  The Yeo-Johnson transformation was selected due to its effectiveness in 

addressing normality assumption violations in some factors.  Table 9 displays the results 

of the Shapiro-Wilks and Jarque-Bera normality test on the continuous variables after Yeo 

Johnson transformations and normalization were performed.  The Jarque-Bera test 
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resulted in three variables exhibiting normal distribution (admissions test scores, χ2(2) = 

4.15, p = .125; social studies proficiency difference from content mastery and readiness 

mean, χ2 (2) = 4.22, p = .121; and all other expenditures, χ2 (2) = 5.032, p = .081); 

however, the Shapiro-Wilks test indicated these variables violated normality assumption.  

All other variables violated the normality assumption after transformations and 

normalization occurred for both tests. 

Table 11  
 

Results of Shapiro-Wilks and Jarque-Bera Test for Normality After Data Transformation and 

Normalization 
 

  Shapiro-Wilks    Jarque-Bera  

  W p    χ2 df p  

Pre-college Characteristics               
   HS GPA 0.976 < .001 ***                      447.14  2  < .001 *** 
   Admissions Test Scores 0.991 < .001 ***                          4.15  2  .125  
   AP Hours 0.525 < .001 ***                   4,062.20  2  < .001 *** 
   CLEP Hours 0.025 < .001 ***        946,726,989.00  2  < .001 *** 
   IB Hours 0.046 < .001 ***          47,077,347.00  2  < .001 *** 
   Other Hours 0.017 < .001 ***     1,962,050,112.00  2  < .001 *** 
   College Prep. Curriculum 0.264 < .001 ***  15,739.00 2 < .001 *** 
   CM & Ready Mean 0.979 < .001 ***                      337.42  2  < .001 *** 
   English (CMR) 0.995 < .001 ***                        54.10  2  < .001 *** 
   Math (CMR) 0.994 < .001 ***   51.74 2  < .001 *** 
   Science (CMR) 0.997 < .001 ***                        8.83  2  .012 * 
   Social Studies (CMR) 0.998 < .001 ***                      4.22  2  .121  
Financial Situations               
   EFC 0.903 < .001 ***                      747.31  2  < .001 *** 
   GA HOPE Scholarship 0.605 < .001 ***                   3,257.30  2  < .001 *** 
   PELL Grant 0.643 < .001 ***                   2,170.70  2  < .001 *** 
   Fed Sub. Loans 0.632 < .001 ***                   2,179.60  2  < .001 *** 
   Fed Unsub. Loans 0.675 < .001 ***                   2,126.70  2  < .001 *** 
   Other Loans 0.228 < .001 ***               146,731.00  2  < .001 *** 
Institutional Expenditures                
   Acad. & Inst. Support 0.856 < .001 ***                      137.74  2  < .001 *** 
   All Other 0.913 < .001 ***                          5.03  2  .081  
   Instruction 0.903 < .001 ***                      779.07  2  < .001 *** 
   Public & Research 0.880 < .001 ***                      900.54  2  < .001 *** 
   Student Support 0.847 < .001 ***                        13.49  2  .001 ** 

Note. *** p < .001. ** p < .01. * p < .05. CM & Ready Mean = mean value of the 
CCRPI content mastery and readiness scores. Federal Sub. Loans = federal subsidized 
loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. GPA = 
grade point average. CMR = mean value of the CCRPI content mastery and readiness 
scores. Acad. & Inst. Sup. = academic and institutional support expenditures. EFC = 
expected family contribution. Public Serv. & Rsch. = public service and research 
expenditures. Student Serv. Sup. = student services support expenditures.  
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 Homogeneity of variance.  The final preliminary assumption examined is the 

homogeneity of variance.  The review for the homogeneity of variance underwent a 

review of visualizations (Figure 9 and Figure 10) and the utilization of statistical tests 

(See Appendix J).  In Figure 9, the distribution of the population by retention factors for 

the categorical factors are displayed.  The graphs were confirmed by the statistical tests to 

indicate gender, first generation status, HS locale, and major groupings were found to 

have heterogeneity within the distribution.   

 
Figure 9. Distribution of categorical variables by retention status.  The figure displays a 
bar chart of the distribution of the population by the retention status for the categorical 
variables.  First Gen Status = first generation status.  HS = high school.  Ind. = indicator. 
 

From Figure 10, the distribution of the population for the continuous variable is 

illustrated.  Utilizing the review of the boxplots and the statistical tests, HS GPA, 

admissions test scores, AP and IB hours, EFC, GA HOPE scholarship, federal subsidized 
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and unsubsidized loans, other loans, and all expenditures were found to have 

heterogeneity of variances.   

 

 
Figure 10. Boxplots of continuous variables by retention status.  The figure displays the 
population’s boxplots by retention status for the continuous variables.  Adm. Tests Score 
= admissions test scores.  CM & Ready Mean = mean value of the CCRPI content 
mastery and readiness scores.  Federal Sub. Loans = federal subsidized loans. Federal 
Unsub.  Loans = federal unsubsidized loans.  HS = high school.  GPA = grade point 
average.  CMR = mean value of the CCRPI content mastery and readiness scores.  Acad. 
& Inst. Sup. = academic and institutional support expenditures.  EFC = expected family 
contribution. Public Ser & Rsch. = public service and research expenditures.  Student 
Serv. Sup. = student services support expenditures. 
 

In reviewing the training data set, numerous factors influencing the dependent 

variables continued to maintain existing relationships, even after adjustments to eliminate 

interrelationships between independent factors.  Despite attempts to transform the data to 

conform to normality assumptions, the factors persisted in their non-normal distribution.  

Additionally, a few factors exhibited variations in the distributions.  The presence of non-
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normality and heterogeneity of variance in the data set raises concerns about the 

reliability and validity of the results.  The violation of the normality assumption has the 

potential to impact the accuracy of tests and predictions, introducing biased estimates due 

to skewed data and the presence of outliers.  Similarly, factors displaying heterogeneity 

of variance may affect the precision of the analysis, influencing the reliability of the 

results.  Recognizing and addressing these issues is essential for ensuring the robustness 

and interpretability of the findings. 

First Research Question 

 The following is the first research question: 

1. Are student characteristics, precollege characteristics (including high school 

curriculum quality), financial situations, major or program of study, and 

institutional financial expenditures significant predictors in first-time, full-time 

freshmen’s academic performance in their first year? 

a.  Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 

program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s first-fall GPA? 

b. Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 
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program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s first-year GPA? 

c. Are student characteristics (gender, race and ethnicity, family educational 

background, and locale), precollege characteristics (high school 

curriculum quality, high school GPA, and admissions test scores), 

financial situations (family financial situations and financial aid), major or 

program of study, and institutional financial expenditures significant 

predictors of first-time, full-time freshmen’s one-year retention status? 

First-fall GPA.  The data set used for model development was the training data 

set, comprising 13,078 observations, with seven observations removed due to missing 

data in the dependent variable.  The revised number of observations was 13,071.  Six 

predictive algorithms were employed for data analysis, which included linear regression, 

three support vector machines (SVM), random forest, and extreme gradient boosting 

(XGBoost).  The SVM models utilized three different kernels: linear, polynomial, and 

radial basis function.  The linear regression model did not require tuning.  The three 

SVM, random forest, and XGBoost models underwent tuning using a grid of 20 models 

based on a 10-fold cross-validation samples derived from the training data set.  To ensure 

reproducibility, the set.seed() function was utilized.  Within the tuning process, various 

model parameters were examined to determine the best optimal performance.  The best 

model was selected based on the lowest RMSE value.  Following the development of 

predictive algorithms, all six models analyzed the training and testing data sets to identify 

the factors influencing the first-fall GPA, with the emphasis placed on the results from the 

testing data set. 
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 Linear regression.  Linear regression is used to analyze the relationship between 

multiple independent variables and a continuous dependent variable.  Moreover, linear 

regression can be used to predict the outcome between the independent and dependent 

variables.  The linear regression model was built using the linear_reg() function with the 

engine set to lm and the mode set to regression.  The results of the model on the training 

data set are displayed in Table 12.  The linear regression model proved to be significant 

(R2 = .303, adj R2 = .302, F(29, 13,041) = 195.6, p < .001), explaining 30.3% of the 

variance in the data set.  The regression model displayed a small effect size.  The model’s 

RMSE was 0.848.  Of the 29 independent variables, 18 factors were found to be 

significant.  Of the student characteristics, gender (B = -.187, β = -0.091, t = -11.914, p < 

.001), race and ethnicity (B = .026, β = 0.025, t = 3.271 p < .001), and HS locale (B = -

.040, β = -0.039, t = -5.073, p < .001) were found to be significant factors.  From the 

student characteristics, gender of a student was the strongest contribution to the first-fall 

GPA earned.  Based on the results, male students tended to earn slightly lower first-fall 

GPA compared to their female counterparts.  Although race and ethnicity, along with high 

school locale, were statistically significant, their practical contribution on the earned GPA 

was very small.  
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Table 12  

 

Results of Linear Regression on Training Data Set for First-Fall GPA Dependent 

Variable 

 
  B β SE t p  

Intercept 2.995  0.033 91.009 < .001 *** 
Student Characteristics       

Gender -.187 -0.091 0.016 -11.914 < .001 *** 
Race/Ethnicity .026 0.025 0.008 3.271 .001 ** 
First Generation Status -.017 -0.006 0.023 -0.752 .452  
HS Locale -.040 -0.039 0.008 -5.073 < .001 *** 

Pre-college Characteristics       
HS GPA .350 0.344 0.012 28.865 < .001 *** 
Admissions Test Scores -.012 -0.011 0.010 -1.126 .260  
AP Hours .076 0.075 0.009 8.731 < .001 *** 
CLEP Hours .010 0.010 0.007 1.390 .165  
IB Hours .020 0.020 0.007 2.676 .007 ** 
Other Hours -.001 -0.001 0.007 -0.070 .944  
College Prep. Curriculum -.004 -0.004 0.008 -0.528 .597  
CM & Ready Mean .070 0.069 0.012 5.886 < .001 *** 
English (CMR) .039 0.039 0.010 3.864 < .001 *** 
Math (CMR) .001 0.001 0.010 0.106 .915  
Science (CMR) -.008 -0.008 0.009 -0.911 .362  
Social Studies (CMR) .044 0.044 0.009 5.125 < .001 *** 

Financial Situations       
EFC .043 0.042 0.015 2.936 .003 ** 
GA HOPE Scholarship .156 0.153 0.010 15.076 < .001 *** 
Zell Miller Indicator .201 0.062 0.029 6.910 < .001 *** 
PELL Grant .010 0.010 0.014 0.729 .466  
Federal Sub. Loans -.006 -0.006 0.011 -0.561 .575  
Federal Unsub. Loans -.018 -0.018 0.010 -1.857 .063  
Other Loans -.016 -0.015 0.008 -2.067 .039 * 

Major Groupings -.015 -0.030 0.004 -4.077 < .001 *** 
Institutional Expenditures       

Academic & Institutional Support .064 0.063 0.011 5.638 < .001 *** 
All Others -.049 -0.048 0.010 -4.778 < .001 *** 
Instruction -.069 -0.068 0.011 -6.262 < .001 *** 
Public Service & Research -.004 -0.004 0.010 -0.400 .689  
Student Service Support .051 0.051 0.010 5.082 < .001 *** 

Note.  R2 = .303, adj R2 = .302, F(29, 13,041) = 195.6, p < .001.  *** p < .001.  ** p < 

.01.  * p < .05.  CM & Ready Mean = mean value of the CCRPI content mastery and 
readiness scores. Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = 
federal unsubsidized loans. HS = high school. GPA = grade point average. CMR = mean 
value of the CCRPI content mastery and readiness scores. EFC = expected family 
contribution. 
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Six pre-college characteristics were identified as significant predictors, with three 

variables linked to the HS curriculum variables.  HS GPA (B = .350, β = 0.344, t = 

28.865, p < .001) exhibited the most influential factor.  The strength of the factor 

indicated students with higher HS GPAs were more likely to achieve higher first-fall 

GPAs when compared to their peers with lower HS GPAs.  Regarding the advanced 

standing hours, AP hours (B = .076, β = 0.075, t = 8.731, p < .001) and IB hours (B = 

.020, β = 0.020, t = 2.676, p = .007) were found to be significant.  However, the variables’ 

practical impact on the first-fall GPA was minimal.  Among the significant HS curriculum 

variables, content mastery and readiness mean (B = .070, β = 0.069, t = 5.886, p < .001), 

English proficiency levels difference from content mastery and readiness mean (B = .039, 

β = 0.039, t = 3.864, p < .001), and social studies proficiency levels difference from 

content mastery and readiness mean (B = .044, β = 0.044, t = 5.125, p < .001) were found 

to be significant. .   

 Of the financial factors, GA HOPE scholarship (B = .156, β = 0.153, t = 15.076, p 

< .001) and Zell Miller indicator (B = .201, β = 0.062, t = 6.910, p < .001) exhibited the 

highest contributions, showing strong positive relationships with the first-fall GPA.  

While the variables’ contributions were small, expected family contribution (B = .043, β 

= 0.042, t = 2.936, p = .003) and other loans (B = -.016, β = -0.015, t = -2.067, p = .039) 

were found to be significant.  In terms of major groupings of the programs of study, a 

slight negative relationship was found to be significant, B = -.015, β = -0.030, t = -4.077, 

p < .001.  For the expenditure factors, academic and institutional support (B = .064, β = 

0.063, t = 5.639, p < .001), instruction (B = -.069, β = -0.068, t = -4.778, p < .001), 

student services support (B = .05, β = 0.051, t = 5.082, p < .001), and all others (B = -



 

172 
 

.049, β = -0.048, t = -4.778, p < .001) exhibited a small significant impact on the first-fall 

GPA. 

Assumptions for linear regression.  The first assumption examined for linear 

regression was the presence of a linear relationship between the independent variables 

and the dependent variable.  Among the 29 independent variables, 23 demonstrated a 

significant correlational relationship with the first-fall GPA.  The two variables with the 

strongest relationships with the first-fall GPA were HS GPA (r(13,071) = .487, p < .001) 

and GA HOPE scholarship (r(13,071) = .419, p < .001), both exhibiting moderate 

positive relationships with the dependent variable.  The Zell Miller indicator (r(13,071) = 

.281, p < .001), admissions test scores (r(13,071) = .258, p < .001), and AP Hours 

(r(13,071) = .251, p < .001) exhibited small or low positive relationships with the first-

fall GPA.  The remaining variables had either very weak or no relationship with the 

dependent variable.  Low levels of multicollinearity were identified through VIF analysis, 

and any pre-existing multicollinearity issues were addressed during the data 

preprocessing stage. 

The assumption regarding the normality of errors was evaluated using three 

statistical tests: Kolmogorov-Smirnov (D = .098, p < .001), Jarque-Bera (χ2(2) = 3,431.3, 

p < .001), and the Shapiro-Wilks (W = .939, p < .001) test conducted on a sample of the 

first 5,000 observations.  All three tests indicated a violation of the normality assumption, 

indicating the errors were not normally distributed.  Both the standardized and 

studentized residuals had a mean approximately zero indicating the assumption of the 

mean of the errors equal to zero was not violated.  A Durbin-Watson value of 1.981 (p = 

.290) indicated no autocorrelation, demonstrating the errors were independent.  The 
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assumption of homogeneity of variance was violated due to significant results from the 

Breusch-Pagan or non-constant variance test (χ2(1) = 846.334, p < .001). 

The results of the linear regression model on the testing data set are displayed in 

Table 13.  The linear regression model proved to be significant (R2 = .283 adj R2 = .281, 

F(29, 8,681) = 118.4, p < .001), explaining 28.3% of the variance in the data set.  The 

regression model displayed a small effect size.  From the model on the training data set, 

the variance accounted for decreased two percentage points.  The model’s RMSE was 

0.864, which is an increase of 0.016 points.  Of the 29 independent variables, 17 were 

found to be significant.  While other loans variable was significant from the training data 

set, the factor was found not to be significant in the testing data set. 
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Table 13  

 

Results of Linear Regression on Testing Data Set for First-Fall GPA Dependent Variable 

 
  B β SE t p 

Intercept 2.958  0.041 72.302 < .001 *** 
Student Characteristics       
  Gender -.152 -0.074 0.020 -7.714 < .001 *** 
  Race/Ethnicity .025 0.024 0.010 2.465 .014 * 
  First Generation Status -.008 -0.002 0.029 -0.260 .795  
  HS Locale -.032 -0.032 0.010 -3.317 .001 ** 
Pre-college Characteristics       
  HS GPA .341 0.335 0.015 22.908 < .001 *** 
  Admissions Test Scores -.015 -0.015 0.013 -1.157 .247  
  AP Hours .062 0.061 0.011 5.729 < .001 *** 
  CLEP Hours -.006 -0.005 0.011 -0.551 .581  
  IB Hours .022 0.022 0.009 2.417 .016 * 
  Other Hours -.002 -0.003 0.006 -0.321 .749  
  College Prep. Curriculum -.015 -0.015 0.010 -1.589 .112  
  CM & Ready Mean .045 0.043 0.015 2.992 .003 ** 
  English (CMR) .039 0.038 0.013 3.085 .002 ** 
  Math (CMR) -.013 -0.012 0.013 -0.990 .322  
  Science (CMR) .002 0.002 0.011 0.185 .854  
  Social Studies (CMR) .067 0.065 0.011 6.064 < .001 *** 
Financial Situations       
  EFC .040 0.039 0.018 2.226 .026 * 
  GA HOPE Scholarship .162 0.158 0.013 12.545 < .001 *** 
  Zell Miller Indicator .214 0.063 0.037 5.745 < .001 *** 
  PELL Grant .008 0.008 0.017 0.479 .632  
  Federal Sub. Loans .002 0.002 0.013 0.137 .891  
  Federal Unsub. Loans -.012 -0.012 0.012 -0.957 .339  
  Other Loans .001 0.001 0.009 0.060 .952  
Major Groupings -.016 -0.032 0.005 -3.488 < .001 *** 
Institutional Expenditures       
  Academic & Institutional 
Support .061 0.059 0.014 4.295 < .001 *** 
  All Others -.046 -0.046 0.012 -3.675 < .001 *** 
  Instruction -.088 -0.086 0.014 -6.300 < .001 *** 
  Public Service & Research .000 0.000 0.013 0.022 .982  
  Student Service Support .026 0.026 0.013 2.080 .038 * 

Note.  R2 = .283 adj R2 = .281, F(29, 8,681) = 118.4, p < .001. *** p < .001.  ** p < .01.  
* p < .05.  CM & Ready Mean = mean value of the CCRPI content mastery and readiness 
scores. Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = federal 
unsubsidized loans. HS = high school. GPA = grade point average. CMR = mean value of 
the CCRPI content mastery and readiness scores. EFC = expected family contribution.  
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A variable importance analysis, as illustrated in Figure 11, was conducted on the 

training and testing data sets, and the importance values were rescaled to 100 for 

comparison across models.  For the linear regression model, factors were color-coded to 

indicate the type of impact, ranging from negative to positive.  According to the analysis 

on the training data set, HS GPA (importance = 28.865, rescaled importance = 100.000) 

had the most significant influence on the first-fall GPA, with a positive impact.  The 

influence indicated students with higher HS GPAs were strongly associated with higher 

first-fall GPAs, and students with lower HS GPAs were strongly associated with lower 

first-fall GPAs.  The GA HOPE scholarship (importance = 15.076, rescaled importance = 

52.230) showed a similar but less substantial, positive impact on first-fall GPAs.  In 

contrast, the gender of the student (importance = 11.914, rescaled importance = 41.274) 

exhibited a notable negative impact.  This impact indicated male students were more 

likely to earn lower first-fall GPAs.  Surprisingly, none of the five HS curriculum 

variables were among the top five factors influencing first-fall GPA within the training 

data set. 
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Figure 11. First-fall GPA variable importance plot for the linear regression model using 
the training and testing data sets.  The plot displays the variables in order of impact from 
highest to lowest with the names of the variables located on the y-axis of the graph.  The 
color of the bar indicates whether the impact is negative or positive on the first-fall GPA. 
CM & Ready Mean = mean value of the CCRPI content mastery and readiness scores. 
Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = federal 
unsubsidized loans. HS = high school. GPA = grade point average. CMR = mean value of 
the CCRPI content mastery and readiness scores. EFC = expected family contribution. 
 
 Examining the variable importance analysis of the testing data set, HS GPA 

(importance = 22.908, rescaled importance = 100.000) remained the most influential 

factor.  The GA HOPE Scholarship (importance = 12.545, rescaled importance = 54.763) 

retained its position as the second most influential factor, and like the analysis of the 

training data set, the factor’s influence is far less than that of HS GPA.  As the top 

negative factor, gender remained the third influential factor.  While AP hours and Zell 
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Miller indicator were placed fourth and fifth in the training data set, instructional 

expenditures (importance = 6.300, rescaled importance = 27.502) and social studies 

proficiency levels difference from content mastery and readiness mean (importance = 

6.064, rescaled importance = 26.472) replaced them in the testing data set. 

 Support vector machine with linear kernel.  The SVM algorithm using linear 

kernel model was built using the svm_linear() function with the engine set to kernlab and 

the model set to regression.  The cost and margin components in the model were tuned 

across a grid of 20 models using the training data, with the set.seed() function replication 

purposes.  Despite the tuning process resulting in 20 models with similar performance, 

the optimal model achieved an RMSE value of 0.866 and an R2 value of .299.  While this 

optimal model demonstrated the lowest RMSE, it only explained 29.9% of the variance 

in the data set.  In this model, the cost was set to 0.304, and the margin was set to 0.194.  

Figure 12 presents the results of the variable importance analysis on the training 

and testing data sets, where the importance values were rescaled to 100 for comparison 

across models.  Unlike the linear regression model, this analysis did not calculate the type 

of impact of the variables.  HS GPA (importance = 0.135, rescaled importance = 100.000) 

exerted the greatest influence on the first-fall GPA in the training data set.  This influence 

suggests students with a higher HS GPA correspond to a higher first-fall GPA earned.  

Likewise, students with a lower HS GPA correspond to a lower first-fall GPA.  

Additionally, the GA HOPE scholarship (importance = 0.025, rescaled importance = 

18.790) and gender (importance = 0.010, rescaled importance = 7.451) were the next two 

most impactful factors on first-fall GPA.  The remaining variables had a very small 

influence on the dependent variable within the training data set. 
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Figure 12. First-fall GPA variable importance plot for the SVM model using a linear 
kernel on training and testing data set. The plot displays the variables in order of impact 
from highest to lowest with the names of the variables located on the y-axis of the graph 
CM & Ready Mean = mean value of the CCRPI content mastery and readiness scores. 
Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = federal 
unsubsidized loans. HS = high school. GPA = grade point average. CMR = mean value of 
the CCRPI content mastery and readiness scores. EFC = expected family contribution. 
 

In the testing data set, HS GPA (importance = 0.129, rescaled importance = 

100.000) and GA HOPE scholarship (importance = 0.028, rescaled importance = 21.979) 

remained the top two factors impacting the first-fall GPA.  Instructional expenditures 

(importance = 0.009, rescaled importance = 6.948) replaced gender as the third factor, 

and gender (importance = 0.008, rescaled importance = 6.529) fell to the fourth factor.  

Academic and institutional expenditures (importance = 0.006, rescaled importance = 

4.464) were the fifth top factors in the testing data set.  The remaining variables within 

the testing data set had a very small influence on the dependent variable. 
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Support vector machine with polynomial kernel.  Using a polynomial kernel, 

another SVM algorithm was tuned employing the svm_poly() function with the kernlab 

engine and regression as the model type.  The cost, degree, scale_factor, and margin 

parameters in the svm_poly() function were tuned across 20 models using the training 

data, with the set.seed() function for replication purposes.  The resulting optimal model 

achieved an RMSE value of 0.865 and an R2 value of .300, explaining 30.0% of the 

variance within the data set.  The tuned model had a cost of 14.782, a degree of 3, a scale 

factor of 0.0001, and a margin of 0.188. 

Figure 13 presents the variable importance analysis on the training and testing 

data sets, where the importance values were rescaled to 100 for comparison across 

models.  HS GPA (importance = 0.131, rescaled importance = 100.000) emerged as the 

factor with the most substantial impact on the first-fall GPA within the training data set.  

Like the previous models, students with a higher HS GPA are associated with a higher 

first-fall GPA, while students with a lower HS GPA are associated with a lower first-fall 

GPA.  The GA HOPE scholarship (importance = 0.026, rescaled importance = 20.030) 

and gender (importance = 0.010, rescaled importance = 7.653) were the next most 

influential factors on first-fall GPA.  The impact of the remaining variables was very 

small in the training data set. 
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Figure 13. First-fall GPA variable importance plot for the SVM model using a 
polynomial kernel on the training and testing data sets.  The plot displays the variables in 
order of impact from highest to lowest with the names of the variables located on the y-
axis of the graph CM & Ready Mean = mean value of the CCRPI content mastery and 
readiness scores. Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = 
federal unsubsidized loans. HS = high school. GPA = grade point average. CMR = mean 
value of the CCRPI content mastery and readiness scores. EFC = expected family 
contribution. 
 

The review of the variable importance analysis on the testing data set reveals HS 

GPA (importance = 0.125, rescaled importance = 100.000), GA HOPE scholarship 

(importance = 0.029, rescaled importance = 23.252), and gender (importance = 0.009, 

rescaled importance = 6.958) retained their positions as the top three influential factors.  

Instruction expenditures (importance = 0.009, rescaled importance = 6.809) and academic 

and institutional support expenditures (importance = 0.005, rescaled importance = 4.035) 
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were found in the testing data set to have a small impact on the first-fall GPA.  The 

remaining variables within the testing data set were found to have a very small impact on 

the dependent variable. 

Support vector machine with radial basis function kernel.  The final SVM was 

built using the radial basis function kernel, with the engine set to kernlab and the model 

set to regression.  Through a grid of 20 models developed on training data set, the cost, 

radial basis function sigma, and margin were tuned.  The set.seed() function was utilized 

for replication.  The optimal model achieved an RMSE value of 0.863 and an R2 value of 

.305, accounting for approximately 30.5% of the variance.  The tuned features of the 

model included a cost of 19.460, sigma of 0.0005, and a margin of 0.123. 

In Figure 14, the variable importance analysis results on the training and testing 

data sets are displayed, with the results rescaled to 100 for comparison across models.  

Within the training data set, HS GPA (importance = 0.133, rescaled importance = 

100.000) emerged as the most influential factor on the first-fall GPA.  Additionally, the 

GA HOPE scholarship (importance = 0.026, rescaled importance = 19.855), gender 

(importance = 0.010, rescaled importance = 7.745), and AP hours (importance = 0.007, 

rescaled importance = 5.538) were the next most impactful variables on first-fall GPA.  

The impact of the remaining variables was too low to significantly affect the first-fall 

GPA in the training data set.  Reviewing the importance of the factors on the testing data 

set, HS GPA (importance = 0.128, rescaled importance = 100.000) and GA HOPE 

scholarship (importance = 0.029, rescaled importance = 23.002) remained the top two 

factors.  Expenditures on instruction (importance = 0.012, rescaled importance = 9.472) 

was the third influential factor, while gender (importance = 0.009, rescaled importance = 
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7.242) fell to the fourth influential factor spot.  The contributions of the remaining factors 

from the testing data set were too small.  

 
Figure 14. First-fall GPA variable importance plot for the SVM model using a radial 
basis function kernel on the training and testing data sets.  The plot displays the variables 
in order of impact from highest to lowest with the names of the variables located on the 
y-axis of the graph CM & Ready Mean = mean value of the CCRPI content mastery and 
readiness scores. Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = 
federal unsubsidized loans. HS = high school. GPA = grade point average. CMR = mean 
value of the CCRPI content mastery and readiness scores. EFC = expected family 
contribution. 
 
 Random forest.  The random forest algorithm was built using the rand_forest() 

function with the engine set to ranger and the mode set to regression.  In the rand_forest() 

function, the mtry, trees, and min_n options were tuned to find the values for the optimal 

model.  The model was tuned through a grid of 20 models using the training data set, 
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with the set.seed() function for replication purposes.  The best model was selected based 

on the lowest RMSE value, and the optimal model exhibited an RMSE value of 0.832.  

The R2 value for this model was .330, indicating the model accounts for 33.0% of the 

variance within the data set.  The optimal model included 1,580 trees with a mtry of 9 and 

a minimum number of observations of 37.  The optimal model’s mtry of 9 is close to 

being one-third of the independent variables as recommended by James et al. (2013) and 

Kuhn and Johnson (2013). 

Figure 15 illustrates the variable importance analysis results on the training and 

testing data sets, with the importance values rescaled to 100 for comparison across 

models.  HS GPA (importance = 0.293, rescaled importance = 100.000) and GA HOPE 

scholarship (importance = 0.266, rescaled importance = 90.704) were the two major 

factors influencing the first-fall GPA in the training data set.  Content mastery and 

readiness mean (importance = 0.048, rescaled importance = 16.531) and Zell Miller 

indicator (importance = 0.043, rescaled importance = 14.823) were the third and fourth 

factors affecting the first-fall GPA.  The content mastery and readiness mean and Zell 

Miller indicator variables exhibited a small impact.  From the testing data set, HS GPA 

(importance = 0.286, rescaled importance = 100.000), GA HOPE scholarship (importance 

= 0.255, rescaled importance = 89.142), and content mastery and readiness mean 

(importance = 0.036, rescaled importance = 12.458) remained the top three most 

influential factors.  The fourth and fifth top factors from the testing data set were the EFC 

(importance = 0.034, rescaled importance = 11.942) and the English proficiency levels 

difference from content mastery and readiness mean (importance = 0.031, rescaled 

importance = 10.921). 
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Figure 15. First-fall GPA variable importance plot for the random forest model on the 

training and testing data sets. The plot displays the variables in order of impact from 
highest to lowest with the names of the variables located on the y-axis of the graph CM & 
Ready Mean = mean value of the CCRPI content mastery and readiness scores. Federal 
Sub. Loans = federal subsidized loans. Federal Unsub. Loans = federal unsubsidized 
loans. HS = high school. GPA = grade point average. CMR = mean value of the CCRPI 
content mastery and readiness scores. EFC = expected family contribution. 
 
 Extreme gradient boosting.  The XGBoost model was constructed using the 

boost_tree() function with the engine set to xgboost and the mode set to regression.  To 

develop the optimal model, the trees, tree depth, min_n, loss reduction, sample size, mtry, 

and learn rate were tuned through a grid of 20 models using the training data set, with the 

set.seed() function for replication  purposes.  The best model was selected based on the 

lowest RMSE value.  The optimal model exhibited an RMSE value of 0.832 and an R2 
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value of 0.330, accounting for 33.0% of the variance within the data set.  The optimal 

model consisted of 1,804 trees with an mtry of 10, minimum observations of 3, and a tree 

depth of 8.  The model’s learn rate was set to 0.005, loss reduction was 4.797, and sample 

size was 0.106. 

Figure 16 displays the variable importance analysis of the training and testing data 

sets, with the importance values rescaled to 100 for comparison purposes across models.  

HS GPA (importance = 0.189, rescaled importance = 100.00) and GA HOPE scholarship 

(importance = 0.106, rescaled importance = 55.990) were the top two factors impacting 

the first-fall GPA in the training data set.  The five HS curriculum variables were ranked 

third through seventh in terms of importance within the training data set.  HS GPA 

(importance = 0.182, rescaled importance = 100.000) and GA HOPE scholarship 

(importance = 0.096, rescaled importance = 52.706) remained the top two influential 

factors in the testing data set.  The social studies proficiency levels difference from 

content mastery and readiness mean (importance = 0.071, rescaled importance = 39.063) 

was the highest HS curriculum factor, placing third. The remaining four HS curriculum 

factors remained within the top 10 factors.  Admissions test scores (importance = 0.068, 

rescaled importance = 37.373) split the HS factors by placing sixth.  
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Figure 16. First-fall GPA variable importance plot for the XGBoost model on the training 

and testing data sets.  The plot displays the variables in order of impact from highest to 
lowest with the names of the variables located on the y-axis of the graph CM & Ready 
Mean = mean value of the CCRPI content mastery and readiness scores. Federal Sub. 
Loans = federal subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS 
= high school. GPA = grade point average. CMR = mean value of the CCRPI content 
mastery and readiness scores. EFC = expected family contribution. 
 
 Variable importance comparison for first-fall GPA.  While patterns emerged 

from the results of the variables' importance analysis from the training data set, the results 

from the testing data set exhibited more important patterns to assess which factors impact 

the first-fall GPA, as displayed in Figure 17.  The HS GPA factor demonstrated to be the 

dominant factor overall across the models.  The second most influential factor was the 

GA HOPE scholarship, with the highest impact found in the random forest model.  No 
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additional factors were consistent in their rankings.  The linear regression and SVM using 

a polynomial kernel found gender as the third-ranked factor, while the SVMs using linear 

and radial basis function kernels found expenditures on instruction to be the third most 

influential factor.  The random forest indicated the content mastery and readiness mean 

was ranked third, while the XGBoost model found the social studies proficiency levels 

difference from content mastery and readiness mean to be the third most influential 

factor. 

 
Figure 17. Comparison of variable importance results on testing data set for first-fall 
GPA.  The plot displays the variables in order of impact from highest to lowest with the 
names of the variables located on the y-axis of the graph CM & Ready Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. 
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Reviewing the impact of the five HS curriculum factors in importance analysis 

across the models, these variables overall exhibited no consistency in rankings.  Only the 

XGBoost model indicated the five factors exhibited moderate influences on the first-fall 

GPA.  Of the subject proficiency levels in the XGBoost model, the social studies factor 

was ranked the highest, while science was ranked the least.  Other than the random forest 

model, the remaining models ranked the social studies proficiency levels difference from 

content mastery and readiness mean above the other HS curriculum factors.  The random 

forest model indicated the content mastery and readiness mean was higher than the 

subject proficiency levels.  Furthermore, the number of AP hours was found to exhibit 

influence in the linear regression model only, while the other advanced standing hours 

exhibited very little influence on the first-fall GPA.  Admissions test scores exhibited 

very little influence on the first-fall GPA when excluding the XGBoost model.  The 

XGBoost model ranked admissions test scores in sixth place.  Lastly, the number of 

satisfied college preparatory curriculum requirements exhibited relatively no influence on 

the dependent variable. 

While the GA HOPE scholarship consistently ranked in second place, no other 

financial situation variables from the analyses on the testing data set exhibited 

consistency across the models.  From the linear regression and SVM models, the Zell 

Miller scholarship factor was the second most influential financial situations factor, with 

the strongest contribution found in the linear regression model.  Both the random forest 

and XGBoost models found the EFC to be the second most influential factor among the 

financial situation variables.  The remaining financial factors exhibited very little 
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influence across the models.  Likewise, the selected major and remaining expenditures 

exhibited very little influence on the first-fall GPA. 

First-year GPA.  Predictive models for the first-year GPA dependent variable 

were developed using the initial training data set, which initially contained 13,078 

observations.  However, 62 observations were removed from this data set due to missing 

observations for the first-year GPA, resulting in a revised training data set with 13,016 

records.  A total of six statistical models were developed for data analysis, including 

linear regression, three SVM, random forest, and XGBoost.  The linear regression model 

did not require any tuning.  The SVM models employed linear, polynomial, and radial 

basis function kernels.  To optimize the models, three SVM models, random forest, and 

XGBoost were tuned by exploring a grid of 20 models based on 10-fold cross-validation 

samples from the training data.  To ensure replicability, the set.seed() function was used.  

Model parameters were tuned using the grid, and the best-performing model was selected 

based on the lowest RMSE value.  Following the development of predictive algorithms, 

all six models analyzed the training and testing data sets to identify the factors 

influencing the first-year GPA, with the emphasis placed on the results from the testing 

data set. 

 Linear regression.  A linear regression was conducted on the training data set, 

and the results are displayed in Table 14.  The linear regression model was significant, R2 

= .325, adj R2 = .324, F(29, 12,986) = 215.90, p < .001.  The regression model accounts 

for 32.5% of the variance found within the data.  The regression models exhibited a small 

effect size.  A total of 17 out of the 29 independent variables were found to be significant.  

The model’s RMSE was 0.795.  For the student characteristics variables, gender (B = -
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.201, β = -0.103, t = -13.591, p < .001), race and ethnicity (B = .027, β = 0.022, t = 3.618, 

p < .001), and HS locale (B = -.041, β = -0.043, t = -5.624, p < .001) were found to be 

significant.  Within the student characteristics, gender exhibited the strongest influence 

on the first-year GPA.  Male students are more likely to earn slightly lower first-year GPA 

than their female counterparts.  Although race and ethnicity and the graduating HS locale 

were found to be significant, the factors contribution to the first-fall GPA were very 

small.  

 Overall HS GPA, B = .341, β = 0.352, t = 29.948, p < .001, exhibited not only the 

strongest contribution to the first-year GPA, but also within the pre-college 

characteristics.  This factor influencing the earned GPA would indicate students with 

higher HS GPA are more likely to earn a higher GPA at the end of their first year.  While 

admissions test scores, B = -.020, β = -0.021, t = -2.108, p = .035, the practical 

contribution of the scores are little.  The advanced standing AP hours, B = .066, β = 

0.068, t = 8.101, p < .001, and IB hours, B = .02, β = 0.02, t = 2.766, p = .006, were also 

found to be significant.  Three of the five HS curriculum variables were found to be 

significant (content mastery and readiness mean, B = .067, β = 0.069, t = 5.977, p < .001; 

English proficiency levels difference from the content mastery and readiness mean,  

B = .041, β = 0.042, t = 4.251, p < .001; and social studies proficiency levels difference 

from the content mastery and readiness mean, B = .040, β = 0.041, t = 4.878, p < .001); 

yet, the variables’ impacts were very small.  
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Table 14  

 

Results of Linear Regression on Training Data Set for First-Year GPA Dependent 

Variable 

 
  B β SE t p 

Intercept 3.009  0.031 97.284 < .001 *** 
Student Characteristics       
  Gender -.201 -0.103 0.015 -13.591 < .001 *** 
  Race/Ethnicity .027 0.028 0.008 3.618 < .001 *** 
  First Generation Status -.029 -0.010 0.022 -1.354 .176  
  HS Locale -.041 -0.043 0.007 -5.624 < .001 *** 
Pre-college Characteristics       
  HS GPA .341 0.352 0.011 29.948 < .001 *** 
  Admissions Test Scores -.020 -0.021 0.010 -2.108 .035 * 
  AP Hours .066 0.068 0.008 8.101 < .001 *** 
  CLEP Hours .010 0.010 0.007 1.448 .148  
  IB Hours .019 0.020 0.007 2.766 .006 ** 
  Other Hours -.002 -0.002 0.007 -0.219 .827  
  College Prep. Curriculum .003 0.003 0.007 0.440 .660  
  CM & Ready Mean .067 0.069 0.011 5.977 < .001 *** 
  English (CMR) .041 0.042 0.010 4.251 < .001 *** 
  Math (CMR) -.002 -0.002 0.010 -0.172 .863  
  Science (CMR) -.001 -0.001 0.008 -0.150 .881  
  Social Studies (CMR) .040 0.041 0.008 4.878 < .001 *** 
Financial Situations       
  EFC .060 0.061 0.014 4.313 < .001 *** 
  GA HOPE Scholarship .165 0.171 0.010 17.044 < .001 *** 
  Zell Miller Indicator .192 0.062 0.027 7.051 < .001 *** 
  PELL Grant .015 0.015 0.013 1.137 .255  
  Federal Sub. Loans -.014 -0.015 0.010 -1.428 .153  
  Federal Unsub. Loans -.014 -0.015 0.009 -1.573 .116  
  Other Loans -.010 -0.010 0.007 -1.388 .165  
Major Groupings -.012 -0.026 0.004 -3.535 < .001 *** 
Institutional Expenditures       
  Academic & Institutional Support .034 0.035 0.011 3.163 .002 ** 
  All Others .030 0.031 0.010 3.129 .002 ** 
  Instruction -.007 -0.008 0.010 -0.717 .474  
  Public Service & Research -.008 -0.009 0.010 -0.863 .388  
  Student Service Support .034 0.035 0.009 3.605 < .001 *** 

Note.  R2 = .325, adj R2 = .324, F(29, 12,986) = 215.90, p < .001.  *** p < .001.   
** p < .01.  * p < .05. CM & Ready Mean = mean value of the CCRPI content mastery 
and readiness scores. Federal Sub. Loans = federal subsidized loans. Federal Unsub. 
Loans = federal unsubsidized loans. HS = high school. GPA = grade point average. CMR 
= mean value of the CCRPI content mastery and readiness scores. EFC = expected family 
contribution.  
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 The analysis revealed among the financial factors the expected family 

contribution (B = .060, β = 0.061, t = 4.313, p < .001), GA HOPE scholarship (B = .165, 

β = 0.171, t = 17.044, p < .001), and Zell Miller indicator (B = .192, β = 0.062, t = 7.051, 

p < .001) were the only significant variables influencing the first-year GPA.  Of these 

three variables, the GA HOPE scholarship and Zell Miller indicator exhibited the highest 

impacts on the first-fall GPA.  Specifically, students receiving the GA HOPE scholarship, 

but not at the Zell Miller level, tended to achieve higher first-year GPAs compared to 

those not receiving the scholarship.  Furthermore, students who received the GA HOPE 

scholarship at the Zell Miller level demonstrated the highest first-year GPA among the 

three groups analyzed.  Other variables related to financial aid situations did not show 

significant effects on first-fall GPA.  The major grouping of the declared major (B = -

.012, β = -0.026, t = -3.535, p < .001), academic & institutional support (B = .034, β = 

0.035, t = 3.163, p =.002), student services support (B = .035, β = 0.036, t = 3.605, p < 

.001), and all others (B = .030, β = 0.031, t = 3.129, p = .002) were found to be 

significant factors impacting the first-year GPA. 

Assumptions for linear regression.  The first assumption examined for linear 

regression was the presence of a linear relationship between the independent variables 

and the dependent variable.  Among the 29 independent variables, a total of 23 exhibited 

a significant correlational relationship with the first-year GPA.  The two variables with 

the strongest relationship with the first-year GPA were HS GPA (r(13,016) = .506, p < 

.001) and GA HOPE scholarship (r(13,016) = .441, p < .001), with the relationships 

being moderate positive ones.  The Zell Miller indicator (r(13,016) = .285, p < .001), 

admissions test scores (r(13,016) = 0.254, p < .001), and AP Hours (r(13,016) = .2471, p 
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< .001) exhibited small or low positive relationships with the first-year GPA.  The 

remaining variables had either very weak or no relationship with the dependent variable.  

Low levels of multicollinearity were identified through VIF analysis, and any pre-

existing multicollinearity issues were addressed during the data preprocessing stage. 

The assumption regarding the normality of errors was evaluated using three 

statistical tests: Kolmogorov-Smirnov (D = .104, p < .001), Jarque-Bera (χ2(2) = 4,678.9, 

p < .001), and the Shapiro-Wilks (W = .930, p < .001) test conducted on a sample of the 

first 5,000 observations.  All three tests indicated a violation of the normality assumption, 

indicating the errors were not normally distributed.  Both the standardized and 

studentized residuals had a mean approximately equal to zero indicate the assumption of 

the mean of the errors equal to zero was not violated.  A Durbin-Watson value of 1.994 (p 

= .728) indicated no autocorrelation, demonstrating the errors were independent.  The 

assumption of homogeneity of variance was violated due to significant results from the 

Breusch-Pagan or non-constant variance test (χ2(1) = 871.076, p < .001). 

The results of the linear regression model on the testing data set are displayed in 

Table 15.  The linear regression model proved to be significant (R2 = .312, adj R2 = .310, 

F(29, 8,663) = 118.40, p < .001), explaining 31.2% of the variance in the data set.  The 

regression model displayed a small effect size.  From the model on the training data set, 

the variance accounted for decreased two percentage points.  The model’s RMSE was 

0.807, which is an increase of 0.012 points.  Of the 29 independent variables, 15 factors 

were found to be significant.  Of the 17 factors from the training data sets found to be 

significant, 14 of them in the testing data set were significant.  From the testing data set, 

one factor—instruction expenditures (B = -.026, β = -0.027, t = -1.96, p = .047)—was 
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found to be significant when it was not significant in the training data set.  While 

admissions test scores, IB hours, and student service support expenditures were found to 

be significant in the training data set, these factors were not found to be significant in the 

testing data set. 

As presented in Figure 18, a variable importance analysis was conducted on the 

training and testing data sets, with the importance values rescaled to 100 for comparison 

purposes across the models.  Additionally, the impact of each factor was indicated by 

color, ranging from negative to positive impact.  Based on the importance analysis from 

the training data set, HS GPA (importance = 29.948, rescaled importance = 100.000) 

emerged as the most influential factor on first-year GPA.  This impact was positive, 

signifying a higher HS GPA is strongly associated with a higher first-year GPA, while a 

lower HS GPA is strongly associated with a lower first-year GPA.  The GA HOPE 

scholarship (importance = 17.044, rescaled importance = 56.913) also exerted a 

significant influence on first-year GPA, although to a lesser extent compared to HS GPA.  

This finding implies students receiving the scholarship are more likely to achieve a 

higher GPA than those without it.  Conversely, the gender of a student (importance = 

13.591, rescaled importance = 45.383) had a negative impact, indicating male students 

are more likely to have a lower first-year GPA than their female counterparts.  

Interestingly, the five HS curriculum variables did not rank among the top five factors 

within influencing first-year GPA according to the analysis from the training data set. 
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Table 15  

 

Results of Linear Regression on Testing Data Set for First-Year GPA Dependent Variable 

 
  B β SE t p 

Intercept 2.994  0.038 78.332 < .001 *** 
Student Characteristics       
  Gender -.179 -0.091 0.018 -9.707 < .001 *** 
  Race/Ethnicity .024 0.024 0.009 2.555 .011 * 
  First Generation Status -.025 -0.009 0.027 -0.928 .353  
  HS Locale -.039 -0.041 0.009 -4.335 < .001 *** 
Pre-college Characteristics       
  HS GPA .337 0.347 0.014 24.260 < .001 *** 
  Admissions Test Scores -.018 -0.018 0.012 -1.488 .137  
  AP Hours .058 0.060 0.010 5.706 < .001 *** 
  CLEP Hours -.007 -0.006 0.010 -0.646 .518  
  IB Hours .016 0.017 0.008 1.876 .061  
  Other Hours -.004 -0.006 0.006 -0.606 .544  
  College Prep. Curriculum -.008 -0.009 0.009 -0.932 .351  
  CM & Ready Mean .054 0.055 0.014 3.884 < .001 *** 
  English (CMR) .039 0.040 0.012 3.261 .001 ** 
  Math (CMR) -.012 -0.012 0.012 -0.988 .323  
  Science (CMR) .002 0.002 0.010 0.176 .860  
  Social Studies (CMR) .054 0.055 0.010 5.243 < .001 *** 
Financial Situations       
  EFC .053 0.055 0.017 3.194 .001 ** 
  GA HOPE Scholarship .160 0.165 0.012 13.348 < .001 *** 
  Zell Miller Indicator .204 0.063 0.035 5.887 < .001 *** 
  PELL Grant .009 0.009 0.016 0.538 .591  
  Federal Sub. Loans .001 0.001 0.012 0.049 .961  
  Federal Unsub. Loans -.021 -0.021 0.012 -1.801 .072  
  Other Loans -.001 -0.001 0.009 -0.058 .953  
Major Groupings -.013 -0.027 0.004 -3.052 .002 ** 
Institutional Expenditures       
  Academic & Institutional Support .042 0.042 0.013 3.147 .002 ** 
  All Others .033 0.034 0.012 2.810 .005 ** 
  Instruction -.026 -0.027 0.013 -1.986 .047 * 
  Public Service & Research .003 0.003 0.012 0.246 .806  
  Student Service Support .020 0.021 0.018 1.702 .089   

Note.  R2 = .312, adj R2 = .310, F(29, 8,663) = 118.40, p < .001.  *** p < .001.  ** p < 

.01.  * p < .05. CM & Ready Mean = mean value of the CCRPI content mastery and 
readiness scores. Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = 
federal unsubsidized loans. HS = high school. GPA = grade point average. CMR = mean 
value of the CCRPI content mastery and readiness scores. EFC = expected family 
contribution. 
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Figure 18. First-year GPA variable importance plot for the linear regression model on the 
training and testing data sets.  The plot displays the variables in order of impact from 
highest to lowest with the names of the variables located on the y-axis of the graph.  The 
color of the bar indicates whether the impact is negative or positive on the first-fall GPA. 
CM & Ready Mean = mean value of the CCRPI content mastery and readiness scores. 
Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = federal 
unsubsidized loans. HS = high school. GPA = grade point average. CMR = mean value of 
the CCRPI content mastery and readiness scores. EFC = expected family contribution. 
 
 Examining the results of the variable importance analysis on the testing data set 

confirmed the three dominant influential factors were HS GPA (importance = 24.260, 

rescaled importance = 100.000), GA HOPE scholarship (importance = 13.348, rescaled 

importance = 55.021), and gender (importance = 9.707, rescaled importance = 40.014).  

While remaining a negative influential factor, the strength of gender’s influence on the 

first-year GPA lessened in the testing data set.  The fourth and fifth factors changed in the 

testing data set (Zell Miller indicator, importance = 5.887, rescaled importance = 24.266; 
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AP hours, importance = 5.706, rescaled importance = 23.521).  The remaining factors’ 

contribution was very small from the analysis in the testing data set. 

 Support vector machine with linear kernel.  The SVM algorithm using linear 

kernel model was built using the svm_linear() function with the engine set to kernlab and 

the model set to regression.  The cost and margin components in the model were tuned 

across a grid of 20 models using a training data set.  The set.seed() function was utilized 

for replication purposes.  Despite the tuning process resulting in 20 models with similar 

performance, the optimal model achieved an RMSE value of 0.812 and an R2 value of 

.321.  Although this optimal model demonstrated the lowest RMSE, it only explained 

32.1% of the variance in the data set.  In this model, the cost was set to 0.304, and the 

margin was set to 0.194.  

 Figure 19 presents the results of the variable importance analysis on the training 

and testing data sets, where the importance values were rescaled to 100.  Unlike the linear 

regression model, this analysis did not calculate the type of impact of the variables.  HS 

GPA (importance = 0.129, rescaled importance = 100.000) exerted the greatest influence 

on the first-year GPA in the training data set.  This influence suggests students with 

higher HS GPA correspond to a higher first-year GPA earned.  Likewise, students with 

lower HS GPA correspond to a lower first-year GPA.  Additionally, the GA HOPE 

scholarship (importance = 0.032, rescaled importance = 24.536) and gender (importance 

= 0.012, rescaled importance = 9.058) were the next most impactful factors on first-year 

GPA.  Though with a very small influence, the content mastery and readiness mean 

(importance = 0.003, rescaled importance = 2.464) was ranked fifth.  The remaining 

variables had a very small influence on the dependent variable in the training data set.  
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Figure 19.  First-year GPA variable importance plot for the SVM model using a linear 
kernel on the training and testing data sets. The plot displays the variables in order of 
impact from highest to lowest with the names of the variables located on the y-axis of the 
graph CM & Ready Mean = mean value of the CCRPI content mastery and readiness 
scores.  Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = federal 
unsubsidized loans.  HS = high school.  GPA = grade point average.  CMR = mean value 
of the CCRPI content mastery and readiness scores.  EFC = expected family contribution. 
 

For the analysis on the testing data set, HS GPA (importance = 0.133, rescaled 

importance = 100.000), GA HOPE scholarship (importance = 0.026, rescaled importance 

= 19.363), and gender (importance = 0.010, rescaled importance = 7.357) were found to 

be the three most influential factors. The social studies proficiency levels difference from 

the content mastery and readiness mean (importance = 0.004, rescaled importance = 

3.038) was ranked fourth, exhibiting very small influences on the GPA. 
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Support vector machine with polynomial kernel.  Using a polynomial kernel, 

another SVM algorithm was tuned employing the svm_poly() function with the kernlab 

engine and regression as the model type.  The cost, degree, scale_factor, and margin 

parameters in the svm_poly() function were tuned across 20 models using training data 

sets, with the set.seed() function for replication purposes.  The resulting optimal model 

achieved an RMSE value of 0.812 and an R2 value of 0.322, explaining 32.2% of the 

variance within the data set.  The tuned model had a cost of 14.782, a degree of 3, a scale 

factor of 0.001, and a margin of 0.188. 

Figure 20 presents the variable importance analysis on the training and testing 

data sets, where the importance values were rescaled to 100 for comparison across 

models.  From the analysis of the training data set, HS GPA (importance = 0.127, rescaled 

importance = 100.000) emerged as the factor with the most substantial impact on the 

first-year GPA.  Like the previous models, students with higher HS GPA are associated 

with a higher first-year GPA, while students with lower HS GPA are associated with a 

lower first-year GPA.  The GA HOPE scholarship (importance = 0.032, rescaled 

importance = 25.518) and gender (importance = 0.012, rescaled importance = 9.307) 

were the next most influential factors on first-year GPA.  While exhibiting a very small 

influence, content mastery and readiness mean (importance = 0.003, rescaled importance 

= 2.607) was ranked fifth.  The impact of the remaining variables was very small from 

the training data set.   
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Figure 20. First-year GPA variable importance plot for the SVM model using a 
polynomial kernel on training and testing data sets.  The plot displays the variables in 
order of impact from highest to lowest with the names of the variables located on the y-
axis of the graph CM & Ready Mean = mean value of the CCRPI content mastery and 
readiness scores.  Federal Sub. Loans = federal subsidized loans.  Federal Unsub. Loans 
= federal unsubsidized loans.  HS = high school.  GPA = grade point average.  CMR = 
mean value of the CCRPI content mastery and readiness scores.  EFC = expected family 
contribution. 
 

Within the testing data set, HS GPA (importance = 0.130, rescaled importance = 

100.000), GA HOPE scholarship (importance = 0.026, rescaled importance = 20.248), 

and gender (importance = 0.010, rescaled importance = 7.693) remained the top three 

most influential factors.  The social studies proficiency levels differences from the 

content mastery and readiness mean (importance = 0.004, rescaled importance = 3.037) 

was ranked fourth, even though the influence on the GPA is very small.  Content mastery 
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and readiness mean (importance = 0.002, rescaled importance = 1.677) fell to rank eight, 

exhibiting a very small influence on the first-year GPA in the testing data set. 

Support vector machine with radial basis function kernel.  The final SVM was 

built using the radial basis function kernel, with the engine set to kernlab and the model 

set to regression.  Through a grid of 20 models developed on training data set, the cost, 

radial basis function sigma, and margin were tuned.  The set.seed() function was utilized 

for replication purposes.  The optimal model achieved an RMSE value of 0.812 and an R2 

value of .325, accounting for approximately 32.5% of the variance.  The tuned features of 

the model included a cost of 19.46, sigma of 0.0005, and a margin of 0.123. 

 In Figure 21, the variable importance analysis results on the training and testing 

data sets are displayed, with the results rescaled to 100 for comparison across models.  

HS GPA (importance = 0.128, rescaled importance = 100.000) emerged as the most 

influential factor on the first-year GPA within the training data set.  Additionally, the GA 

HOPE scholarship (importance = 0.033, rescaled importance = 24.933) and gender 

(importance = 0.012, rescaled importance = 9.149) were the next most impactful 

variables on first-year GPA.  While exhibiting a small contribution, AP hours (importance 

= 0.006, rescaled importance = 5.639) was ranked fourth.  The impact of the remaining 

variables within the training data set was too low to significantly affect the first-year 

GPA.  For the results on the testing data set, HS GPA (importance = 0.133, rescaled 

importance = 100.000), GA HOPE scholarship (importance = 0.026, rescaled importance 

= 22.276), and gender (importance = 0.011, rescaled importance = 7.501) maintained 

their top three most influential factors.  While AP hours (importance = 0.004, rescaled 

importance = 2.644) fell in ranking due to academic and institutional expenditures 
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(importance = 0.004, rescaled importance = 2.880), these two factors’ contribution to the 

GPA was very small.  The remaining factors exhibited very little influence on the first-

year GPA in the testing data set.   

 
Figure 21. First-year GPA variable importance plot for the SVM model using a radial 
basis function kernel on the training and testing data sets.  The plot displays the variables 
in order of impact from highest to lowest with the names of the variables located on the 
y-axis of the graph CM & Ready Mean = mean value of the CCRPI content mastery and 
readiness scores.  Federal Sub. Loans = federal subsidized loans.  Federal Unsub. Loans 
= federal unsubsidized loans.  HS = high school.  GPA = grade point average.  CMR = 
mean value of the CCRPI content mastery and readiness scores.  EFC = expected family 
contribution. 
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 Random forest.  The random forest algorithm was built using the rand_forest() 

function with the engine set to ranger and the mode set to regression.  In the rand_forest() 

function, the mtry, trees, and min_n options were tuned to find the values for the optimal 

model.  The model was tuned through a grid of 20 models using the training data set, 

with the set.seed() function for replication purposes.  The best model was chosen based 

on the lowest RMSE value, and the optimal model exhibited an RMSE value of 0.787.  

The R2 value for this model was .340, indicating the model accounts for 34.0% of the 

variance within the data set.  The optimal model included 1,580 trees with a mtry of 9 and 

a minimum number of observations of 37.  The optimal model’s mtry of 9 is close to 

being one-third of the independent variables as recommended by James et al. (2013) and 

Kuhn and Johnson (2013). 

Figure 22 illustrates the variable importance analysis results on the training and 

testing data sets, with the importance values rescaled to 100 for comparison across 

models.  HS GPA (importance = 0.278, rescaled importance = 100.000) and GA HOPE 

scholarship (importance = 0.264, rescaled importance = 95.020) were the two major 

factors influencing the first-year GPA in the training data set.  Content mastery and 

readiness mean (importance = 0.043, rescaled importance = 15.493), Zell Miller indicator 

(importance = 0.037, rescaled importance = 13.302), admissions test scores (importance 

= 0.037, rescaled importance = 13.274), and EFC (importance = 0.031, rescaled 

importance = 11.320) were the third through sixth factors affecting the first-year GPA.  

These variables exhibited a small impact, while the remaining variables in the training 

data set had very low impacts on the first-year GPA. 
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Figure 22. First-year GPA variable importance plot for the random forest model on the 

training and testing data sets.  The plot displays the variables in order of impact from 
highest to lowest with the names of the variables located on the y-axis of the graph CM & 
Ready Mean = mean value of the CCRPI content mastery and readiness scores.  Federal 
Sub. Loans = federal subsidized loans.  Federal Unsub. Loans = federal unsubsidized 
loans.  HS = high school.  GPA = grade point average.  CMR = mean value of the CCRPI 
content mastery and readiness scores.  EFC = expected family contribution.   
 

From the analysis on the testing data set, HS GPA (importance = 0.284, rescaled 

importance = 100.000), GA HOPE scholarship (importance = 0.241, rescaled importance 

= 84.674), and content mastery (importance = 0.039, rescaled importance = 13.796) 

remained the top three most influential factors on the first-year GPA.  HS GPA and GA 

HOPE scholarship factors' contribution to the dependent variable was very large.  While 
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originally ranked sixth, EFC (importance = 0.037, rescaled importance = 13.022) in the 

testing data set was ranked fourth.  The English proficiency level difference from the 

content mastery and readiness mean (importance = 0.035, rescaled importance = 12.276) 

was ranked fifth, and Zell Miller indicator (importance = 0.030, rescaled importance = 

10.420) fell to the sixth ranked factor.  The remaining variables' contribution to the GPA 

in the testing data set was very small. 

Extreme gradient boosting.  The XGBoost model was constructed using the 

boost_tree() function with the engine set to xgboost and the mode set to regression.  To 

develop the optimal model, the trees, tree depth, min_n, loss reduction, sample size, mtry, 

and learn rate were tuned through a grid of 20 models using the training data set.  The 

set.seed() function was utilized for replication purposes.  The best model was selected 

based on the lowest RMSE value.  The optimal model from the tuning exhibited an 

RMSE value of 0.779 and an R2 value of 0.352, accounting for 35.2% of the variance 

within the data set.  The optimal model consisted of 1,264 trees with a mtry of 22 and the 

minimum observations of 20 with a tree depth of 5.  The model’s learn rate was .007, loss 

reduction was .004, and sample size .285. 

Figure 23 displays the variable importance analysis on the training and testing 

data sets, with the importance values rescaled to 100 for comparison purposes across 

models.  HS GPA (importance = 0.25, rescaled importance = 100.00) and GA HOPE 

scholarship (importance = 0.223, rescaled importance = 87.827) within the training data 

set were the top two factors impacting the first-year GPA.  Ranking third through 

seventh, the five HS curriculum variables had a moderate influence on the GPA (English 

proficiency level difference, importance = 0.053, rescaled importance = 20.859; content 
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mastery and readiness mean, importance = 0.052, rescaled importance = 20.396; social 

studies proficiency level difference, importance = 0.051, rescaled importance = 20.183; 

science proficiency level difference, importance = 0.044, rescaled importance = 17.429; 

and math proficiency level difference, importance = 0.044, rescaled importance = 

17.150). Additionally, EFC (importance = 0.042, rescaled importance = 16.500) and 

admissions test scores (importance = 0.037, rescaled importance = 14.533) contribute a 

low to moderate contribution to the first-fall GPA. 

 
Figure 23. First-year GPA variable importance plot for the XGBoost model on the 

training and testing data sets.  The plot displays the variables in order of impact from 
highest to lowest with the names of the variables located on the y-axis of the graph CM & 
Ready Mean = mean value of the CCRPI content mastery and readiness scores. Federal 
Sub. Loans = federal subsidized loans. Federal Unsub. Loans = federal unsubsidized 
loans. HS = high school. GPA = grade point average. CMR = mean value of the CCRPI 
content mastery and readiness scores. EFC = expected family contribution. 
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For the review of the results from the testing data set, HS GPA (importance = 

0.243, rescaled importance = 100.000) and GA HOPE scholarship (importance = 0.193, 

rescaled importance = 79.220) remained the top two most influential factors on the first-

year GPA.  While maintaining the third through seventh ranked factors, the order of the 

HS curriculum variables changed.  The content mastery and readiness mean (importance 

= 0.059, rescaled importance = 24.132) was the highest ranked HS curriculum variables.  

Social studies proficiency levels (importance = 0.058, rescaled importance = 23.885) was 

ranked fourth, English proficiency levels (importance = 0.056, rescaled importance = 

23.225) was ranked fifth, math proficiency levels (importance = 0.049, rescaled 

importance = 20.362) was ranked sixth, and science proficiency levels (importance = 

0.048, rescaled importance = 19.852) was ranked seventh.  Furthermore, EFC 

(importance = 0.048, rescaled importance = 19.685) and admissions tests scores 

(importance = 0.042, rescaled importance = 17.327) held their rank, while major 

groupings’ (importance = 0.030, rescaled importance = 12.173) contribution increased as 

the tenth ranked factor. 

Variable importance comparison for first-year GPA.  The patterns emerged in the 

training data set changed slightly when the results of the variable importance analysis 

were conducted on the testing data set.  Figure 24 illustrates a comparison of the variable 

importance analysis on the testing data set across each model.  The HS GPA and GA 

HOPE scholarship factors remained as the top two factors influencing the first-year GPA.  

HS GPA in each model remained the predominant factor.  GA HOPE scholarship’s largest 

influence was found to be in the random forest model, with the XGBoost model having 

just a slightly lesser effect.  No additional factors were consistent in their rankings.  
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Gender in the linear regression and SVMs found gender to be the third rank factor, while 

content mastery and readiness mean was the third rank factor in the random forest and 

XGBoost models.   

 
Figure 24. Comparison of variable importance results on the testing data set for first-year 
GPA.  The plot displays the variables in order of impact from highest to lowest with the 
names of the variables located on the y-axis of the graph CM & Ready Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. 
 
 For the five HS curriculum factors, the content mastery and readiness mean factor 

was the highest of the five in the random forest, XGBoost, and the SVM using a radial 

basis function.  The social studies proficiency level difference from the content mastery 

and readiness mean was ranked the top HS curriculum factor for the linear regression, 

SVM using a linear kernel, and SVM using a polynomial kernel.  Of the non-HS 

curriculum variables, the number of AP hours was ranked over the admissions test scores 

in the linear regression and the three SVM models.  Random forest and XGBoost models 

ranked admissions test scores as the top non-HS curriculum factors for the pre-college 
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characteristics.  The remaining advanced standing hours and the number of satisfactory 

college preparatory curriculum requirements exhibited very little contribution to the first-

year GPA. 

Excluding the GA HOPE scholarship, the EFC was the top financial situation 

factor in the random forest and XGBoost models, while the Zell Miller factor was the top 

for the linear regression and the three SVM models.  PELL grant factor was also one of 

the top factors within the financial situations in the random forest and XGBoost models.  

The remaining financial situation factors exhibited little contribution to the first-year 

GPA.  Likewise, the selected major and remaining expenditures exhibited very little 

influence on the GPA. 

One-year retention.  The training data set, comprising 13,078 observations, was 

utilized to develop predictive algorithms for assessing the likelihood of a student not 

retaining at the initial institution.  To address potential data imbalances, two additional 

methods were employed: downsampling the majority class and upsampling the minority 

class.  The downsampling and upsampling techniques aimed to avoid automatic bias 

toward the majority class caused by an imbalance in observations.  Six statistical models 

were developed to analyze the data.  The models consisted of logistic regression, three 

SVM models, random forest, and XGBoost.  The kernels utilized in the SVM models 

were the linear, polynomial, and radial basis function kernels.  The logistic regression 

algorithm did not need to be tuned.  The three SVM models, random forest, and XGBoost 

models were tuned using a grid of 20 models based on 10-fold cross-validation of the 

training data set.  To ensure the replicability of the algorithms, the set.seed() functions 

were utilized for the models.  A tuning grid allowed the models’ parameters to be 
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optimized for the best performance based on the training data set.  The area under the 

curve (AUC) served as the ultimate metric for selecting the optimal model in predicting 

the probability of not being retained at the institution, as recommended by Dey (2021).  

The highest AUC value indicated the optimal model.  After the predictive algorithms 

were developed, all six models analyzed the training and testing data sets to identify the 

factors influencing the one-year retention status, with the emphasis placed on the results 

from the testing data set. 

 Logistic regression.  Under the umbrella of GLM, both linear regression and 

logistic regression serve as essential tools.  However, logistic regression distinguishes 

itself from linear regression by handling dichotomous dependent variables.  The logistic 

regression model was constructed using the logistic_reg() function, utilizing the glm 

engine and classification mode.  No tuning was required to achieve an optimal model.  

The model's outcomes are presented in Table 16.  The Hosmer-Lemeshow’s goodness-of-

fit test yielded, χ2(8) = 12.189, p = .143, was found to be not significant, indicating the 

model was a good fit.  The AIC value was 13,270 and BIC value was 13,494.  

McFadden’s pseudo-R2 was calculated at .047, indicating the model accounted for 4.7% 

of the variance in the data set, while Nagelkerke’s pseudo-R2 stood at .074, signifying 

7.4% of the variance was explained by the model.   
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Table 16  

 

Logistic Regression Results on Training Data Set for One-year Retention Dependent 

Variable 

 
              95% CI 

  B SE z p   OR LL UL 

Intercept -1.701 0.098 -17.356 < .001 *** 0.182 0.150 0.221 
Student Characteristics         
  Gender .281 0.045 6.206 < .001 *** 1.325 1.212 1.448 
  Race/Ethnicity -.070 0.024 -2.888 .004 ** 0.932 0.889 0.978 
  First Generation Status .101 0.065 1.547 .122  1.106 0.973 1.257 
  HS Locale .104 0.023 4.587 < .001 *** 1.109 1.061 1.160 
Pre-college Characteristics         
  HS GPA -.243 0.036 -6.751 < .001 *** 0.784 0.731 0.842 
  Admissions Test Scores .169 0.029 5.730 < .001 *** 1.184 1.118 1.254 
  AP Hours -.057 0.027 -2.149 .032 * 0.945 0.897 0.995 
  CLEP Hours .011 0.021 0.523 .601  1.011 0.964 1.051 
  IB Hours -.011 0.025 -0.445 .656  0.989 0.938 1.034 
  Other Hours -.018 0.029 -0.629 .529  0.982 0.911 1.028 
  College Prep. Curriculum -.045 0.023 -1.988 .047 * 0.956 0.914 1.000 
  CM & Ready Mean -.106 0.034 -3.098 .002 ** 0.900 0.842 0.962 
  English (CMR) -.006 0.030 -0.186 .852  0.995 0.938 1.054 
  Math (CMR) .052 0.030 1.737 .082  1.053 0.994 1.116 
  Science (CMR) -.015 0.026 -0.599 .549  0.985 0.936 1.036 
  Social Studies (CMR) .014 0.025 0.538 .590  1.014 0.965 1.065 
Financial Situations         
  EFC -.158 0.043 -3.707 < .001 *** 0.854 0.786 0.928 
  GA HOPE Scholarship -.252 0.029 -8.795 < .001 *** 0.777 0.735 0.822 
  Zell Miller Indicator .070 0.090 0.775 .438  1.072 0.898 1.279 
  PELL Grant -.062 0.041 -1.521 .128  0.940 0.868 1.018 
  Federal Sub. Loans .014 0.031 0.444 .657  1.014 0.953 1.079 
  Federal Unsub. Loans -.003 0.029 -0.093 .926  0.997 0.942 1.055 
  Other Loans -.016 0.022 -0.723 .470  0.984 0.943 1.027 
Major Groupings .020 0.011 1.775 .076  1.020 0.998 1.042 
Institutional Expenditures         
  Academic & Inst. Support .019 0.033 0.564 .573  1.019 0.955 1.087 
  All Others -.002 0.029 -0.086 .931  0.998 0.942 1.056 
  Instruction .042 0.033 1.270 .204  1.043 0.978 1.112 
  Public Service & Research -.121 0.030 -3.955 < .001 *** 0.886 0.835 0.941 
  Student Service Support .012 0.030 0.420 .674   1.012 0.956 1.073 

Note. AIC = 13,270, BIC = 13,494, McFadden pseudo-R2 = .047, and Nagelkerke 
pseudo-R2 = .074. *** p < .001. *** p < .001. ** p < .01. * p < .05. CM & Ready Mean = 
mean value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = 
federal subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high 
school. GPA = grade point average. CMR = mean value of the CCRPI content mastery 
and readiness scores. EFC = expected family contribution. Inst. = institutional. 
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A total of 11 of the 29 independent variables were found to be significant in 

predicting the student’s likelihood of not retaining.  Of the student characteristics, gender 

(B = .281, z = 6.206, p < .001, OR = 1.325, 95% CI [1.212, 1.448]), race/ethnicity (B = -

.070, z = -2.888, p = 0.004, OR = 0.932, 95% CI [0.889, 0.978]), and HS locale (B = .104, 

z = 4.587, p < .001, OR = 1.109, 95% CI [1.061, 1.160]) were found to be significant.  

Male students exhibited a departure likelihood 1.325 times higher than their female 

counterparts.  Furthermore, graduates from HS located in towns or rural areas had a 

departure likelihood 1.109 times greater than those from urban or suburban high schools.  

Intriguingly, students identified as Hispanic or placed into the Other grouping showed a 

decreased likelihood of departure in comparison to their White or Black and African 

American peers (OR = 0.932).  However, it is noteworthy the odds of locale of the HS 

and race and ethnicity on non-retention was nearly equal to one, suggesting these two 

variables did not significantly impact the decision to depart. 

Five of the pre-college characteristics were found to be significant (HS GPA, B = 

-.243, z = -6.751, p < .001, OR = 0.784, 95% CI [0.731, 0.842]; admissions test scores, B 

= .169, z = 5.730, p < .001, OR = 1.184, 95% CI [1.118, 1.254]; AP Hours, B = -.057, z = 

-2.149, p = .032, OR = 0.945, 95% CI [0.897, 0.995]; college preparatory curriculum, B = 

-.045, z = -1.988, p = .047, OR = 0.956, 95% CI [0.914, 1.000]; and content mastery and 

readiness mean, B = -.106, z = -3.098, p = .002, OR = 0.900, 95% CI [0.842, 0.963]).  

Students with higher HS GPAs were 0.784 times less likely to depart from the institution 

compared to their peers with lower HS GPAs.  This finding implies for every unit 

increase in HS GPA, the odds of departing decreased by 21.6%.  In practical terms, 

students who performed well academically in HS had a significantly reduced likelihood 
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of departing from the institution.  In contrast, students with higher admission test scores 

were 1.184 times more likely to depart than those with lower test scores.  This means for 

every unit increase in admission test scores, the odds of departing increased by 18.4%.  

Surprisingly, higher test scores did not correlate with greater retention; instead, students 

with comparatively lower test scores exhibited a higher likelihood of staying enrolled.  It 

is notable the odds ratio for the test scores was close to one, suggesting the variable’s 

impact was limited.  Additionally, students who earned AP hours (OR = 0.945) or 

successfully fulfilled all aspects of the CPC (OR = 0.956) exhibited slightly lower odds of 

departing from the institution.   

The expected family contribution (B = -.158, z = -3.707, p < .001, OR = 0.854, 

95% CI [0.786, 0.928]) and GA HOPE scholarship (B = -.252, z = -8.795, p < .001, OR = 

0.777, 95% CI [0.735, 0.822]) were the only financial situation variables found to be 

significant.  Students with higher expected family contributions were found to be 0.854 

times less likely to depart from the institution.  This finding means for every unit increase 

in the expected family contribution the odds of departure decreased by 14.6%.  This 

finding suggests students from families with higher financial resources might have 

greater stability and support, reducing the chances of departure.  Similarly, students who 

received the GA HOPE scholarship demonstrated a departure likelihood 0.777 times 

lower than their counterparts.  In essence, students benefiting from the scholarship 

program had a 22.3% reduction in odds of departing from the institution compared to 

students without the scholarship.  The GA HOPE scholarship, serving as a significant 

financial aid initiative, played a substantial role in retaining students within the academic 

environment.  Only the public and research expenditures, public and research support, B 
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= -.121, z = -3.955, p < .001, OR = 0.886, 95% CI [0.835, 0.941], were found to be 

significant. 

 Assumptions for logistic regression.  The first assumption of logistic regression 

necessitates the classification of the dependent variable as dichotomous, with two distinct 

values: zero denoting retained students and one indicating non-retained students.  During 

the preprocessing stage, a thorough examination of univariate and multivariate outliers 

was conducted.  Although certain variables were initially flagged as outliers, upon closer 

examination, the values were deemed acceptable.  The correlation values between 

independent variables and the log odds of non-retention probabilities were generated and 

displayed Figure 25.  Surprisingly, among the 29 independent variables, four exhibited no 

linear relationship with the log odds of the predicted probabilities, indicating a lack 

influence.  GA HOPE scholarship (r(13,078) = -.762, p < .001) and HS GPA (r(13,078) = 

-.708, p < .001) have the two highest correlations to the log odds of the predicted 

probabilities.  Both variables have a very strong negative relationship, in which the 

higher the value of the independent factor the more likely the student will retain rather 

than depart from the institution.  Gender, r(13,078) = .375, p < .001, exhibited a positive 

negative relationship with the log odds of the predicted values.  Public and research 

expenditures (r(13,078) = -.308, p < .001), AP hours (r(13,078) = -.274, p < .001), 

expected family contribution (r(13,078) = -.264, p < .001), EFC (r(13,078) = -.262, p < 

.001), instruction expenditures (r(13,078) = -.224, p < .001), and student support service 

expenditures (r(13,078) = -.205, p < .001) have weak negative relationships with the log 

odds of the predicted values.  The remaining variables either exhibited a very weak or no 

relationship with the log odds of the predicted probabilities.  Additionally, 
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multicollinearity was investigated, and all variables demonstrated minimal levels of 

multicollinearity, adhering to the specified threshold value of five.  The low levels 

multicollinearity was the result of the data cleanup during the preprocessing stage, 

effectively rectifying any pre-existing multicollinearity issues. 

 
Figure 25. Correlational analysis to the log odds of the predicted probabilities of not 

retaining. The plot displays the correlation of the independent variables with the log odds 
of the predicted probabilities of not retaining.  The color of the bar indicates whether the 
impact is negative or positive on the retention status. *** p < .001. *** p < .001. ** p < 
.01. * p < .05. CM & Ready Mean = mean value of the CCRPI content mastery and 
readiness scores. Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = 
federal unsubsidized loans. HS = high school. GPA = grade point average. CMR = mean 
value of the CCRPI content mastery and readiness scores. EFC = expected family 
contribution. 
 

Sampling modifications.  The training data set underwent a downsampling 

techniques facilitated by the step_downsample() function, which led to a reduction in the 

majority class.  This downsizing aimed to mitigate any significant impact of class 

imbalances to prevent bias towards the majority class.  The original data set, comprising 
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13,078 observations, was reduced to 5,812 observations.  Subsequently, a logistic 

regression model was constructed on the downsample training data set.  The model was 

developed using the logistic_reg() function, with the engine set to glm and the mode 

configured for classification.  The model did not require any tuning to achieve its optimal 

state.  The outcomes of this logistic regression model are presented in Table 17.  The 

Hosmer-Lemeshow’s goodness-of-fit, χ2(8) = 6.985, p = .538, was found to be not 

significant indicating the downsample model was a good fit.  The downsample model’s 

AIC is 7,707 and BIC is 7,907.  The McFadden’s pseudo-R2 was .051 and Nagelkerke’s 

pseudo-R2 was .091.  McFadden’s pseudo-R2 value indicated 5.1% and Nagelkerke’s 

pseudo-R2 indicated 9.1% of the variance was accounted for within the data set.   
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Table 17  

 

Logistic Regression Results on Training Data Set with Downsampling Techniques for 

One-year Retention Dependent Variable 

 
              95% CI 

  B SE z p   OR LL UL 

Intercept -.450 0.123 -3.664 < .001 *** 0.638 0.501 0.811 
Student Characteristics         
  Gender .285 0.057 4.964 < .001 *** 1.330 1.188 1.489 
  Race/Ethnicity -.090 0.029 -3.064 .002 ** 0.914 0.862 0.968 
  First Generation Status .056 0.083 0.674 .500  1.058 0.899 1.245 
  HS Locale .100 0.028 3.530 < .001 *** 1.106 1.046 1.169 
Pre-college Characteristics         
  HS GPA -.295 0.045 -6.638 < .001 *** 0.744 0.682 0.812 
  Admissions Test Scores .155 0.037 4.179 < .001 *** 1.168 1.086 1.256 
  AP Hours -.033 0.033 -1.005 .315  0.968 0.907 1.032 
  CLEP Hours .000 0.023 0.006 .995  1.000 0.950 1.048 
  IB Hours -.007 0.030 -0.244 .807  0.993 0.934 1.052 
  Other Hours -.031 0.036 -0.868 .385  0.970 0.890 1.028 
  College Prep. Curriculum -.069 0.030 -2.294 .022 * 0.933 0.879 0.990 
  CM & Ready Mean -.086 0.043 -2.020 .043 * 0.917 0.844 0.997 
  English (CMR) -.065 0.037 -1.748 .080  0.937 0.870 1.008 
  Math (CMR) .069 0.037 1.857 .063  1.071 0.996 1.152 
  Science (CMR) .011 0.032 0.340 .734  1.011 0.949 1.077 
  Social Studies (CMR) .012 0.032 0.384 .701   1.012 0.951 1.077 
Financial Situations         
  EFC -.175 0.053 -3.278 .001 ** 0.839 0.756 0.932 
  GA HOPE Scholarship -.226 0.036 -6.261 < .001 *** 0.797 0.743 0.856 
  Zell Miller Indicator .131 0.109 1.205 .228  1.140 0.921 1.411 
  PELL Grant -.065 0.051 -1.284 .199  0.937 0.848 1.035 
  Federal Sub. Loans .030 0.039 0.763 .445  1.030 0.954 1.113 
  Federal Unsub. Loans -.015 0.036 -0.408 .683  0.985 0.918 1.058 
  Other Loans -.020 0.028 -0.708 .479  0.980 0.928 1.036 
Major Groupings .029 0.014 2.062 .039 * 1.029 1.001 1.058 
Institutional Expenditures         
  Academic & Inst. Support .051 0.042 1.209 .227  1.052 0.969 1.142 
  All Others .020 0.037 0.555 .579  1.021 0.950 1.097 
  Instruction .059 0.041 1.437 .151  1.061 0.979 1.150 
  Public Service & Research -.079 0.038 -2.074 .038 * 0.924 0.857 0.996 
  Student Service Support .005 0.037 0.130 .897   1.005 0.934 1.080 

Note. AIC = 7,707, BIC = 7,907, McFadden pseudo-R2 = .051, and Nagelkerke pseudo-R2 
= .091. *** p < .001. *** p < .001. ** p < .01. * p < .05. CM & Ready Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. Inst. = institutional.  
 

The results of the downsample model indicated 11 of the 29 independent variables 

were significant.  From the student characteristic variables, gender (B = .285, z = 4.964, p 
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< .001, OR = 1.330, 95% CI [1.188, 1.489]), race and ethnicity (B = -.090, z = -3.064, p = 

0.002, OR = 0.914, 95% CI [0.862, 0.968]), and HS locale (B = .100, z = 3.530, p < .001, 

OR = 1.106, 95% CI [1.046, 1.169]) were found to be significant.  From the downsample 

model, male students were 1.330 times more likely to not retain than their female 

counterparts.  While significant, race and ethnicity played a small factor in the departure 

decisions as White or Black and African American students were more likely to depart 

than their counterparts identified as Hispanic or other underrepresented minorities.  Only 

HS GPA (B = -.295, z = -6.638, p < .001, OR = 0.744, 95% CI [0.682, 0.812]), 

admissions test scores (B = .155, z = 4.179, p < .001, OR = 1.1.168, 95% CI [1.086, 

1.256]), college preparatory curriculum (B = -.069, z = -2.294, p = 0.022, OR = 0.933, 

95% CI [0.879, 0.990]), and content mastery and readiness mean (B = -.086, z = --2.020, 

p = .043, OR = 0.917, 95% CI [0.844, 0.997]) were found to be significant from the pre-

college characteristics.  The downsample model also indicated the higher the students HS 

GPA were less likely not to depart than those with lower HS GPA.  Students with higher 

HS GPA were 0.744 times less likely to depart, and with every unit increase in the HS 

GPA the odds of departing decreased by 25.6%.  Higher test scores did not correlate with 

greater retention as the odds ratio was 1.168, meaning with every unit increase of the 

admissions test scores the odds of departing increased by 16.8%.  Alternatively, students 

with comparatively lower test scores exhibited a higher likelihood of staying enrolled.   

Two of the financial situation variables were found to be significant (expected 

family contribution, B = -.175, z = -3.278, p = .001, OR = 0.839, 95% CI [0.756, 0.932]; 

and GA HOPE scholarship, B = -.226, z = -6.261, p < .001, OR = 0.797, 95% CI [0.743, 

0.856]).  Students with higher expected family contributions were found to be 0.839 
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times less likely to depart from the institution.  This finding means for every unit increase 

in the expected family contribution, the odds of departure decreased by 16.1%.  Similarly, 

students who received the GA HOPE scholarship demonstrated a departure likelihood 

0.798 times lower than their counterparts.  Students benefiting from the scholarship 

program had a 20.3% reduction in odds of departing from the institution compared to 

students without the scholarship.  The major grouping of the programs of study, B = .029, 

z = 2.062, p = .039, OR = 1.029, 95% CI [1.001, 1.058], was found to be significant.  

Only the public and research expenditures, public service and research expenditures, B = 

-.079, z = -2.074, p = .038, OR = 0.924, 95% CI [0.857, 0.996], were found to be 

significant.  

Lastly, the training data set underwent an upsampling technique facilitated by the 

step_upsample() function, which led to an increase in the minority class.  The upsizing 

aimed to mitigate any significant impact of class imbalances to prevent bias towards the 

majority class.  The original 13,078 observations were increased to 20,344 observations.  

The logistic regression model using the upsample training data set was built utilizing the 

logistic_reg() function with the engine set to glm and the mode set to classification.  No 

retuning was needed to achieve the optimal model.  The results of the logistic regression 

model utilizing the upsample are displayed in Table 18.  The Hosmer-Lemeshow’s 

goodness-of-fit, χ2(8) = 17.555, p = .025, was found to be significant indicating the 

upsample model was poor fit.  The upsample model’s AIC was 26,860 and BIC was 

27,097.  The AIC and BIC values for the upsample were higher than the regular model 

indicating a poor fit.  The McFadden’s pseudo-R2 was .050 and Nagelkerke’s pseudo-R2 
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was .089.  McFadden’s pseudo-R2 value indicated only 5.0% and Nagelkerke’s pseudo-R2 

indicated only 8.9% of the variance was accounted for by the upsample model. 

Table 18  

 

Logistic Regression Results on Data Set with Upsampling Techniques for One-year 

Retention Dependent Variable 

 
              95% CI 

  B SE z p   OR LL UL 

Intercept -.463 0.065 -7.125 < .001 *** 0.629 0.554 0.715 
Student Characteristics         
  Gender .319 0.030 10.465 < .001 *** 1.376 1.296 1.461 
  Race/Ethnicity -.069 0.016 -4.360 < .001 *** 0.934 0.905 0.963 
  First Generation Status .078 0.044 1.758 .079  1.081 0.991 1.180 
  HS Locale .099 0.015 6.527 < .001 *** 1.104 1.072 1.137 
Pre-college Characteristics         
  HS GPA -.250 0.024 -10.558 < .001 *** 0.778 0.743 0.815 
  Admissions Test Scores .145 0.020 7.365 < .001 *** 1.156 1.112 1.202 
  AP Hours -.069 0.018 -3.920 < .001 *** 0.933 0.902 0.966 
  CLEP Hours .005 0.013 0.415 .679  1.005 0.979 1.032 
  IB Hours -.028 0.017 -1.665 .096  0.973 0.940 1.004 
  Other Hours -.032 0.021 -1.541 .123  0.968 0.923 1.004 
  College Prep. Curriculum -.041 0.016 -2.636 .008 ** 0.960 0.931 0.990 
  CM & Ready Mean -.096 0.023 -4.158 < .001 *** 0.909 0.868 0.951 
  English (CMR) -.010 0.020 -0.486 .627  0.990 0.952 1.030 
  Math (CMR) .036 0.020 1.808 .071  1.037 0.997 1.078 
  Science (CMR) -.006 0.017 -0.335 .738  0.994 0.961 1.029 
  Social Studies (CMR) .011 0.017 0.649 .517  1.011 0.978 1.045 
Financial Situations         
  EFC -.165 0.029 -5.694 < .001 *** 0.848 0.802 0.898 
  GA HOPE Scholarship -.236 0.019 -12.190 < .001 *** 0.790 0.760 0.820 
  Zell Miller Indicator .114 0.059 1.945 .052  1.121 0.999 1.257 
  PELL Grant -.073 0.027 -2.675 .007 ** 0.930 0.881 0.981 
  Federal Sub. Loans .035 0.021 1.690 .091  1.036 0.994 1.079 
  Federal Unsub. Loans -.023 0.019 -1.192 .233  0.977 0.941 1.015 
  Other Loans -.013 0.015 -0.863 .388  0.987 0.959 1.016 
Major Groupings .021 0.007 2.819 .005 ** 1.021 1.006 1.036 
Institutional Expenditures         
  Academic & Inst. Support .040 0.022 1.771 .077  1.040 0.996 1.087 
  All Others -.017 0.020 -0.849 .396  0.983 0.946 1.022 
  Instruction .026 0.022 1.193 .233  1.026 0.983 1.071 
  Public Service & Research -.113 0.020 -5.526 < .001 *** 0.893 0.858 0.930 
  Student Service Support .000 0.020 0.004 .997   1.000 0.962 1.040 

Note. AIC = 26,793, BIC = 27,030, McFadden pseudo-R2 = .052, and Nagelkerke 
pseudo-R2 = .093. *** p < .001. ** p < .01. * p < .05. CM & Ready Mean = mean value 
of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. Inst. = institutional.  
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A total of 13 variables were found to be significant out of 29 factors.  Three of the 

four student characteristic variables were found to be significant (gender, B =.319, z = 

10.465, p < .001, OR = 1.376, 95% CI [1.296, 1.461]; race and ethnicity, B = -.069, z = -

4.360, p < .001, OR = 0.934, 95% CI [0.905, 0.963]; and HS locale, B = .099, z = 6.527, p 

< .001, OR = 1.104, 95% CI [1.072, 1.137]).  Of the student characteristics for the 

upsample mode, student’s gender was the factor with the most contribution to the 

departure decision.  Male students were 1.376 times more likely to depart than their 

female counterparts.  While found to be significant, students’ race and ethnicity and HS 

locale the odds ratios were close to one indicating these three factors were not major 

contributors to the departure decision. 

Within the pre-college characteristics, the HS GPA (B = -.250, z = -10.558, p < 

.001, OR = 0.778, 95% CI [0.743, 0.815]) and admissions test scores (B = .145, z = 7.365, 

p < .001, OR = 1.156, 95% CI [1.112, 1.202]) were found to be significant.  The AP 

hours, B = -069, z = -3.920, p < .001, OR = 0.933, 95% CI [0.902, 0.966] variable was the 

only advance hours found to be significant.  The number of college preparatory 

curriculum satisfied, B = -041, z = -2.636, p = .008, OR = 0.960, 95% CI [0.931, 0.990], 

was found to be significant.  The last pre-college characteristics found to be significant 

was the content mastery and readiness mean, B = -096, z = -4.158, p < .001, OR = 0.909, 

95% CI [0.868, 0.951], variable.  HS GPA was the variable with the highest contribution 

in the departure decisions.  Students with a higher HS GPA are 0.778 times less likely to 

departure than those with a lower HS GPA, and with every unit increase in the HS GPA 

the odds of departing decreased by 22.2%.  The odds ratio of the admissions test scores 

indicated students with higher scores were 1.156 times more likely to depart, meaning 
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with every unit increase of the admissions test scores the odds of departing increased by 

15.6%.  The expected family contribution (B = -.165, z = -5694, p < .001, OR = 0.848, 

95% CI [0.802, 0.898]), GA HOPE scholarship (B = -.236, z = -12.1980, p < .001, OR = 

0.790, 95% CI [0.760, 0.80]), and PELL grant (B = -.073, z = -2.675, p = .007, OR = 

0.930, 95% CI [0.881, 0.981]) were found to be significant.  Students with higher 

expected family contributions were found to be 0.848 times less likely to depart from the 

institution.  This finding means for every unit increase in the EFC the odds of departure 

decreased by 15.2%.  Similarly, students who received the GA HOPE scholarship 

demonstrated a departure likelihood 0.790 times lower than their counterparts.  Students 

benefiting from the scholarship program had a 21.0% reduction in odds of departing from 

the institution compared to students without the scholarship.  Unlike the original and 

downsample model, PELL grant was found to be significant, and the odds were .933 

times less likely to depart than those who do not receive the grant.  Students benefiting 

from the grant had a 7.0% reduction in the odds with every unit increase in the PELL 

grant.  The major grouping of the program of study (B = .021, z = 2.819, p = .005, OR = 

1.021, 95% CI [1.006, 1.036]) and public service and research expenditures (B = -.113, z 

= -5.526, p < .001, OR = 0.893, 95% CI [0.858, 0.930]) were found to be significant. 

Testing data set.  The results of the logistic regression model on the testing data 

set are displayed in Table 19.  The Hosmer-Lemeshow’s goodness-of-fit test yielded, 

χ2(8) = 11.158, p = .193, was found to be not significant, indicating the model was a good 

fit.  The AIC value was 8,948 and BIC value was 9,160.  McFadden’s pseudo-R2 was 

calculated at .048, indicating the model accounted for 4.8% of the variance in the data 
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set, while Nagelkerke’s pseudo-R2 stood at .077, signifying 7.7% of the variance was 

explained by the model.  Ten of the 29 variables were found to be significant. 

Table 19  

 

Logistic Regression Results on Testing Data Set for One-year Retention Dependent 

Variable 

 
              95% CI 

  B SE z p   OR LL UL 

Intercept -1.400 0.117 -11.968 < .001 *** 0.247 0.196 0.310 
Student Characteristics         
  Gender .185 0.056 3.327 .001 ** 1.204 1.079 1.342 
  Race/Ethnicity -.069 0.029 -2.342 .019 * 0.933 0.881 0.988 
  First Generation Status .199 0.080 2.496 .013 * 1.221 1.043 1.426 
  HS Locale .037 0.027 1.349 .177  1.038 0.983 1.095 
Pre-college Characteristics         
  HS GPA -.228 0.043 -5.351 < .001 *** 0.796 0.732 0.865 
  Admissions Test Scores .191 0.036 5.357 < .001 *** 1.211 1.129 1.299 
  AP Hours -.081 0.033 -2.500 .012 * 0.922 0.865 0.982 
  CLEP Hours .036 0.029 1.232 .218  1.036 0.976 1.096 
  IB Hours -.061 0.037 -1.664 .096  0.941 0.866 1.002 
  Other Hours .028 0.016 1.764 .078  1.029 0.995 1.062 
  College Prep. Curriculum .002 0.028 0.069 .945  1.002 0.950 1.059 
  CM & Ready Mean -.011 0.042 -0.273 .785  0.989 0.911 1.074 
  English (CMR) -.045 0.036 -1.243 .214  0.956 0.891 1.026 
  Math (CMR) .024 0.036 0.662 .508  1.024 0.954 1.100 
  Science (CMR) -.055 0.031 -1.760 .078  0.947 0.891 1.006 
  Social Studies (CMR) -.044 0.031 -1.413 .158  0.957 0.900 1.017 
Financial Situations         
  EFC -.187 0.051 -3.666 < .001 *** 0.829 0.750 0.916 
  GA HOPE Scholarship -.270 0.035 -7.805 < .001 *** 0.763 0.713 0.817 
  Zell Miller Indicator -.178 0.118 -1.508 .132  0.837 0.663 1.052 
  PELL Grant -.165 0.049 -3.355 .001 ** 0.848 0.769 0.933 
  Federal Sub. Loans .038 0.038 1.008 .313  1.039 0.964 1.119 
  Federal Unsub. Loans -.011 0.035 -0.315 .753  0.989 0.923 1.060 
  Other Loans -.032 0.026 -1.227 .220  0.969 0.920 1.019 
Major Groupings .007 0.013 0.544 .586  1.007 0.981 1.034 
Institutional Expenditures         
  Academic & Inst. Support .030 0.040 0.740 .459  1.030 0.952 1.115 
  All Others .020 0.035 0.587 .557  1.020 0.954 1.092 
  Instruction .051 0.040 1.261 .207  1.052 0.973 1.139 
  Public Service & Research -.082 0.036 -2.238 .025 * 0.922 0.858 0.990 
  Student Service Support .049 0.036 1.357 .175   1.050 0.979 1.127 

Note. AIC = 8,948, BIC = 9,160, McFadden pseudo-R2 = .048, and Nagelkerke pseudo-R2 
= .077. *** p < .001. *** p < .001. ** p < .01. * p < .05. CM & Ready Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. Inst. = institutional. 
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 A total of 10 of the 29 factors were found to be significant.  In comparing the 

results from the testing data set to the results from three training data sets, gender, race 

and ethnicity, HS GPA, admission test scores, AP hours, EFC, GA HOPE scholarship, 

PELL grant, and public service and research expenditures remained significant.  First 

generation status of students (B = .199, z = 2.496, p = .013, OR = 1.221, 95% CI [1.043, 

1.426]) was identified from the testing data set to be significant.  From the findings, first 

generation students are 1.221 times more likely to depart than non-first generation 

students.  College preparatory curriculum, content mastery and readiness mean, and 

major groupings were not found to be significant from the testing data set when the 

factors were found to be significant in the three models on the training data set. 

 Figure 26 illustrates the variable importance analysis across the three models from 

the training data sets in addition to the results from the testing data set.  From the results 

of the three training data set models, GA HOPE scholarship, HS GPA, and gender are the 

top three most influential factors, exhibiting a strong negative impact on the departure of 

a student.  Unlike the GA HOPE scholarship and HS GPA, gender exhibited a positive 

impact, indicating male students are more likely than female students to depart.  In the 

three models on the training data sets, admissions test scores and HS locale placed in the 

fourth and fifth spots, exhibiting a moderate positive influence on departing from the 

institution.  For each of the three models on the training data sets, none of the five HS 

curriculum variables were ranked in the top five spots.  Content mastery and readiness 

mean ranked in the top 10 only in the no modification training model. 
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Figure 26. One-year retention variable importance plot for the logistic regression 

models.  The plot displays the variables in order of impact from highest to lowest with the 
names of the variables located on the y-axis of the graph.  The color of the bar indicates 
whether the impact is negative or positive on the one-year retention status. CM & Ready 
Mean = mean value of the CCRPI content mastery and readiness scores. Federal Sub. 
Loans = federal subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS 
= high school. GPA = grade point average. CMR = mean value of the CCRPI content 
mastery and readiness scores. EFC = expected family contribution. 

 
 The variable importance results from the testing data revealed a separate set of 

influential factors, in which the top five relate to the student's academic preparation and 

ability to pay for the continued cost of attending.  GA HOPE scholarship (importance = 

7.805, rescaled importance = 100.000) maintained the top influential factor with a 

negative influence.  Admissions test scores (importance = 5.357, rescaled importance = 

68.635) barely surpassed HS GPA (importance = 5.351, rescaled importance = 68.565) 

for the second-place factor.  Admissions test scores exhibited a moderate positive 

influence, while HS GPA exhibited a moderate negative influence.  These findings 

indicate students with higher admissions test scores are more likely to depart, and 
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students with higher HS GPA are less likely to depart.  Surprisingly, EFC (importance = 

3.666, rescaled importance = 46.972) and PELL Grant (importance = 3.355, rescaled 

importance = 42.989) were ranked fourth and fifth with negative moderate influence on 

the decision to depart. 

 Support vector machine with linear kernel.  The SVM using a linear kernel was 

implemented via the svm_linear() function, employing the kernlab engine and setting the 

mode to classification.  The cost and margin components underwent refinement through a 

grid of 20 models utilizing the training data set.  A set.seed() function was employed for 

replication purposes.  As highlighted by Batuwita and Palada (2012), SVM models are 

sensitive to data imbalances, potentially resulting in suboptimal models. Following the 

tuning process, the best model was identified based on the highest AUC value (0.554).  

This optimized model also exhibited an accuracy rate of 0.778, a sensitivity rate of 1.000, 

and a specificity rate of 0.001.  These initial accuracy metrics suggest a predisposition for 

the model to favor the majority class in one-year retention predictions.  The optimal 

configuration for the model included a cost value of 0.008 and a margin of 0.120. 

The SVM model with a linear kernel underwent retuning for both the 

downsampled and upsampled data sets.  The retuning process for the two models 

involved a tuning grid of 20 models to determine the optimal cost and margin for each 

respective model.  The best-tuned downsampled model achieved an AUC value of 0.644.  

This optimized model exhibited an accuracy rate of 0.588, a sensitivity rate of 0.797, and 

a specificity rate of 0.379.  The optimal configuration for the downsampled model 

included a cost of 0.002 and a margin of 0.122.  The best-tuned upsampled model 

achieved an AUC value of 0.648.  This optimized upsampled model displayed an 
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accuracy rate of 0.592, a sensitivity rate of 0.803, and a specificity rate of 0.382.  The 

optimal configuration for this model included a cost of 0.001 and a margin of 0.067.  

Both the downsampled and upsampled models exhibited substantial improvements in 

performance compared to the original model.  These results indicated noticeable 

enhancements in the accuracy metrics, with no evidence of defaulting to majority 

classification.  The models utilizing the downsample and upsample techniques appeared 

to be advancements over the original model. 

A variable importance analysis was performed on the three SVM models utilizing 

a linear kernel, applied to both the training and testing data sets.  In the model developed 

without sampling modifications, no variable was recognized as influential within the 

training and testing data sets.  In the downsampled model, only the GA HOPE 

scholarship factor was identified as influential (importance = 0.083), while in the 

upsampled model, GA HOPE scholarship also played a role (importance = 0.091) on the 

training data sets.  However, the downsampled and upsampled models on the testing data 

set did not reveal any variable influencing the decision to depart from the institution. 

Support vector machine with polynomial kernel.  The SVM model using a 

polynomial kernel was created through the svm_poly() function, employing the kernlab 

engine and setting the mode to classification.  The cost, degree, scale factor, and margin 

components underwent fine-tuning using a grid of 20 models with the training data set.  A 

set.seed() function was employed for replication.  As previously mentioned, Batuwita and 

Palada (2012) highlighted the susceptibility of SVM models to data imbalances, leading 

to the development of suboptimal models.  The best-tuned model exhibited the highest 

AUC value of 0.625. This tuned model also demonstrated a 0.778 accuracy rate, a 
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sensitivity rate of 1.000, and a specificity rate of 0.001. These accuracy metrics suggest a 

potential tendency for the model to default to the majority class in one-year retention 

predictions.  The optimal model configuration included a cost of 0.115, a degree of 1, a 

scale factor of 0.001, and a margin of 0.034. 

The SVM model with a polynomial kernel underwent retuning for both the 

downsampled and upsampled data sets.  The retuning process for the two models utilized 

a tuning grid of 20 models to determine the optimal cost and margin for each respective 

model.  The best-tuned downsampled model achieved an AUC value of 0.644.  This 

optimized model displayed an accuracy rate of 0.599, a sensitivity rate of 0.729, and a 

specificity rate of 0.471. The optimal configuration for the downsampled model included 

a cost of 0.004, a degree of 3, a scale factor of 0.076, and a margin of 0.089.  The best-

tuned upsampled model achieved an AUC value of 0.687.  This optimized upsampled 

model exhibited an accuracy rate of 0.631, a sensitivity rate of 0.693, and a specificity 

rate of 0.568.  The optimal configuration for this model included a cost of 0.004, a degree 

of 3, a scale factor of 0.076, and a margin of 0.089.  Both the downsampled and 

upsampled models demonstrated substantial improvements in performance compared to 

the original model.  These results indicate marked enhancements over the original model, 

with no evidence of defaulting to majority classification. 

A variable importance analysis using a polynomial kernel SVM was conducted on 

three models, and Figure 27 displays the rescaled importance values.  The analysis was 

performed on both training and testing data sets.  The non-modified training data model 

is excluded from the figure due the inability to produce factors impacting the retention 

status.  For the downsampled model, GA HOPE scholarship (importance = 0.040, 



 

229 
 

rescaled importance = 100.000) emerged as the primary factor influencing departure, 

followed by AP hours (importance = 0.010, rescaled importance = 25.106) and student 

gender (importance = 0.009, rescaled importance = 23.40) within the training data set.  In 

the testing data set, other advanced standing hours (importance = 0.0008, rescaled 

importance = 100.000) and CLEP hours (importance = 0.0008, rescaled importance = 

96.029) were identified as dominant factors influencing departure.  Following closely 

were HS locale, public service and research expenditures, and first-generation status as 

the third to fifth ranked variables with moderate influence.  Admissions test scores, social 

studies proficiency level differences, and other loans contributed minimally to the 

dependent variable. 
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Figure 27. One-year retention variable importance plot for the three SVM models using a 
polynomial kernel on the training and testing data sets.  The plot displays the variables in 
order of impact from highest to lowest with the names of the variables located on the y-
axis of the graph.  The model developed on no sampling modifications resulted in no 
distinguishable factors influencing the dependent variable and was excluded from the 
figure.  DS = downsample.  US = upsample.  CM & Ready Mean = mean value of the 
CCRPI content mastery and readiness scores. Federal Sub. Loans = federal subsidized 
loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. GPA = 
grade point average. CMR = mean value of the CCRPI content mastery and readiness 
scores. EFC = expected family contribution.  
 

From the upsampled model's variable importance on the training data set, the GA 

HOPE scholarship (importance = 0.058, rescaled importance = 100.000) emerged as the 

dominant influential factor on the dependent variable, with HS GPA (importance = 0.013, 

rescaled importance = 21.783) as the second influential factor exhibiting a smaller 

influence.  The factor influences from the testing data set changed, with other advanced 

standing hours (importance = 0.0008, rescaled importance = 100.000) and CLEP hours 
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(importance = 0.0008, rescaled importance = 96.029) being the dominant impactful 

variables.  The level of influence experienced a steep decline from the third to fifth 

ranked variables, including HS locale, public service and research expenditures, and first-

generation status. 

Support vector machine with radial basis function kernel.  The SVM using a 

radial basis function kernel was developed through the svm_rbf() function with the 

engine set to kernlab and mode set to classification.  The cost, rbf sigma, and margin 

components were fine-tunded using a grid of 20 models using the training data set.  A 

set.seed() function was utilized for replication.  Due to data imbalances, the SVM model 

could be susceptible in developing a non-optimal model (Batuwita & Palada, 2012).  The 

best tuned model exhibited the highest AUC value of .626.  This tuned model also 

exhibited a .778 accuracy rate, 1.000 sensitivity rate, and 0.000 specificity rate.  These 

accuracy metrics indicate the model potentially defaulting to the majority class in the 

one-year retention predictions.  The optimal model exhibited a cost of 0.024, radial basis 

function sigma of 0.001, and a margin of 0.048. 

The SVM model with a radial basis function kernel was retuned for both the 

downsampled and upsampled data sets.  The retuning of the two models utilized a tuning 

grid of 20 models to select the optimal cost and margin for each respective model.  The 

best-tuned downsampled model achieved an AUC value of .644.  This optimized model 

displayed an accuracy rate of .588, a sensitivity rate of .797, and a specificity rate of .379.  

The optimal configuration for the downsample exhibited a cost of 19.463, radial basis 

function sigma of 0.001, and a margin of 0.123.  The best-tuned upsample model 

achieved an AUC value of .950.  This optimized upsampled model displayed an accuracy 
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rate of .493, a sensitivity rate of .400, and a specificity rate of .600.  The optimal 

configuration for this model included a cost of 0.019, radial basis function sigma of 

0.467, and a margin of 0.013.  Both the downsampled and upsampled models 

demonstrated substantial improvements in performance when compared to the original 

model.  These results indicated marked enhancements, with no indication of defaulting to 

majority classification, on the original model. 

A variable importance analysis using a radial basis function kernel SVM was 

conducted on three models, and Figure 28 displays the rescaled importance values.  The 

analysis was performed on both training and testing data sets, rescaling the importance 

values for easy comparison across models.  The results from the non-modified training 

data model on the training and testing data sets are excluded from the figure due to no 

factors being identified as exhibiting influence on the dependent variable.  From the 

analysis of the training data sets, the downsampled model only identified GA HOPE 

scholarship as the sole dominant factor impacting the departure decision.  However, the 

number of CLEP and other advanced standing hours were identified as the sole dominant 

factors at the same level in the analysis of the downsampled model applied to the testing 

data set.  The upsampled model applied to the training data set indicated numerous 

factors impacting departure.  The top five factors were federal subsidized and 

unsubsidized loans, PELL grant, gender, and GA HOPE.  Interestingly, the analysis on 

the testing data set yielded no variable influencing the dependent variable.   
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Figure 28. One-year retention variable importance plot for the three SVM models using a 
radial basis function kernel on the training and testing data sets.  The plot displays the 
variables in order of impact from highest to lowest with the names of the variables 
located on the y-axis of the graph.  The model developed on no sampling modifications 
resulted in no distinguishable factors influencing the dependent variable and was 
excluded from the figure.  DS = downsample.  US = upsample.  CM & Ready Mean = 
mean value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = 
federal subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high 
school. GPA = grade point average. CMR = mean value of the CCRPI content mastery 
and readiness scores. EFC = expected family contribution. 
 
 Random forest.  The random forest predictive algorithm was developed using the 

rand_forest() function, where the engine was configured to ranger and the mode set for 

classification.  To optimize the model, the mtry, trees, and min_n parameters were tuned 

through a grid comprising 20 models utilizing training resampled data.  The set.seed() 

function was utilized for replication purposes. 
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The best-tuned model exhibited the highest AUC value of .655, with accuracy rate of 

.778, a sensitivity rate of .999, and a specificity rate of .004.  The optimal model 

configuration included 1,710 trees, an mtry value of 2, and a minimum value of 29.  More 

importantly, the model's early accuracy metrics suggested a possible tendency to default 

to the majority class.   

The random forest predictive model was subjected to retuning using both the 

downsampled and upsampled data sets.  For the downsampled data, the mtry, trees, and 

min_n options were retuned.  The best-tuned downsampled model achieved an AUC 

value of .650.  This retuned model demonstrated a .611 accuracy rate, a .626 sensitivity 

rate, and a .596 specificity rate.  The optimal configuration for this model included 1,306 

trees, an mtry value of 3, and a minimum value of 24.  Similarly, the random forest 

algorithm was retuned using the upsampled data set.  Through the evaluation of a grid 

comprising 20 models, the mtry, trees, and min_n options were optimized, leading to the 

identification of the best-tuned upsampled model with an AUC value of .984.  This 

retuned model exhibited a .940 accuracy rate, a .913 sensitivity rate, and a .966 

specificity rate.  The optimal configuration for the upsampled model comprised 731 trees, 

an mtry value of 24, and a minimum value of 3.  Both the downsampled and upsampled 

models exhibited substantial improvements over the original model, specifically in the 

specificity and sensitivity rates.  These enhancements suggest a significant increase in the 

predictive accuracy and reliability of the random forest models when trained on the 

modified data sets. 

A variable importance analysis was conducted on the three random forest models, 

and Figure 29 displays the rescaled importance values.  The analysis was performed on 
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both training and testing data sets, with the rescaling of the importance values for easy 

comparison across models.  Consistently, the top two factors across the three variable 

importance analyses of the training data set, GA HOPE scholarship (no modifications, 

importance = 0.012, rescaled importance = 100.000; downsample, importance = 0.015, 

rescaled importance = 100.00; upsample, importance = 0.173, rescaled importance = 

100.000) and HS GPA (no modifications, importance = 0.009, rescaled importance = 

74.676; downsample, importance = 0.009, rescaled importance = 64.190; upsample, 

importance = 0.171, rescaled importance = 100.000) were the top two influential factors. 

Figure 29. One-year retention variable importance plot for the three random forest 

models on the training and testing data sets.  The plot displays the variables in order of 
impact from highest to lowest with the names of the variables located on the y-axis of the 
graph.  None = no sampling modifications.  DS = downsample.  US = upsample.  CM & 
Ready Mean = mean value of the CCRPI content mastery and readiness scores. Federal 
Sub. Loans = federal subsidized loans. Federal Unsub. Loans = federal unsubsidized 
loans. HS = high school. GPA = grade point average. CMR = mean value of the CCRPI 
content mastery and readiness scores. EFC = expected family contribution 
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Within the training data sets, the HS GPA factor exhibited its strongest influence 

within the upsample and weakest influence in the downsample model.  EFC was 

identified as the third influential factor in the no modification and downsample models, 

while in the upsample model, the factor was the fourth most influential variable (no 

modifications, importance = 0.008, rescaled importance = 62.863; downsample, 

importance = 0.004, rescaled importance = 44.169; upsample, importance = 0.010, 

rescaled importance = 57.407).  In the upsample model, the content mastery and 

readiness mean (importance = 0.102, rescaled importance = 59.094) variable ranked third 

and exhibited a moderate influence on the departure decision. 

The variable importance analyses for each of the models were rerun on the testing 

data set.  For each of the three models, GA HOPE scholarship and HS GPA remained the 

two dominant influential factors.  In the upsample model, HS GPA was the top factor, 

while GA HOPE scholarship was the top factor for the no modification and downsample 

models.  EFC factor was consistently the third-ranked factor with a moderate impact in 

the no modifications and downsample models, while within the upsample model, it was 

ranked seventh with a small impact.  With a moderate impact, the content mastery and 

readiness mean factor was the third-ranked variable in the upsample model. 

Extreme gradient boosting.  An XGBoost model was constructed using the 

boost_tree() function, configuring the engine to xgboost and setting the mode for 

classification.  Through the tuning process involving a grid of 20 models, the trees, tree 

depth, min_n, loss reduction, sample size, mtry, and learn rate parameters were 

optimized, with the set.seed() function for replication.  The best tuned XGBoost model 

exhibited with an AUC value of .663.  This optimal model also demonstrated an accuracy 
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rate of .779, a sensitivity rate of .988, and a specificity rate of .045.  In optimal 

configuration, the XGBoost model comprised 1,264 trees with an mtry of 22 and a 

minimum value of 20.  The tree depth was set at 5, the learn rate at 0.007, the loss 

reduction at 0.004, and the sample size at 0.285.   

 Using the downsampled data set, the XGBoost predictive algorithm was retuned, 

resulting in an AUC value of .658.  This optimized model exhibited an accuracy rate of 

.617, a sensitivity rate of .644, and a specificity rate of .590.  Utilizing the training data 

set with the applied downsampling techniques, the model developed comprised 123 trees 

with an mtry of 7 and a minimum value of 17.  The tree depth was set to 9, the learn rate 

to 0.020, the loss reduction to 0.006, and the sample size to 0.370.  Additionally, the 

XGBoost predictive algorithm was retuned using the upsampled data set, with the best-

tuned model exhibiting an AUC value of .976.  This optimal model’s other accuracy 

metrics were an accuracy rate of .916, a sensitivity rate of .863, and a specificity rate of 

.969.  The returned XGBoost comprised of 1,686 trees with an mtry of 29 and a 

minimum value of 9.  The tree depth was set to 12, the learn rate to .058, the loss 

reduction to .116, and the sample size to .879.  Both the downsample and upsample 

models exhibited substantial improvements over the original model, specifically in the 

specificity and sensitivity rates. 

 A variable importance analysis was conducted on the three XGB models, and 

Figure 30 displays the rescaled importance values.  The analysis was performed on both 

training and testing data sets, with the rescaling of the importance values to enable easy 

comparison across models.  The top factor was not consistent among the three models on 

the training data set. GA HOPE scholarship (importance = 0.111, rescaled importance = 
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100.000) was the top factor for the model with no sampling modifications, HS GPA 

(importance = 0.161, rescaled importance = 100.000) was the top for the downsampled 

model, and EFC (importance = 0.115, rescaled importance = 100.000) was the top for the 

upsampled model.  The second factor in each of the three models on the training data set 

exhibited a very strong influence on the retention decision, and consistency was exhibited 

in the no sampling modification model and the upsampled. HS GPA (no modification, 

importance = 0.108, rescaled importance = 97.505; upsample, importance = 0.113, 

rescaled importance = 98.484) was the second influential factor in the no sampling 

modification and upsampled models, while GA HOPE scholarship (importance = 0.146, 

rescaled importance = 90.902) was the second factor for the downsampled model. 

 
Figure 30. One-year retention variable importance plot for the three XGB models on the 
training and testing data sets.  The plot displays the variables in order of impact from 
highest to lowest with the names of the variables located on the y-axis of the graph.  
None = no sampling modifications.  DS = downsample.  US = upsample.  CM & Ready 
Mean = mean value of the CCRPI content mastery and readiness scores. Federal Sub. 
Loans = federal subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS 
= high school. GPA = grade point average. CMR = mean value of the CCRPI content 
mastery and readiness scores. EFC = expected family contribution. 
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The five HS curriculum factors were ranked in the top 10 factors across all three 

models in the training data set.  In comparing the results produced from the testing data 

set, the factors maintained their rankings.  Across all three models in the testing data set, 

the top 10 factors are variables representing students' ability to perform academically, 

students' ability to pay, and the HS curriculum factors. 

Variable importance comparison for one-year retention status.  In comparing the 

key factors across the predictive algorithms, the results from the testing data set were 

utilized.  Figure 31 contains the results of the logistic regression model along with the 

other models trained without any sampling modifications.  Due to the imbalance of the 

classes in the dependent variable, the analysis of the three SVM models did not produce 

any factors exhibiting influence on the retention decision.  From the remaining models, 

the analysis of the testing data set indicated GA HOPE scholarship was the top variable in 

the logistic regression and random forest models, while the factor ranked second in the 

XGBoost model.  For the XGBoost model, HS GPA was the top influential factor, while 

it was ranked third in the logistic regression and second in the random forest models.  

Interestingly, the admissions test scores factor was ranked second in the logistic 

regression model, with just a slight advantage over HS GPA.  The EFC factor was 

consistently ranked in the top five factors across the three algorithms. 

Regarding the five HS curriculum variables, the random forest model found the 

content mastery and readiness mean and the differences in English and math proficiency 

levels from the content mastery and readiness mean to be in the top 10 factors with 

moderate influence.  Within the XGBoost model, all five HS curriculum variables were 

ranked in the top 10 factors, with science and social studies proficiency levels differences 
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from the content mastery and readiness mean exhibiting strong influences on the 

retention decision.   

 
Figure 31. One-year retention variable importance plot comparison from predictive 
models utilizing the testing data set with no sampling modifications.  The plot displays 
the variables in order of impact from highest to lowest with the names of the variables 
located on the y-axis of the graph.  Log. Reg. = logistic regression, SVM linear = support 
vector machine using linear kernel.  SVM Poly. = support vector machine using 
polynomial kernel.  SVM RBF = support vector machine using radial basis function.  RF 
= random forest.  XGB = extreme gradient boost.  CM & Ready Mean = mean value of 
the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal subsidized 
loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. GPA = 
grade point average. CMR = mean value of the CCRPI content mastery and readiness 
scores. EFC = expected family contribution. 
 

Figure 32 displays the results of the variable importance analysis on the testing 

data set of the logistic regression model along with the models tuned utilizing the 

downsample techniques. The logistic regression model exhibited the same results, as it 

did not need retuning, resulting in the same outcome as shown in Figure 29.  All the SVM 

models except the model using the linear kernel found factors influencing the dependent 

variable.  However, the SVM models using the polynomial and radial basis kernels 
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identified the number of CLEP and other advanced hours as the top two influential 

factors.   

 
Figure 32. One-year retention variable importance plot comparison from predictive 

models utilizing the testing data set with downsampling techniques applied.  The plot 
displays the variables in order of impact from highest to lowest with the names of the 
variables located on the y-axis of the graph.  Log. Reg. = logistic regression, SVM linear 
= support vector machine using linear kernel.  SVM Poly. = support vector machine using 
polynomial kernel.  SVM RBF = support vector machine using radial basis function.  RF 
= random forest.  XGB = extreme gradient boost.  CM & Ready Mean = mean value of 
the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal subsidized 
loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. GPA = 
grade point average. CMR = mean value of the CCRPI content mastery and readiness 
scores. EFC = expected family contribution. 
 
 In both the random forest and XGBoost downsample models, GA HOPE 

scholarship was identified as the top influential factor, with HS GPA ranking second.  The 

EFC factor was ranked third in the random forest model, with a moderate impact; 

however, it was ranked seventh in the XGBoost model.  All the HS curriculum factors, 

except for the social studies proficiency levels difference from the content mastery and 

readiness mean, were ranked in the top 10 factors, exhibiting moderate impacts.  Content 

mastery and readiness mean exhibited a moderate impact and ranked as the third most 
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influential factor in the XGBoost downsample model.  Additionally, the proficiency 

levels differences from the content mastery and readiness mean factors in the four subject 

areas were ranked in the top 10 with moderate influence in the XGBoost model. 

Figure 31 displays the variable importance analysis on the testing data set from 

the logistic regression model and the tuned upsample models.  The logistic regression 

model exhibited the same results, as it did not need retuning, resulting in the same 

outcome as shown in Figure 31.  Only the SVM model using the polynomial kernel 

produced influential factors, and the model was consistent with the downsample model in 

identifying the number of CLEP and other advanced standing hours as the top two 

factors.  The top factors between the random forest and XGBoost models were not 

consistent.  The analysis on the logistic regression model yielded HS GPA for the random 

forest model and EFC for the XGBoost model as the top influential factor. The GA HOPE 

scholarship factor was ranked second in the random forest model but ninth in the 

XGBoost model, exhibiting a much weaker influence in the XGBoost model.  The 

admissions test scores factor was ranked third with a moderate influence in the XGBoost 

model, while ranking sixth with a small influence in the random forest model.  While 

ranked in the top 10 factors, the five HS curriculum factors in the XGBoost model still 

exhibited moderate influences.  The five HS curriculum factors were also ranked in the 

top 10 factors, but only content mastery and readiness mean exhibited a moderate 

influence in the random forest model. 
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Figure 33. One-year retention variable importance plot comparison from predictive 
models utilizing the testing data set with upsampling techniques applied.  The plot 
displays the variables in order of impact from highest to lowest with the names of the 
variables located on the y-axis of the graph.  Log. Reg. = logistic regression, SVM linear 
= support vector machine using linear kernel.  SVM Poly. = support vector machine using 
polynomial kernel.  SVM RBF = support vector machine using radial basis function.  RF 
= random forest.  XGB = extreme gradient boost.  CM & Ready Mean = mean value of 
the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal subsidized 
loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. GPA = 
grade point average. CMR = mean value of the CCRPI content mastery and readiness 
scores. EFC = expected family contribution. 
 
Second Research Question 

The following is the second research question: 

2. Does one machine learning algorithm (linear regression, logistic regression, 

support vector machine, random forest, and extreme gradient boosting) or an 

ensemble learning algorithm produce a higher accuracy based on the evaluation 

metrics for accuracy in examination of first-year academic performance? 

a. Does one machine learning algorithm (linear regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 
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learning algorithm produce a higher accuracy based on the evaluation 

metrics of the root mean squared error (RMSE) for first-fall GPA? 

b. Does one machine learning algorithm (linear regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 

metrics of the RMSE for first-year GPA? 

c. Does one machine learning algorithm (logistic regression, support vector 

machine, random forest, and extreme gradient boosting) or an ensemble 

learning algorithm produce a higher accuracy based on the evaluation 

metrics of accuracy, sensitivity, specificity, f measure scores, and AUC 

value for one-year retention status? 

First-fall GPA.  To assess the predictive performance of the linear regression 

model and the five optimal models, two sets of cross-validation data were utilized in 

conjunction with the training and testing data sets.  The cross-validation method applied 

to the training data involved a 10-fold approach, providing an initial assessment of 

predictive performance by calculating the mean performance across the folds.  This 

method allowed for a preliminary measurement of accuracy before applying the models 

to unseen or testing data sets.  The second set of cross-validation was applied to the 

testing data, which underwent the same preprocessing procedures as the training data.  

This assessment aimed to evaluate the models' predictive power on unseen data, 

providing insights into their generalization capabilities.  In addition to the cross-

validations, an ensemble learning approach was employed to enhance predictions.  Two 

ensemble methods were used: one involved calculating the mean across the predictions, 
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and the other utilized a blended technique with the stacking package.  The blended 

method involved the use of functions such as blend_predictions() and fit_members() from 

the stack package, resulting in the generation of penalty and mixture values.  These 

values were integrated into the linear_reg() function to blend the predictions together, 

creating more robust and accurate predictions. 

By employing these cross-validation techniques and ensemble methods, a 

comprehensive evaluation of the models' performance was conducted, facilitating the 

selection of the best-performing model based on predictive accuracy and generalization 

capabilities.  Examining the R2 value of the training data set, the best value was obtained 

from using the XGBoost model (R2 = .329), accounting for 32.9% of the variance within 

the data set.  The random forest model (R2 = .318) came in second.  Of the three SVM 

models, the radial basis function kernel (R2 = .305) exhibited the best value to account for 

the variance within the data set.  To assess the overall predictive power of the models, the 

RMSE value was used as a metric to determine accuracy in predictions, as displayed in 

Figure 34.  For the training data set, XGBoost exhibited the best RMSE value of 0.832, 

indicating the best predictive accuracy.  The random forest model followed closely with 

an RMSE of 0.839, signifying its strong performance as well.  Of the three SVMs, the 

SVM using a radial basis function exhibited the best RMSE value (0.863).   
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Figure 34. First-fall GPA predictive algorithms’ RMSE values of the training and testing 

data sets.  The figure also includes the RMSE produced from the two ensemble learning 
methods techniques. 
 

In the testing data set, XGBoost maintained the best RMSE value (.847) with the 

random forest model performing well (RMSE of .850) too.  Among the SVM models, the 

radial basis function kernel exhibited the best performance with an RMSE of .863 in the 

training data set and .882 in the testing data set.  In evaluating the ensemble learning 

methods, the SVM models with linear and polynomial kernels were excluded, as the 

radial basis function kernel model proved to be the most effective among the three SVM 

models.  Of the two ensemble learning methods, the blended method was the best when 

comparing the training and testing data sets.  However, the XGBoost model was the best 

predictive model for the testing data set, with the random forest model coming in at a 

close second.  

When comparing the distribution of RMSE values between the training and 

testing data sets, the RMSE values within the training data set were closely clustered 

together, as illustrated in Figure 35.  The ensemble models were excluded from this 
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comparison, as their inclusion did not lead to improvements in predictive power.  Across 

the 10 folds in the training data set, the XGBoost model exhibited the most favorable 

distribution, with the random forest model following closely behind.  The RMSE values 

for each model across the 10 folds were consistent, indicating stable performance across 

different subsets of the data.  However, when examining the predictive performance 

across the 10 folds of the testing data set, a different distribution pattern emerged.  

Overall, XGBoost still exhibited the most favorable distribution of RMSE values with 

random forest coming in second, indicating consistent accuracy across different folds.  To 

further evaluate these observations, a Mann-Whitney test was conducted to assess 

whether the RMSE values of the 10 folds differed significantly between the training and 

testing data sets.  This statistical analysis aimed to provide a robust evaluation of the 

models' performance consistency across various data subsets.  The linear regression (W = 

23, p = .043) model was found to be significant between the median RMSE value of the 

training and testing data sets.  This would indicate the models’ predictive power on 

unseen data would differ from the training data set.  The three SVM models (linear, W = 

25, p = .063; polynomial, W = 28, p = .105; and radial basis function, W = 24, p = .052), 

random forest (W = 29, p = .123), and XGBoost (W = 27, p = .089) were found not to be 

significant.  While determined to not have significant differences in the median RMSE 

values, these models’ performance could be considered reliable in their performance 

between training and testing data sets.   
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Figure 35. Boxplot of the first-fall GPA’s predictive algorithms’ RMSE values from the 
cross-validation folds of the training and testing data sets. 
 

The Friedman’s test was used to determine if one model’s predictive performance 

is more significant than the others.  Examining the RMSE values of the training data, the 

Friedman’s test was found to be significant with a large effect size, χ2(5) = 48.60, p < 

.001, W = .971.  The Wilcoxon signed-rank with a Bonferroni multiple testing correction 

was utilized to determine which model was more significant.  With the XGBoost model 

(Mdn = .832) performing the best in terms of the lowest RMSE value, the model was 

found to be significantly different from all of the five remaining models: (linear 

regression, Mdn = .850, p = .002; SVM using linear kernel, Mdn = .870, p = .002; SVM 

using polynomial kernel, Mdn = .869, p = .002, SVM using radial basis function kernel, 

Mdn = .868, p = .002; and random forest, Mdn = .838, p = .002).  The Friedman’s test 

was also conducted on the RMSE values produced by the testing data set.  The test was 

found to be significant with a large effect size, χ2(5) = 42.90, p < .001, W = .858.  The 

Wilcoxon signed-rank with a Bonferroni multiple testing correction was utilized to 

determine which model was more significant to use.  With the XGBoost model (Mdn = 
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.852) performing the best in terms of the lowest RMSE value, the model was found to be 

significantly different from four of the five remaining models: (linear regression, Mdn = 

.875, p = .002; SVM using linear kernel, Mdn = .893, p = .002; SVM using polynomial 

kernel, Mdn = .892, p = .002, and SVM using radial basis function kernel, Mdn = .890, p 

= .002).  The difference between random forest and XGBoost was found not to be 

significant in analyzing the testing data RMSE values.  This finding could suggest the 

difference in the predictive power from either the random forest model or XGBoost 

model would not be sufficiently different from each other. 

First-year GPA.  To determine the model with the best predictive performance, 

two sets of cross-validation data were employed in conjunction with the linear regression 

model and the five optimal models.  The cross-validation method applied to the training 

and testing data sets was a 10-fold.  The cross-validation of the training data set provided 

an initial assessment of the predictive performance by calculating the mean performance 

across multiple folds.  This method allowed for preliminary measurement of accuracy 

before the application of the models to unseen or testing data sets.  The second set of 

cross-validation was applied to the testing data, which underwent the same preprocessing 

procedures as the training data.  This assessment aimed to evaluate the models' predictive 

power on unseen data, providing insights into their generalization capabilities.  In 

addition to the cross-validations, an ensemble learning approach was employed to 

enhance the predictions.  Two ensemble methods consistent of calculating the mean 

across the predictions and the utilization of the blended technique with the stacking 

package.  The blended method involved the use of functions like blend_predictions() and 

fit_members() from the stack package, resulting in the generation of a penalty and 
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mixture value.  These values were then integrated into the linear_reg() function to blend 

the predictions together, creating a more robust and accurate predictive model.  By 

employing these cross-validation techniques and ensemble methods, a comprehensive 

evaluation of the models' performance was conducted, facilitating the selection of the 

best-performing model based on predictive accuracy and generalization capabilities. 

Examining the R2 value of the training data set, the best value was obtained from 

using the XGBoost model (R2 = .352), accounting for 35.2% of the variance within the 

data set.  The random forest model (R2 = .340) came in second.  Of the three SVM 

models, the radial basis function kernel (R2 = .325) exhibited the best value to account for 

the variance within the data set.  In assessing the overall predictive power of the models, 

the RMSE value was utilized to determine accuracy in the predictions as illustrated in 

Figure 36.  For the training data set, XGBoost exhibited the best (.779), and random 

forest model exhibited the second best (.787) RMSE value.  The RMSE of the testing 

data set indicated XGBoost still had the best RMSE value (.794) with random forest 

(.798) exhibiting the second best.  The radial basis function kernel (training data set = 

.811; testing data set = .825) exhibited the best of the three SVM models.   
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Figure 36. First-year GPA predictive algorithms’ RMSE values of the training and testing 
data sets.  The figure also includes the RMSE produced from the two ensemble learning 
methods techniques. 
 

For the two ensemble learning methods, the SVM linear and polynomial kernel 

models were excluded as the radial basis function kernel was the best of the three.  Of the 

two ensemble learning methods, the blended method was the best when comparing the 

training and testing data sets.  However, the XGBoost model was the best predictive 

model for the testing data set, with the random forest model coming in at a close second.  

When comparing the distribution of RMSE values between the training and 

testing data sets, the RMSE values within the training data set were closely clustered 

together, as illustrated in Figure 37.  The ensemble models were excluded from this 

comparison, as their inclusion did not lead to improvements in predictive power.  Across 

the 10 folds in the training data set, the XGBoost model exhibited the most favorable 

distribution, with the random forest model following closely behind.  The RMSE values 

for each model across the 10 folds were consistent, indicating stable performance across 

different subsets of the data.  However, when examining the predictive performance 

across the 10 folds of the testing data set, a different distribution pattern emerged.  
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Overall, XGBoost still exhibited the best distribution.  To further evaluate these 

observations, a Mann-Whitney test was conducted to assess whether the RMSE values of 

the 10 folds differed significantly between the training and testing data sets.  This 

statistical analysis aimed to provide an evaluation of the models' performance consistency 

across various data sets.  All of the models were found to not be significant (linear 

regression, W = 39, p = .436; SVM linear, W = 38, p = .393; SVM polynomial, W = 38, p 

= .393; SVM radial basis function, W = 39, p = .436; random forest, W = 41, p = .529; 

and XGBoost, W = 36, p = .315), indicating the models performance between the training 

and testing data sets were fairly similar.  While determined to not have significant 

differences in the median RMSE values, these models could be dependable in the 

performance on unseen data.   

 
Figure 37. Boxplot of the first-year GPA’s predictive algorithms’ RMSE values from the 

cross-validation folds of the training and testing data sets. 
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The Friedman’s test was used to determine if one model’s predictive performance 

is more significant than the others.  Examining the RMSE values of the training data, the 

Friedman’s test was to be significant with a large effect size, χ2(5) = 42.7, p < .001, W = 

.854.  The Wilcoxon signed-rank with a Bonferroni multiple testing correction was 

utilized to determine which model was more significant to use.  With the XGBoost model 

(Mdn = .781) performing the best in terms of the lowest RMSE value, the model was 

found to be significantly different from all of the five remaining models: (linear 

regression, Mdn = .799, p = .029; SVM using linear kernel, Mdn = .816, p = .029; SVM 

using polynomial kernel, Mdn = .816, p = .029, SVM using radial basis function kernel, 

Mdn = .816, p = .029; and random forest, Mdn = .789, p = .029).  The Friedman’s test 

was also conducted on the RMSE values produced by the testing data set.  The test was 

found to be significant with a large effect size, χ2(5) = 43.00, p < .001, W = .859.  The 

Wilcoxon signed-rank with a Bonferroni multiple testing correction was utilized to 

determine which model was more significant to use.  With the XGBoost model (Mdn = 

.784) performing the best in terms of the lowest RMSE value, the model was found to be 

significantly different from four of the five models: (linear regression, Mdn = .806, p = 

.029; SVM using linear kernel, Mdn = .825, p = .029; SVM using polynomial kernel, 

Mdn = .826, p = .029, and SVM using radial basis function kernel, Mdn = .825, p = .029).  

The difference between random forest and XGBoost was not found to be significant when 

analyzing the testing data RMSE values.  This finding could suggest the difference in the 

predictive ability from either the random forest model or XGBoost model would not be 

sufficiently different from each other. 
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One-year retention status.  To determine the model with the best predictive 

performance, two sets of cross-validation data were employed in conjunction with the 

linear regression model and the five optimal models.  A 10-fold cross-validation method 

was applied to both the training and testing data sets.  The cross-validation of the training 

data set provided an initial assessment of predictive performance by calculating the mean 

performance across multiple folds.  This method allowed for a preliminary measurement 

of accuracy before applying the models to unseen or testing data sets.  The second set of 

cross-validation was applied to the testing data, which underwent the same preprocessing 

procedures as the training data.  This assessment aimed to evaluate the models' predictive 

power on unseen data, providing insights into their generalization capabilities.   

In addition to the cross-validations, an ensemble learning approach was employed 

to further enhance the predictions.  Two ensemble methods consisted of calculating the 

mean across the predictions and utilizing the blended technique with the stacking 

package.  The blended method involved the use of functions like blend_predictions() and 

fit_members() from the stack package, resulting in the generation of a penalty and 

mixture value.  These values were integrated into the linear_reg() function to blend the 

predictions together, creating a more robust and accurate predictive model.  By 

employing these cross-validation techniques and ensemble methods, a comprehensive 

evaluation of the models' performance was conducted, facilitating the selection of the 

best-performing model based on predictive accuracy and generalization capabilities.  

From the training and testing data sets, the predicted class were compared to the actual 

class displayed in a two-by-two grid known as a confusion matrix.  The accuracy metrics 

of overall accuracy, sensitivity, specificity, and f-measure scores were produced from the 
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matrix.  Additionally, the AUC value was calculated to assess the accuracy of the model.  

The best model was selected based on the best AUC value, as Dey (2021) indicated this 

metric was the best to determine accuracy. 

Original model.  Table 30 displays the confusion matrices of the predictive 

algorithms' performance on both the training and testing data sets without utilizing data 

rebalancing techniques.  The receiver operating characteristic (ROC) curves are 

illustrated in Figure 38.  Both the table and the figure include the results from the two 

ensemble learning methods.  Across the models, the overall accuracy on the training data 

set was similar, showing a slight decrease when assessing the performance on the testing 

data set.  A notable observation was the high bias towards the majority class within both 

the training and testing data sets.  This bias was a consequence of the class imbalance in 

the retention status within the data sets.  Upon comparing the predicted values to the 

actual values, all six models, along with the two ensemble learning models, exhibited a 

high bias towards the majority class.  This imbalance led to extremely low values of 

specificity.  For example, in the training data set, the logistic regression model had 

specificity values of 0.023, while the SVM models exhibited a specificity of 0.000. 

Similarly, the random forest and XGBoost models showed specificity values of 0.003 and 

0.046, respectively, in the training data set.  These low specificity values indicated a high 

number of false positives, meaning a sizable proportion of students predicted to retain 

were, in fact, not retained.  This observation highlights the challenges posed by class 

imbalance and underscores the need to investigate techniques to address this issue and 

improve any model's predictive performance. 
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Table 20  

 

Confusion Matrices Results of the Predictive Algorithms on the Training and Testing 

Data Sets without Data Rebalancing Procedures 

 

  Training Data Set  Testing Data Set 

  
Actual 

Retained 
Actual Not 
Retained 

 Actual 
Retained 

Actual Not 
Retained 

Logistic Regression      

Predicted Retained 10,114  2,839   6,683  1,917  

Predicted Not Retained 58  67   57  62  

SVM Linear      

Predicted Retained 10,172  2,906   6,740  1,979  

Predicted Not Retained 0    0     0    0    

SVM Polynomial      

Predicted Retained 10,172  2,906   6,740  1,979  

Predicted Not Retained 0    0     0    0    

SVM Radial Basis Function      

Predicted Retained 10,172  2,906   6,740  1,979  

Predicted Not Retained 0    0     0    0    

Random Forest      

Predicted Retained 10,166  2,897   6,735  1,972  

Predicted Not Retained 6  9   5  7  

XGBoost      

Predicted Retained 10,054  2,772   6,662  1,904  

Predicted Not Retained 118  134   78  75  

Ensemble Learning Mean      

Predicted Retained 10,140  2,861   6,717  1,960  

Predicted Not Retained 32  45   23  19  

Ensemble Learning Blended      

Predicted Retained 10,008  2,745   6,651  1,896  

Predicted Not Retained 164  161    89  83  
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Figure 38. One-year retention ROC curves of the predictive algorithms developed on the 
training without any sampling techniques.  The image includes the ROC curves produced 
from the training and testing data sets. 
 

Following Dey's recommendation (2021), the preferred metric to determine the 

best model is the AUC metric.  In the evaluation of AUC values across different models, 

the logistic regression model exhibited an AUC value of .640 for the training data set and 

.643 for the testing data set.  The SVM model using the linear kernel demonstrated an 
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AUC of .554 for the training data set and .503 for the testing data set.  There was an 

improvement in the AUC values for the SVM model using the polynomial kernel (.625 

for training and .623 for testing data sets) and the radial basis function kernel (.626 for 

training and .623 for testing data sets).  Among the models, the random forest exhibited 

AUC values of .655 for the training data set and .649 for the testing data set, whereas 

XGBoost achieved the highest performance with AUC values of .663 for the training data 

set and .653 for the testing data set.  Despite attempts to enhance performance through 

ensemble learning methods, these methods did not significantly improve predictive 

performance due to the models' susceptibility to exhibiting bias towards the majority 

class.  The AUC metric confirmed both the random forest and XGBoost algorithms 

outperformed others. 

When comparing the distribution of AUC values across folds between the training 

and testing data sets without any sampling techniques, the AUC values within the training 

data were closely clustered together, as depicted in Figure 39.  The ensemble models 

were excluded from this comparison as they did not enhance predictions.  Across the 10 

folds in the training data set, the XGBoost model exhibited the most consistent 

distribution, with the random forest model coming in second.  In contrast, the 

distributions of AUC values for logistic regression and SVM using the linear kernel were 

more dispersed compared to the other models.  When comparing the AUC distributions in 

the testing data sets, all models, except the SVM using the linear kernel, closely 

resembled the distribution observed in the training data set.  Overall, XGBoost performed 

marginally better than the random forest model in the testing data set.  To evaluate these 

observations, a Mann-Whitney test was conducted to assess whether the AUC values of 
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the 10 folds differed significantly between the training and testing data sets.  This 

statistical analysis aimed to provide an evaluation of the consistency in the models' 

performance.  The SVM using linear kernel (W = 83, p = .012) was found to be 

significantly different.  The result indicated the SVM using a linear kernel model did not 

exhibit consistent performance between the training and testing data sets.  All of the 

remaining models were found to not be significant (logistic regression, W = 44, p = 

.6842; SVM polynomial, W = 55, p = .739, SVM radial basis function, W = 59, p = .529; 

random forest, W = 56, p = .684; and XGBoost, W = 63, p = .353), indicating the models’ 

performances between the training and testing data sets were fairly similar.  While 

determined to not have significant differences in the median AUC values, these four 

models could be considered to be dependable in the performance on unseen data.   

Figure 39. Boxplot of the one-year retention’s predictive algorithms’ AUC values from 
the cross-validation folds of the training and testing data sets. 

The Friedman’s test was used to determine if one model’s performance is more 

significant than the others.  Examining the AUC values of the training data, the 

Friedman’s test was to be significant with a large effect size, χ2(5) = 44.00, p < .001, W = 
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.880.  The Wilcoxon signed-rank with a Bonferroni multiple testing correction was 

utilized to determine which model was more significant to use.  With the XGBoost model 

(Mdn = .662) performing the best in terms of the highest AUC value, the model was 

found to be significantly different from four of the five remaining models: (logistic 

regression, Mdn = .632, p = .029; SVM using linear kernel, Mdn = .566, p = .029; SVM 

using polynomial kernel, Mdn = .627, p = .029, SVM using radial basis function kernel, 

Mdn = .629, p = .029).  The difference between XGBoost (.662) and random forest (.653) 

model was not statistically significant within the training data set.  The Friedman’s test 

was also conducted on the AUC values produced by the testing data set.  The test was 

found to be significant with a large effect size, χ2(5) = 40.90, p < .001, W = .817.  The 

Wilcoxon signed-rank with a Bonferroni multiple testing correction was utilized to 

determine which model was more significant to use.  With the XGBoost model (Mdn = 

.657) performing the best in terms of the highest AUC value, the model was found to be 

significantly different from four of the five models: (logistic regression, Mdn = .640, p = 

.029; SVM using linear kernel, Mdn = .516, p = .029; SVM using polynomial kernel, 

Mdn = .628, p = .029, and SVM using radial basis function kernel, Mdn = .623, p = .029).  

The difference between random forest (Mdn = .655) and XGBoost was not found to be 

significant analyzing the testing data AUC values.  This finding could suggest the 

difference in the predictive ability from either the random forest model or XGBoost 

model would not sufficiently differ from each other. 

Downsample model.  Table 21 presents the confusion matrices of the six 

algorithms developed using the training data set with the downsampling technique 

applied.  The table also includes the two ensemble methods.  Upon examining the 
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distribution of predicted and actual values in the training data set, the bias towards the 

majority class present in the original data set has been corrected, as also evidenced by 

increased specificity rates (logistic regression, .543; SVM using linear kernel, .379; SVM 

using polynomial kernel, .471; SVM using radial basis function, .379; random forest, 

.602; and XGBoost, .622).  While the downsampling technique resulted in improved 

specificity within the training data set, the improvement came at the cost of decreased 

overall accuracy and sensitivity when compared to the original data set.  However, 

despite the correction of the bias in the training data set, the performance on the testing 

data set did not show significant improvements, resulting in a continued bias towards the 

majority class.  Additionally, the ROC curves are displayed in Figure 40.  The AUC 

values for the logistic regression model improved from .638 in the training data set to 

.643 in the testing data set.  The three SVM models exhibited AUC values of .644 in the 

training data set, but the values dropped in the testing data set (linear kernel, .514; 

polynomial kernel, .548; and radial basis function, .550).  The random forest (training 

data set, .650; and testing data set, .649) and XGBoost (training data set, .658; and testing 

data set, .652) algorithms displayed the highest AUC values among the models.  The 

AUC values for the random forest were similar between the training and testing data sets, 

differing by only .001.  No improvements in the predictions were exhibited in the 

ensemble learning methods.  The AUC values for the ensemble learning methods were as 

follows: mean method (training data set, .656; and testing data set, .656) and blended 

method (training data set, .658; and testing data set, .655).   
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Table 21 

Confusion Matrices Results of the Predictive Algorithms on the Training and Testing 

Data Sets with Downsampling Techniques 

Training Data Set Testing Data Set 

Actual 
Retained 

Actual Not 
Retained 

Actual 
Retained 

Actual Not 
Retained 

Logistic Regression 

Predicted Retained 1,919 1,327 6,683 1,917 

Predicted Not Retained 987 1,579 57 62 

SVM Linear 

Predicted Retained 2,317 1,803 6,740 1,979 

Predicted Not Retained 589 1,103 0   0   

SVM Polynomial 

Predicted Retained 2,115 1,538 6,736 1,977 

Predicted Not Retained 791 1,368 4 2 

SVM Radial Basis Function 

Predicted Retained 2,316 1,805 6,740 1,979 

Predicted Not Retained 590 1,101 0   0 

Random Forest 

Predicted Retained 1,841 1,158 6,735 1,972 

Predicted Not Retained 1,065 1,748 5 7 

XGBoost 

Predicted Retained 1,808 1,155 6,663 1,913 

Predicted Not Retained 1,098 1,751 77 66 

Ensemble Learning Mean 

Predicted Retained 1,894 1,220 6,718 1,958 

Predicted Not Retained 1,012 1,686 22 21 

Ensemble Learning Blended 

Predicted Retained 1,839 1,180 6,650 1,896 

Predicted Not Retained 1,067 1,726 90 83 
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Figure 40. One-year retention ROC curves of the predictive algorithms developed on the 
training with downsampling techniques.  The image includes the ROC curves produced 
from the training and testing data sets.

When comparing the distribution of AUC values across folds between the training 

and testing data sets with downsampling techniques applied, the AUC values within the 

training data were closely clustered together, as depicted in Figure 41.  The ensemble 

models were excluded from this comparison as they did not enhance predictive power.  

Across the 10 folds in the training data set, XGBoost model exhibited the best 
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distribution with random forest model coming second.  The logistic regression and SVM 

using the linear or the radial basis function kernels models’ distributions of the AUC 

values were more dispersed than the other models.  When comparing the testing data sets’ 

AUC distribution, all but the SVM models were close to the training data set distribution.  

Overall, XGBoost was only slightly higher than the random forest.   

Figure 41. Boxplot of the one-year retention’s predictive algorithms’ AUC values from 
the cross-validation folds of the training and testing data sets. 

Examining the predictive performance of each algorithm, a Mann-Whitney test 

was performed to evaluate the AUC values of the 10 folds between the training and 

testing data sets.  The three SVM models were found to be significantly different (linear 

kernel, W = 98, p < .001, polynomial kernel, W = 100, p < .001; and radial basis function, 

W = 96, p < .001).  The result indicated the three SVM models would not exhibit 

consistent performance between the training and testing data sets.  The remaining models 

were found to not be significant (logistic regression, W = 47, p = .853; random forest, W 

= 45, p = .739; and XGBoost, W = 55, p = .739), indicating the model’s performance 

between the training and testing data sets were fairly similar.  While determined to not 
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have significant differences in the median AUC values, these other models’ performance 

would be dependable.  

The Friedman’s test was used to determine if one model is more significant than 

the other.  Examining the AUC values of the training data, the Friedman’s test was to be 

significant with a large effect size, χ2(5) = 26.4, p < .001, W = .526.  The Wilcoxon 

signed-rank with a Bonferroni multiple testing correction was utilized to determine which 

model was more significant to use.  The only statistically significant difference occurred 

from the logistic regression (Mdn = .640, p =.029) model to the XGBoost (Mdn = .655).  

Based on the performance of the models developed on the downsample training data set, 

the models, excluding the XGBoost model, would be expected to perform like each other.  

While the accuracy metrics on the training data set indicated the models would perform 

statistically similar, a different story is revealed when conducting the Friedmen’s test on 

the performance of the testing data sets.  The test was found to be significant with a large 

effect size, χ2(5) = 40.70, p < .001, W = .815.  The Wilcoxon signed-rank with a 

Bonferroni multiple testing correction was utilized to determine which model was more 

significant to use.  The random forest model (Mdn = .655) was the model with the highest 

AUC value and was found to be statistically different from the three SVM models (linear 

kernel, Mdn = .509, p = .029; polynomial kernel, Mdn = .577, p = .029; and radial basis 

function, Mdn = .579, p = .029).  Random forest model was not statistically different 

from the logistic regression model (Mdn = .640, p = 1.000) and the XGBoost model (Mdn 

= .654, p = 1.000).  This finding could suggest the difference in the predictive ability 

from the logistic regression, random forest model or XGBoost models would not be 

sufficiently different from each other. 
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Upsample model.  The upsample data set confusion matrices results are displayed 

in Table 22, which includes the distribution of the predicted and actual retention status of 

the ensemble learning methods.  Furthermore, the ROC for the training and testing data 

sets are illustrated in Figure 42.  The distribution of the predicted and actual retention 

statuses for the training data set exhibits no signs of bias towards the majority class.  For 

the upsample data set, the overall accuracy rates of the training data set were noticeably 

higher in the random forest (.939) and XGBoost (.915) than the accuracy rates were in 

the original and downsample data sets.  However, the distribution of the predicted and 

actual status and the overall accuracy rates returned to the rates experienced within the 

original data set when examining the performance on the testing data set.  Additionally, 

the sensitivity and specificity within the training data set metrics indicated higher 

accuracy in predicting the true positives and true negatives, but the models’ performance 

reverted to the bias of the majority classification, resulting in a high number of false 

negatives or low rate of specificity.  The review of the ROC graphs produced model are 

exhibited in Figure 42.  These ROC graphs are based on the algorithms developed 

utilizing the upsample training data set.  Based on the figure, the random forest and 

XGBoost models’ ROC produced from the training data set revealed a near perfect 

accuracy rate (random forest’s AUC .984, and XGBoost’s AUC .976); however, the AUC 

values of these two models were lowered on the testing data set (random forest’s AUC 

.633, and XGBoost’s AUC .607).  Random forest algorithm was the highest AUC value in 

the training data set, with XGBoost coming in at a close second.  Yet, the logistic 

regression model comes in at the top performing model regarding the AUC values of the 
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testing data set (AUC .643).  The ensemble learning methods exhibited slight 

improvements to the accuracy metrics in the both the training and testing data sets. 

Table 22  

Confusion Matrices Results of the Predictive Algorithms on the Training and Testing 

Data Sets with Upsampling Techniques 

Training Data Set Testing Data Set 

Actual 
Retained 

Actual Not 
Retained 

Actual 
Retained 

Actual Not 
Retained 

Logistic Regression 

Predicted Retained 6,712 4,558 6,683 1,917 

Predicted Not Retained 3,460 5,14 57 62 

SVM Linear 

Predicted Retained 8,148 6,335 6,740 1,979 

Predicted Not Retained 2,024 3,837 0   0   

SVM Polynomial 

Predicted Retained 7,051 4,392 6,736 1,977 

Predicted Not Retained 3,121 5,780 4 2 

SVM Radial Basis Function 

Predicted Retained 4,001 4,137 6,740 1,979 

Predicted Not Retained 6,171 6,035 0   0   

Random Forest 

Predicted Retained 9,270 349 6,517 1,801 

Predicted Not Retained 902 9,823 223 178 

XGBoost 

Predicted Retained 8,756 314 6,136 1,616 

Predicted Not Retained 1,416 9,858 604 363 

Ensemble Learning Mean 

Predicted Retained 8,850 316 6,494 1,780 

Predicted Not Retained 1,322 9,856 246 199 

Ensemble Learning Blended 

Predicted Retained 9,887 397 6,652 1,889 

Predicted Not Retained 285 9,775 88 90 
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Figure 42. One-year retention ROC curves of the predictive algorithms developed on the 
training with downsampling techniques.  The image includes the ROC curves produced 
from the training and testing data sets.

In comparing the distribution of the AUC values of the folds between the training 

and testing data sets using the upsample technique, the distribution of the values within 

the training values are clustered close together, as displayed in Figure 43.  The ensemble 

models were excluded from the analysis.  Across the 10 folds in the training data set, 

random forest model exhibited the best distribution with XGBoost model coming second 
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and SVM using a radial basis function coming in third.  Yet, comparing the distribution of 

the folds’ AUC values on the testing data set, the random forest, XGBoost, and SVM 

using radial basis function exhibited AUC values closer to the other three models.  

Examining the predictive performance of each algorithm, a Mann-Whitney test was 

performed to evaluate the AUC values of the 10 folds differed between the training and 

testing data sets.  Except for the logistic regression model, all models were found to 

exhibit statistically significant AUC values between each model’s training and testing 

data sets (SVM using linear kernel, W = 100, p < .001; SVM using polynomial kernel, W 

= 100, p < .001, SVM using radial basis function, W = 100, p < .001; random forest, W = 

100, p < .001; and XGBoost, W = 100, p < .001).  These findings indicate the logistic 

regression model’s performance between the training and testing data sets were fairly like 

each other, while the other five models’ performance could be considered inconsistent.  

Figure 43. Boxplot of the one-year retention’s predictive algorithms’ AUC values from the 

cross-validation folds of the training and testing data sets. 
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 The Friedman’s test was used to determine if one model is more significant than 

the other.  Examining the AUC values of the training data, the Friedman’s test was to be 

significant with a large effect size, χ2(5) = 48.60, p < .001, W = .971.  The Wilcoxon 

signed-rank with a Bonferroni multiple testing correction was utilized to determine which 

model was more significant to use.  For the AUC values of the training data set, the 

random forest model (Mdn = .984) was the highest performing model and was found to 

be statistically significantly different from the five other models (logistic regression, Mdn 

= .647, p = .029; SVM using linear kernel, Mdn = .650, p = .029; SVM using polynomial 

kernel, Mdn = .685, p = .029; SVM using radial basis function kernel, Mdn = .949, p = 

.029; and XGBoost, Mdn = .975, p = .029).  XGBoost model was found to be 

significantly different from the logistic regression model and the three SVM models.  

SVM using radial basis function kernel was found to be significantly different from the 

logistic regression model and the two other SVM models.  SVM using polynomial kernel 

was found to be significantly different from the logistic regression and SVM using linear 

kernel.  Using the training data set, the best model to predict retention would be the 

random forest.  

Yet, a different story is revealed when examining the performance of the models 

on the testing or unseen data set.  The Friedmen’s test on the performance of the testing 

data set was conducted.  The test was found to be significant with a large effect size, χ2(5) 

= 45.20, p < .001, W = .904.  The Wilcoxon signed-rank with a Bonferroni multiple 

testing correction was utilized to determine which model was more significant to use.  

The logistic regression model (Mdn = .640) was the model with the highest AUC value 

and was found to be statistically different from the three SVM models (linear kernel, Mdn 
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= .507, p = .029; polynomial kernel, Mdn = .577, p = .029; and radial basis function, Mdn 

= .562, p = .029), the random forest model (Mdn = .635, p = .029) and the XGBoost 

model (Mdn = .608, p = .029).  The random forest model was the model with the second 

highest AUC value and was found to be statistically different from the three SVM models 

and the XGBoost model.  This finding could suggest the best performing model would be 

the logistic regression model. 

Summary 

The study involved the development of four types of predictive algorithms to 

analyze the significant influencing factors on three academic performance metrics within 

the first year.  These algorithms included the linear regression, logistic regression, 

support vector machine, random forest, and XGBoost.  To assess differences in SVM 

model's performance, three different kernels—linear, polynomial, and radial basis 

function—were utilized.  The three academic performance metrics considered for the first 

year were first-fall GPA, first-year GPA, and one-year retention status.  The data set was 

divided into training and testing sets. In the training data set used for building the 

retention algorithms, downsampling and upsampling techniques were applied in attempts 

to prevent the algorithms from defaulting to the majority class due to class imbalance 

issues within the data. 

Both the training and testing data sets were divided into 10 folds for cross-

validation purposes.  Each predictive algorithm was developed using the training data set.  

Initially, tuning of the SVM, random forest, and XGBoost algorithms was conducted 

using resampled training data sets.  Variable importance analyses were performed on the 

training and testing data sets, with a preference for the testing data sets to determine the 
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factors impacting the academic performance metrics.  The evaluation of models' accuracy 

depended on the nature of the dependent variables.  For the two GPA variables, the 

RMSE values were calculated to assess accuracy.  For the retention variable, a 

comprehensive evaluation of multiple accuracy metrics such as overall accuracy, F-

measure, sensitivity, specificity, and AUC was utilized.  Statistical analyses were 

conducted to assess the performance between the training and testing data sets and to 

determine which model showed significant differences.  The RMSE values were used for 

the two GPA dependent variables, while AUC values were employed for the retention 

status in the analysis.  These evaluations ensured a thorough understanding of the model 

performances across various metrics and data sets.  Finally, statistical analyses were 

conducted to compare the models against each other and determine if one model 

performed better than the others.  This step involved a robust comparison to identify the 

most effective algorithm among the ones developed. 

Across the models developed for first-fall GPA, HS GPA consistently emerged as 

the most influential factor from the testing data set.  The second most influential factor 

was the GA HOPE scholarship, except in the SVM models.  Among student 

characteristics, no variable consistently influenced first-fall GPA across the models.  

Apart from GA HOPE scholarship, no other financial situation variables consistently 

proved influential.  Neither the major grouping of the program of study nor institutional 

expenditures impacted first-fall GPA consistently across the models.  Table 23 presents 

the RMSE values of the training and testing data sets for six predictive algorithms and 

two ensemble learning methods.   
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Table 23  

First-Fall GPA Predictive Algorithm’s RMSE Values on Training and Testing Data Set 

Training Testing 

Linear Regression 0.850 0.866 
SVM Linear 0.866 0.883 
SVM Polynomial 0.865 0.883 
SVM Radial 0.863 0.882 
Random Forest 0.839 0.850 
XGBoost 0.832 0.847 
Ensemble Learning Mean 0.838 0.853 
Ensemble Learning Blended 0.832 0.847 

Comparing the results of the training and testing data sets, XGBoost was the best-

performing algorithm, with the random forest model coming in second.  Neither 

ensemble learning method led to improvements in predictions.  Utilizing Mann-Whitney's 

test to assess the RMSE values within cross-validation training and testing data sets, all 

models except linear regression consistently performed well.  Furthermore, Friedman's 

test and Wilcoxon signed-rank test indicated no statistically significant difference 

between XGBoost and random forest algorithms in both data sets.   

Similar to the first-fall GPA, HS GPA emerged as the most impactful factor on 

first-year GPA from the testing data set.  The GA HOPE scholarship was the second most 

impactful factor outside of the SVM models.  No student characteristics, major grouping, 

or institutional expenditures had a consistent influential impact on first-year GPA.  

Content mastery and readiness mean showed consistency in the SVM model using the 

linear kernel, random forest, and XGBoost models.  Table 24 presents the RMSE values 

of the training and testing data sets for six predictive algorithms and two ensemble 

learning methods.  Comparing the results of the training and testing data sets, XGBoost 

was the best-performing algorithm, with the random forest model coming in second.  

Neither ensemble learning method resulted in improvements in predictions.  Utilizing 
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Mann-Whitney's test to assess the RMSE values within cross-validation training and 

testing data sets, all models were determined to perform consistently.  Furthermore, 

Friedman's test and Wilcoxon signed-rank test indicated no statistically significant 

difference between XGBoost and random forest algorithms in both data sets.   

Table 24  

First-Year GPA Predictive Algorithm’s RMSE Values on Training and Testing Data Set 

Training Testing 

Linear Regression 0.797 0.809 
SVM Linear 0.812 0.824 
SVM Polynomial 0.812 0.825 
SVM Radial 0.811 0.824 
Random Forest 0.787 0.798 
XGBoost 0.779 0.794 
Ensemble Learning Mean 0.786 0.798 
Ensemble Learning Blended 0.780 0.794 

In conducting the variable importance analysis on the testing data utilizing the 

models developed with no sampling modifications, the SVM models were unable to 

produce any variable importance due to the data imbalance within the classes of the 

retention status.  The GA HOPE scholarship was the most influential factor, with HS GPA 

being the second most influential factor for the logistic regression and random forest 

models.  The XGBoost model's results yielded the reverse order of importance.  EFC was 

consistently ranked in the top five across the models, with the SVM model excluded.  

Within the random forest and XGBoost models, the five HS curriculum factors were 

consistently in the top 10 factors with at least moderate influences.  Student 

characteristics, major groupings, and institutional expenditures were not found to be 

consistent factors impacting the retention decision across the models.  No additional pre-

college characteristics and financial situations were found to be influential factors across 

the models.  Table 25 displays the accuracy metrics used to evaluate the performance of 
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the algorithms.  Based on the recommendation of Dey (2021), the AUC value was 

examined to assess the overall performance of the algorithms.  Comparing the AUC 

values of the training and testing data sets, the random forest model was the top-

performing algorithm, with the XGBoost model coming in second.  Neither ensemble 

learning method resulted in any improvements in the predictions.  Utilizing the Mann-

Whitney test to assess the performance of the AUC values within the cross-validation 

training and testing data sets, all models were determined to perform consistently.  

Furthermore, the Friedman test and Wilcoxon signed-rank test indicated there was no 

statistically significant difference between the random forest and XGBoost algorithms in 

both data sets. 
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Table 25 

One-Year Retention Predictive Algorithm’s Evaluation Metrics on Training and Testing 

Data Set without Sampling Techniques 

Accuracy Sensitivity Specificity F-measure AUC

Logistic Regression 
Training   .778   .994   .023   .875   .640 
Testing   .774   .992   .031   .871   .643 

SVM Linear 
Training   .778 1.000   .000   .875   .554 
Testing   .773 1.000   .000   .872   .503 

SVM Polynomial 
Training   .778 1.000   .000   .875   .625 
Testing   .773 1.000   .000   .872   .623 

SVM Radial Basis Function 
Training   .778 1.000   .000   .875   .626 
Testing   .773 1.000   .000   .872   .623 

Random Forest 
Training   .778   .999   .003   .875   .655 
Testing   .773   .999   .004   .872   .649 

XGBoost 
Training   .779   .988   .046   .874   .663 
Testing   .773   .988   .038   .870   .653 

Ensemble Learning Mean 
Training   .779   .997   .016   .875   .662 
Testing   .773   .997   .010   .871   .656 

Ensemble Learning Blended 
Training   .778   .984   .055   .873   .663 
Testing   .772   .987   .042   .870   .656 

Except for the SVM model using the linear kernel, the remaining two SVM 

models were able to analyze the factors of the testing data set for the downsample 

models.  Among the influencing factors, the GA HOPE scholarship emerged as the most 

significant across the models, with HS GPA being the second most influential factor.  

EFC in the random forest and XGBoost models were ranked third.  Several HS 

curriculum variables were consistently ranked in the top 10 factors in the random forest 

and XGBoost models.  No student characteristics, other pre-college characteristics, 

financial situations, major groupings, and institutional expenditures exhibited consistency 
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in the impact on retention decisions.  Table 26 displays the accuracy metrics used to 

assess algorithm performance with the downsampling technique.  

Table 26  

One-Year Retention Predictive Algorithm’s Evaluation Metrics on Training and Testing 

Data Set Utilizing Downsampling Techniques 

Accuracy Sensitivity Specificity F-measure AUC

Logistic Regression 
Training   .602   .661   .543   .624   .638 
Testing   .774   .992   .031   .871   .643 

SVM Linear 
Training   .588   .797   .379   .659   .644 
Testing   .773 1.000   .000   .872   .514 

SVM Polynomial 
Training   .599   .729   .471   .645   .644 
Testing   .773   .999   .001   .872   .548 

SVM Radial Basis Function 
Training   .588   .797   .379   .659   .644 
Testing   .773 1.000   .000   .872   .550 

Random Forest 
Training   .618   .634   .602   .623   .650 
Testing   .773   .999   .004   .872   .649 

XGBoost 
Training   .612   .622   .603   .615   .658 
Testing   .772   .989   .033   .870   .652 

Ensemble Learning Mean 
Training   .616   .652   .580   .629   .656 
Testing   .773   .997   .011   .872   .656 

Ensemble Learning Blended 
Training   .613   .633   .594   .621   .658 
Testing   .772   .987   .042   .870   .655 

When comparing AUC values between training and testing data sets, the XGBoost 

model demonstrated the highest performance, with the random forest model following 

closely.  The ensemble learning methods did not enhance the predictions.  The three SVM 

models displayed inconsistent performance in cross-validation data sets according to the 

Mann-Whitney’s test.  Moreover, both Friedman’s test and Wilcoxon signed-rank test 

revealed no statistically significant differences between the random forest and XGBoost 
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algorithms in the training data set.  In the testing data set, the logistic regression model 

also showed no significant difference from the random forest and XGBoost models. 

Of the SVM upsample models, only the one using the polynomial kernel yielded 

results.  There was no consistency in the influential factors across the model developed 

from the upsampling technique.  Table 27 illustrates the accuracy metrics used for 

evaluating algorithms developed with the upsampling technique.  Upon comparing AUC 

values between training and testing data sets, the XGBoost model highlighted superior 

performance, with the random forest model as the second-best performer.  The ensemble 

learning method utilizing the blended technique made a slight improvements in the 

evaluation metrics for the training and testing data sets.  When utilizing Mann-Whitney’s 

test to assess AUC values in cross-validation training and testing data sets, the logistic 

regression model exhibited consistent performance across both sets.  Furthermore, 

Friedman’s test (χ2(5) = 48.60, p < .001, W = .971) and Wilcoxon signed-rank test 

indicated the logistic regression model displayed a statistically significant difference from 

the remaining five models in the testing data sets (logistic regression, Mdn = .647, p = 

.029; SVM using linear kernel, Mdn = .650, p = .029; SVM using polynomial kernel, 

Mdn = .685, p = .029; SVM using radial basis function kernel, Mdn = .949, p = .029; and 

XGBoost, Mdn = .975, p = .029). 
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Table 27 

One-Year Retention Predictive Algorithm’s Evaluation Metrics on Training and Testing 

Data Set Utilizing Upsampling Techniques 

Accuracy Sensitivity Specificity F-measure AUC

Logistic Regression 
Training   .606   .660   .552   .626   .645 
Testing   .774   .992   .031   .871   .643 

SVM Linear 
Training   .587   .801   .373   .660   .644 
Testing   .773 1.000   .000   .872   .513 

SVM Polynomial 
Training   .631   .693   .568   .652   .687 
Testing   .773   .999   .001   .872   .548 

SVM Radial Basis Function 
Training   .493   .400   .600   .659   .950 
Testing   .773 1.000   .000   .872   .558 

Random Forest 
Training   .939   .911   .966   .937   .984 
Testing   .768   .967   .090   .866   .633 

XGBoost 
Training   .915   .861   .969   .910   .976 
Testing   .745   .910   .184   .847   .607 

Ensemble Learning Mean 
Training   .919   .870   .969   .915   .976 
Testing   .768   .964   .101   .865   .642 

Ensemble Learning Blended 
Training   .966   .972   .961   .967   .983 
Testing   .773   .987   .046   .871   .655 
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Chapter V 

SUMMARY, DISCUSSION, AND CONCLUSIONS 

Regional comprehensive universities (RCUs) will continue to play a vital role in 

educating the local workforce.  Each fall, these institutions welcome new students, who 

are primarily recent HS graduates.  University administrators and researchers consistently 

evaluate key student success metrics to gauge the overall academic performance of the 

student body (Arnold, 1999; Offensten & Shulock, 2010; Tai, 2020).  Given the persistent 

challenges within higher education and the anticipated decline in the traditional-age 

population, optimizing student success provides a crucial foundation to stabilize 

enrollment at these institutions.  Developing models to identify at-risk students early is 

essential, enabling universities to provide the necessary resources and support.  

Identifying at-risk students involves recognizing those likely to earn poor grades, 

potentially leading to probation, as well as those who may leave the institution within a 

year, either voluntarily or involuntarily 

With technological advancements, the field of data science has expanded 

significantly (UW Data Science Team, 2017).  In addition to traditional statistical 

methods, emerging tools such as random forest and XGBoost algorithms have expanded 

the scope of statistical analysis.  Higher education institutions are increasingly utilizing 

data science techniques to enhance operational efficiency and improve student success 

metrics.  The identification of at-risk students and the efficient resource allocations have 
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played a pivotal role in optimizing academic support, influencing various aspects of 

higher education (Matthews, 2018). 

Overview of the Study 

 To enhance student success, institutions must effectively identify and support at-

risk students.  This study evaluates the impact of secondary curriculum on the first year at 

RCUs.  The study’s population includes FTFTFs who graduated from Georgia public HS 

in 2018 and 2019 and attended one of four RCUs within the USG in Fall 2018 or Fall 

2019.  Using four predictive algorithms, the research analyzes the impact of HS 

curriculum factors and early factors on first-year academic performance.  Variables align 

with Tinto's student integration model, encompassing student characteristics, pre-college 

characteristics, financial situations, major of study, and institutional expenditures.  The 

study concludes by assessing the predictive accuracy of linear regression, logistic 

regression, support vector machine, random forest, and extreme gradient boosting 

algorithms, selected for commonality and popularity. 

Related Literature 

 Researchers continuously investigate student success and attrition to improve 

outcomes and comprehend the factors contributing to student departure.  Various 

frameworks, as identified in existing studies (Aljohani, 2016; Astin, 1993; Berger et al., 

2012; Tinto, 1993), have been developed to identify influential factors.  Among these, 

Tinto's (1993) integration model stands out as one of the most widely recognized and 

employed.  The model explains students' integration into an institution and its impact on 

their decision to leave.  Tinto (1993) outlined students' experiences around three distinct 

phases—separation, transition, and incorporation—during their postsecondary journey.  
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Failure to integrate into academic or social communities within the institution can lead to 

a student's departure (Tinto, 1993). 

 Data science.  Data science has become a buzzword, experiencing a surge in 

popularity due to technological advancements reducing computational time (UW Data 

Science Team, 2017).  Conway (2014, 2015) noted data science requires a delicate 

balance of mathematics, substantive expertise, and hacking skills to uncover hidden 

patterns in data sets.  Driscoll (2013) highlighted a similar balance, stating "data science 

incorporates social science methods into its processes and job duties."  Focusing on the 

social science aspects, Driscoll (2013) continued to argue data science goes beyond a 

black box analysis, emphasizing the time spent analyzing patterns in data and selecting 

appropriate analysis tools for the development of predictive algorithms.  Optimal models 

are chosen after evaluating the accuracy rates and subtle differences among multiple 

algorithms (Calvo & Santafé, 2016; Horthorn et al., 2005).  Examining whether models 

underfit or overfit the data is done through cross-validation techniques, such as a 10-fold 

method, which involves assessing the accuracy rates (Attewell & Monaghan, 2015; Bose, 

2019; Drakos, 2019; Goyal, 2021; Shah, 2017; Soni, 2019; Tripathi, 2020). 

Linear regression and logistic regression are two commonly used methods, 

serving as standard tools for analyzing relationships between independent and dependent 

variables (James et al., 2013).  Linear regression assesses the influence of predictor 

variables on continuous dependent variables, while logistic regression focuses on 

dichotomous dependent variables (James et al., 2013; Schmidt-Thieme, 2007).  Support 

vector machines, as an algorithm, create margins or hyperplanes to identify maximum 

margin patterns within the data, utilizing kernels of different shapes for optimization 
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(Attewell & Mongahan, 2015; Awasthi, 2020; Gandhi, 2018; James et al., 2013).  

Through the development of multiple decision trees, random forest algorithms are widely 

adopted for their flexibility with skewed data and for producing accurate results without 

the need for data transformation (Fernandz-Delgado et al., 2014; James et al., 2013; 

Ravindran, 2001; Richmond, 2016).  Like random forest algorithms, the XGBoost 

algorithm has gained popularity for its speed and accuracy and its capability in handling 

both continuous and categorical variables through boosted trees and conditional random 

fields (Brownlee, 2016; Pafka, 2015; Xgboost Developers, 2021). 

Predictive factors.  Students bring specific attributes, including characteristics 

and prior educational experiences, to postsecondary institutions, influencing their goals 

and degree aspirations (Alojanhi, 2016; Tinto, 1993).  Tinto (1975, 1993) emphasized the 

significance of environmental factors, such as family and finances, in shaping students' 

academic performance.  Astin (1984, 1993) further proposed institutional factors, 

including expenditures, impacting students' integration into academic and social 

communities.  These frameworks offer valuable insights into the complex factors 

affecting students' experiences and decisions within higher education institutions. 

Methodology 

 As a nonexperimental, ex post facto, correlational research design, the study 

utilized data science techniques to construct forecasting and classification models 

predicting first-year academic performance at an RCU within the USG.  Four machine 

learning algorithms—linear regression, logistic regression, support vector machine, 

random forest, and XGBoost—were employed to identify potential factors influencing 

first-year academic performance.  The algorithms, along with an ensemble learning 
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method, underwent evaluation based on accuracy metrics (RMSE for the GPA dependent 

variables and AUC values for retention dependent variable) and inferential statistics to 

determine the optimal predictive model. 

Participants 

 The target population of the study consisted of the FTFTF population pursuing a 

bachelor’s degree who graduated from a Georgia public HS in 2018 or 2019.  These 

students subsequently enrolled in one of the four RCUs within the USG.  The cohorts in 

the study comprised students enrolled in the Fall of 2018 (10,441 students, 47.9%) and 

the Fall of 2019 (11,356 students, 52.1%), totaling 21,797 students.  Among the Georgia 

public HS, a minimum of 396 schools were represented by FTFTF students enrolled in 

one of the four RCUs. 

Variables Studied 

 The first research question aimed to identify factors influencing students' first-

year academic performance, encompassing student characteristics, pre-college 

characteristics, financial situations, program of study, and institutional expenditures.  

Student characteristics included gender, race and ethnicity, family educational 

background, and HS locale.  Pre-college characteristics comprised HS GPA, admission 

test scores, EOC subject areas’ proficiency rates, and CCRPI content mastery and 

readiness mean score.  Financial situations covered EFC, GA HOPE scholarship dollars, 

PELL grant dollars, and loan dollars.  Institutional expenditures incorporated instruction, 

research, public service, academic support, student services, institutional support, and 

other core expenditures. 
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 Student characteristics.  The student characteristics considered in the study were 

gender, race and ethnicity, family educational background, and the locale of graduating 

HS.  Existing research on gender suggested females are more likely to enroll in 

postsecondary institutions and tend to academically outperform their male counterparts 

(Buchmann & DiPrete, 2006; Flores & Park, 2013; Jacob, 2002; Lohfink & Paulsen, 

2005; Tinto, 1975, 1993).  With the increasing diversity of the postsecondary population 

(AACU, 2019), underrepresented minority students were more likely to underperform 

when compared to White and Asian students (Fischer, 2007; Odell et al., 2005; Seidman, 

2007; Stewart et al., 2015; Tinto, 1975; Tinto, 1993).  Students who are the first in their 

family to pursue education beyond HS tended to lag academically compared to those with 

at least one parent holding a bachelor’s degree (Ishitani, 2003, 2006; Lohfink & Paulsen, 

2005).  While students from rural areas exhibit more hesitation to attend postsecondary 

institutions, they often exhibited a lower academic foundation, resulting in lower 

academic performance in postsecondary settings (Corely et al., 1991; Fischer, 2007; 

Lumina Foundation, 2019; Provasnik et al., 2007; Schultz, 2004; Velez, 2014). 

 Pre-college characteristics.  In addition to HS GPA and admissions test scores, 

the study considered satisfaction of college preparatory curriculum requirements, the 

number of advanced standing hours, and high school curriculum factors, which 

encompassed proficiency level rates of the four HS subject areas and content mastery and 

readiness mean score.  High school GPA and admissions test scores were widely 

acknowledged as significant factors influencing postsecondary academic performance.  

Consistent research has emphasized HS GPA as the primary factor affecting academic 

performance within the first year and beyond to graduation (Allensworth & Clark, 2020; 
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Bridgeman et al., 2008; Chen & St. John, 2011; Spady, 1970, 1971; Tinto, 1975, 1988, 

1997).  However, research on the influence of admissions test scores on academic 

performance has produced mixed results (Allensworth & Clark, 2020; Bowen et al., 

2009; Korbin et al., 2008; Lotkowski et al., 2004; Noble & Sawyer, 2002; Rothstein, 

2004; Stewart et al., 2015).  The impact of HS curriculum, including the availability of 

more rigorous coursework, has been consistently shown to prepare students for 

postsecondary education (Choy, 2002; DeNicco et al., 2015; Horn & Kojaku, 2001; 

McDonough, 1997; Provasnik et al., 2007; Tinto, 1993). 

 Financial situations.  Financial situation factors in the study included expected 

family contribution, GA HOPE and Zell Miller scholarships, PELL grant, federal 

subsidized and unsubsidized loans, and other loans.  The research indicated the financial 

burden of paying for postsecondary education, particularly for students from lower 

socioeconomic backgrounds, was associated with lower academic performance and a 

higher risk of departure (Chen & DesJardins, 2008; Chen & St. John, 2011; St. John et 

al., 2005; Tinto, 1975, 1982; Velez, 2014).  Financial aid, ranging from merit-based aid to 

need-based aid, helps alleviate this burden.  Merit-based aid, such as the GA HOPE 

scholarship, exhibits positive influence on academic performance and persistence until 

graduation, mainly due to a commitment to acquire and maintain the aid type (Chen, 

2012; Georgia Student Finance Commission, 2021a, 2021b; Gross et al., 2015; Henry et 

al., 2004; Suggs, 2016; Stater, 2009).  Need-based aid, like the PELL grant, slightly 

reduces the likelihood of underperforming and not persisting (Chen & DesJardins, 2008; 

Chen, 2012; Gross et al., 2015).  As an additional form of financial aid, taking out loans 

to cover the cost of attendance, has mixed effects on academic performance and 



 

287 
 

persistence, as indicated by research (Bettinger, 2004; Gross et al., 2015; Hanson, 2020; 

St. John et al., 2005). 

Program of study.  Programs of study were combined into natural classification 

groupings based on the Classification of Instructional Programs (CIP) codes.  The 

selected major or program of study exhibited different influences on academic 

performance.  Students aligning with the inherent tendencies of their major were more 

likely to succeed academically and exhibit higher retention rates (Leppel, 2001).  

Research on students majoring in STEM programs indicated these students were more 

likely to earn slightly lower GPAs due to the courseload rigor but persist at higher rates 

than non-STEM majors (Gansemer-Topf et al., 2017). 

Institutional expenditures.  Institutional expenditures per full-time equivalent 

variables were collected from the National Center for Education Statistics' Integrated 

Postsecondary Education Data System (IPEDS) website.  Expenditures included 

academic support, institutional support, instruction, student services support, public 

service, research, and all other expenditure categories.  The research outcomes were 

found to be varied regarding which type of expenditure demonstrated an impact on first-

year academic performance (Chen, 2012; Gansemer-Topf & Schuch, 2006; Ryan, 2004; 

Webber & Ehrenberg, 2009). 

Procedures 

 After separately analyzing each FTFTF cohort to reveal their similarities and 

differences, the cohorts were combined to address the research questions.  The data set 

was split to allocate 60% (N = 13,078) of the data as the training data set and the 

remaining 40% (N = 8,719) as the testing data set.  Statistical considerations and 
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assumptions were assessed for the training data set, with necessary corrections made for 

violations.  Techniques, such as variable modifications to reduce multicollinearity and 

Yeo-Johnson transformation for normality corrections, were applied.  To address data 

imbalances in the retention models, additional sampling techniques were applied to the 

training data set.  Models for each dependent variable were developed and evaluated on 

the training and testing data sets.  To answer the first research question regarding the 

influential factors on first-year academic performance, emphasis was placed on the 

results produced from the testing data set.  For the second research question, 10-fold 

cross-validations were applied to the training and testing data sets to analyze predictive 

power.  Statistical analyses were conducted to compare the predictive performance of 

each model between the training and testing data sets and to identify any significant 

differences between the algorithms. 

Summary of Findings 

 The study’s aim was to identify factors influencing first-year academic 

performance and determine the optimal predictive algorithm for two research questions.  

The findings offer valuable insights for postsecondary administrators and policymakers 

by facilitating the early identification of at-risk students.  This critical information 

enables the effective modification and reallocation of academic and student support 

services, ensuring targeted assistance for identified at-risk students to succeed in their 

first year.  The selected predictors were tailored to the characteristics of traditional-age 

students starting their postsecondary educational journey.  
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First research question.  Are student characteristics, precollege characteristics—

including high school curriculum quality, financial situations, major or program of study, 

and institutional financial expenditures significant predictors in first-time, full-time 

freshmen’s first-fall GPA, first-year GPA, and one-year retention status? 

 First-fall GPA.  Across the models, no consistent patterns on the testing data set 

emerged regarding the impact of student characteristics on first-fall GPA.  With 55.5% of 

students being females, gender was identified as a significant influencer in the linear 

regression model; however, in the remaining models, the gender variable exhibited weak 

importance, with values close to 0.  Approximately 51.9% of students were identified as 

White, and 48.1% were categorized as underrepresented minorities.  Interestingly, the 

models did not consistently identify race and ethnicity as an influential factor to first-fall 

GPA.  Specifically, the SVM models did not recognize these as influential variables, 

whereas the linear regression and XGBoost models indicated weak influences.  First-

generation status was only a minimally influential factor in the XGBoost model.  Among 

student characteristics, HS locale was identified as having a weak influence on the 

dependent variable in the linear regression models. 

For each algorithm, HS GPA emerged as the most influential factor affecting first-

fall GPA.  The linear regression model did not attribute any significance to first-fall GPA 

from admissions test scores.  Conversely, the variable was identified to have a medium 

influence in the XGBoost model.  The number of advanced standing AP hours exhibited a 

medium impact and IB hours demonstrated a slight influence only in the linear regression 

model.  Other advanced standing hours were not identified as factors impacting first-fall 

GPA.  The college preparatory curriculum variable did not contribute significantly to 
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first-fall GPA.  Regarding HS curriculum variables, the content mastery and readiness 

mean held significance with a small influence in the linear regression and random forest 

models, while exhibiting a medium influence in the XGBoost model.  Proficiency levels 

differences in all four subject areas from the content mastery and readiness mean were 

found to have a medium impact on first-fall GPA in the XGBoost model.  The social 

studies proficiency levels difference exhibited a medium influence in the linear regression 

model, while the English proficiency levels difference exhibited a small impact.  Also, 

the English proficiency levels difference exhibited a small influence in the random forest 

model. 

Among the financial factors considered, the GA HOPE scholarship consistently 

emerged as the influential factor across all models affecting first-fall GPA.  The SVM 

models identified the contribution as the weakest among the models, with the strength of 

impact relatively the same across the three kernels.  Related to the GA HOPE scholarship, 

the Zell Miller indicator was deemed a significant factor with a medium influence in the 

linear regression model and a small influence in the random forest model.  Excluding the 

SVM models, the EFC demonstrated small influences on first-fall GPA in the linear 

regression and random forest model but a medium influence in the XGBoost models.  

The XGBoost models identified the PELL grant as exhibiting a small influence.  The 

other financial considerations did not exhibit any influence on the first-term GPA. 

The major groupings variable emerged as significant solely in the linear regression and 

XGBoost models, contributing a small influence on first-fall GPA.  Outside the linear 

regression model, expenditures did not contribute any impact on the first-fall GPA.  
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Instruction expenditures, along with academic and institutional support expenditures, 

exhibited a small influence in the linear regression model. 

 First-year GPA.  Similar to the outcomes for the first-fall GPA, no consistent 

patterns emerged from the testing data set for the first-year GPA regarding student 

characteristics.  Only the linear regression algorithm identified gender as a strong 

influencing factor on the first-year GPA.  The race and ethnicity and first-generation 

variables were not identified as factors impacting first-year GPA across all models.  The 

locale of the graduating HS was only found to exhibit a small influencing factor in the 

linear regression model. 

Within the pre-college characteristics, the dominant influential factor on the first-

year GPA was the HS GPA across all models.  Admissions test scores were identified to 

exhibit small influences in the XGBoost model.  The number of advanced AP hours 

contributed close to a moderate influence in the linear regression model but exhibited 

barely any influence in the remaining models.  Neither the remaining advanced standing 

hours nor the number of college preparatory curriculum satisfactions were found to have 

a consistent influence across the models.  The mean content mastery and readiness 

variable was found to exhibit a small influence in the linear regression, random forest, 

and XGBoost models.  The content mastery and readiness mean exhibited small 

influences in the linear regression, random forest, and XGBoost models.  While all four 

subject area proficiency levels differences were found to exhibit a small impact in the 

XGBoost model, only the social studies and English proficiency levels differences from 

the content mastery and readiness mean were found to exhibit a small influence in the 

linear regression model. 
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  All models identified the GA HOPE scholarship as the second most influential 

factor on the first-year GPA, with random forest and XGBoost indicating the strength of 

the variable was close to the HS GPA.  Only the linear regression model identified the 

Zell Miller indicator variable exhibited a small influence on the first-year GPA.  The EFC 

was found to exhibit a small influence on the first-year GPA in all models except the 

SVM models.  The remaining financial aid variables did not influence the first-year GPA.  

For the first-year GPA, the major groupings variable emerged as significant solely in the 

linear regression and XGBoost models, contributing a small influence.  Exhibiting a 

small influence only in the linear regression, academic and institutional support was the 

only expenditure impacting the first-year GPA. 

 One-year retention status.  The SVM models applied to the testing data set failed 

to identify significant factors, even with corrections for class imbalance during model 

development.  Notably, the SVM model utilizing polynomial kernels produced an 

insightful analysis highlighting some variables influencing the retention decision.  

Interestingly, both analyses from the SVM model identified the number of CLEP credits 

and other advanced standing hours as the top two variables impacting retention.  

However, given the inconsistency in generating influential factors across the SVM 

models, they were excluded from the final results pertaining to the factors influencing 

retention status. 

Upon analyzing the testing data set, the gender factor emerged with a moderate 

influence in the linear regression model, whereas it demonstrated a slight impact in the 

three XGBoost models.  Markedly, the linear regression and XGBoost models without 

modifications revealed race and ethnicity exhibited a moderate influence, contrasting 
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with the XGBoost downsampled and upsampled models’ findings indicating only a minor 

impact.  The first generation factor displayed a moderate influence solely in the linear 

regression model.  Furthermore, the locale of the graduating HS was identified as having 

a minor impact on the retention decision in the linear regression model and across the 

three XGBoost models. 

 Across the various models, HS GPA emerged as a consistently potent determinant 

of the retention decision.  Specifically, in the linear regression model, admissions test 

scores were marginally more influential than HS GPA, a contrast observed in other 

algorithms where test scores exerted a lesser impact compared to HS GPA.  In the linear 

regression model, all advanced standing hours demonstrated minor influences.  Whereas 

in the random forest and XGBoost no modification models, as well as the downsampled 

and upsampled XGBoost models, only AP hours exhibited a modest impact.  The number 

of satisfied college preparatory requirements consistently showed no influence on the 

retention decision.  Within the XGBoost models, all five HS curriculum variables 

demonstrated an impact on the retention decision, with a strong effect in the no 

modification and upsample models and a moderate effect in the downsampled model.  

Conversely, the random forest models attributed small influences to the five HS 

curriculum variables.  In the logistic regression model, only the proficiency differences in 

science, social studies, and English proficiency levels were identified as exerting minor 

influences on the retention factor.  

The GA HOPE scholarship, identified as a pivotal financial factor, emerged as one 

of the top two influencers in all models, except the XGBoost upsampled model.  In the 

linear regression model, the Zell Miller factor displayed only a minor influence.  
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Conversely, the EFC, while ranked as the top factor in the XGBoost upsampled model, 

consistently demonstrated a moderate impact on the retention factor across all models.  

The PELL grant exhibited a medium influence in the linear regression, random forest 

with no modification, and downsampled models.  However, in the XGBoost three models 

and the random forest upsampled model, the PELL grant factor was identified as having a 

minor impact on the dependent variable.  The remaining financial situation variables 

exhibited nothing beyond a slightly small impact, highlighting the nuanced significance 

of specific financial factors in predicting retention outcomes. 

With the exception of the XGBoost upsampled model, the major grouping 

variable did not exhibit any discernible influence on the retention decision.  In the 

XGBoost upsampled model, all expenditures demonstrated an impact on the retention 

variable.  In models excluding XGBoost upsampled, public service and research 

expenditures, student support services, and instruction expenditures were identified as 

having small influences on the retention decision. 

Second research question.  Does one machine learning algorithm (linear or 

logistic regression, support vector machine, random forest, and extreme gradient 

boosting) or an ensemble learning algorithm produce a higher accuracy based on the 

evaluation metrics for accuracy in examination of first-fall GPA, first-year GPA, and one-

year retention status? 

First-fall GPA.  Six models and two ensemble learning methods were assessed 

for accuracy metrics through 10-fold cross-validations on training and testing data sets.  

Statistical analysis was conducted to assess performance differences across the data sets 

and a comparison amongst the models after visual inspection.  The linear regression 
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model, implemented without tuning for optimal performance using the lm engine, 

demonstrated significant results with a small effect size (R2 = .303, adj R2 = .302, F(29, 

13,041) = 195.600, p < 0.001), explaining 30.3% of variance with an RMSE value of 

0.848 of the training data set.  For the testing data set, the linear regression model 

demonstrated significant results (R2 = .283, adj R2 = .281, F(29, 8,681) = 118.400, p < 

0.001), explaining 28.3% of variance with an RMSE value of 0.864.  The evaluation of 

the 10-folds indicated an RMSE of 0.850 for the training data set and 0.866 for the testing 

data set.  Mann-Whitney's test indicated statistically significant differences in the model's 

accuracy metrics performance between the training and testing data sets. 

 The SVM model with a linear kernel was developed using the kernlab engine, 

tuned with a cost of 0.304 and a margin of 0.194.  It explained 29.9% of the variance, 

yielding an RMSE of 0.866.  Across 10-folds, performance metrics were consistent with 

values of 0.866 for the training set and 0.883 for the testing set, based on the Mann-

Whitney’s test.  The SVM model was retuned to use a polynomial kernel with optimal 

parameters of a cost of 14.782, degree of 3, scale factor of 0.0001, and margin of 0.188, 

explaining 30.0% of the variance with an RMSE value of 0.865.  The Mann-Whitney’s 

test indicated the consistency of the model (training’s RMSE = 0.865, testing’s RMSE = 

0.883).  The radial basis function kernel was then applied, producing an optimal model 

with a cost of 19.460, sigma of 0.0005, and margin of 0.123, explaining 30.5% of the 

variance with an RMSE value of 0.863.  Performance metrics were consistent across 10-

folds for both training (RMSE = 0.863) and testing (RMSE = 0.882) data sets, confirmed 

by the Mann-Whitney’s test. 
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Developed with the ranger engine, the random forest model was tuned for mtry, 

trees, and min_n.  The optimal model achieved an RMSE of 0.832, explaining 33.0% of 

the variance.  The tuned model comprised 1,580 trees, mtry of 9, and min_n of 37.  

Across 10-folds, RMSE values were consistent based on the Mann-Whitney’s test 

(training = 0.839, testing = 0.851).  For the final model, XGBoost utilized the xgboost 

engine with tuned parameters of 1,804 trees, mtry of 10, min_n of 3, tree depth of 8, learn 

rate of 0.005, loss reduction of 4.797, and sample size of 0.106.  The optimal XGBoost 

model achieved an RMSE of 0.832, with consistent performance metrics across 10-folds 

(training = 0.832, testing = 0.847), based on the Mann-Whitney’s test.  Friedman’s test 

and Wilcoxon signed-ranked test favored XGBoost as the best model on the training set, 

though no statistically significant differences were found between XGBoost and the 

random forest models in the testing data set. 

The ensemble learning methods employing the mean approach exhibited an 

RMSE of 0.838 for the training set and 0.853 for the testing set.  The blended approach 

yielded an RMSE of 0.832 for the training set and 0.847 for the testing set.  Neither 

ensemble methods resulted in any enhancements to the predictions. 

First-year GPA.  Six models and two ensemble learning methods were assessed 

for accuracy metrics through 10-fold cross-validations on training and testing data sets.  

Statistical analysis was conducted to assess performance differences across the data sets 

and a comparison amongst the models after visual inspection.  The linear regression 

model, implemented without tuning for optimal performance using the lm engine, 

demonstrated significant results with a small effect size (R2 = .325, adj R2 = .324, F(29, 

12,986) = 215.900, p < 0.001), explaining 32.5% of variance with an RMSE value of 
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0.795 of the training data set.  For the testing data set, the linear regression model 

demonstrated significant results (R2 = .312, adj R2 = .310, F(29, 8,663) = 118.4, p < 

0.001), explaining 31.2% of variance with an RMSE value of 0.807.  The evaluation of 

the 10-folds indicated an RMSE of 0.850 for the training data set and 0.866 for the testing 

data set.  Mann-Whitney's test indicated statistically significant differences in the model's 

accuracy metrics performance between the training and testing data sets. 

 The SVM model with a linear kernel was developed using the kernlab engine, 

tuned with a cost of 0.304 and a margin of 0.194.  It explained 29.9% of the variance, 

yielding an RMSE of 0.866.  Across 10-folds, performance metrics were consistent with 

values of 0.866 for the training set and 0.883 for the testing set, based on the Mann-

Whitney’s test.  The SVM model was retuned to use a polynomial kernel with optimal 

parameters of a cost of 14.782, degree of 3, scale factor of 0.0001, and margin of 0.188, 

explaining 30.0% of the variance with an RMSE value of 0.865.  The Mann-Whitney’s 

test indicated the consistency of the model (training’s RMSE = 0.865, testing’s RMSE = 

0.883).  The radial basis function kernel was then applied, producing an optimal model 

with a cost of 19.460, sigma of 0.0005, and margin of 0.123, explaining 30.5% of the 

variance with an RMSE value of 0.863.  Performance metrics were consistent across 10-

folds for both training (RMSE = 0.863) and testing (RMSE = 0.882) data sets, confirmed 

by the Mann-Whitney’s test. 

Developed with the ranger engine, the random forest model was tuned for mtry, 

trees, and min_n.  The optimal model achieved an RMSE of 0.832, explaining 33.0% of 

the variance.  The tuned model comprised 1,580 trees, mtry of 9, and min_n of 37.  

Across 10-folds, RMSE values were consistent based on the Mann-Whitney’s test 
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(training = 0.839, testing = 0.851).  For the final model, XGBoost utilized the xgboost 

engine with tuned parameters of 1,804 trees, mtry of 10, min_n of 3, tree depth of 8, learn 

rate of 0.005, loss reduction of 4.797, and sample size of 0.106.  The optimal XGBoost 

model achieved an RMSE of 0.832, with consistent performance metrics across 10-folds 

(training = 0.832, testing = 0.847), based on the Mann-Whitney’s test.  Friedman’s test 

and Wilcoxon signed-ranked test favored XGBoost as the best model on the training set, 

though no statistically significant differences were found between XGBoost and the 

random forest models in the testing data set. 

After tuning the cost and margin for the SVM model using a linear kernel, the 

optimal model exhibited a cost of 0.304 and a margin of 0.194, explaining 32.1% of the 

variance with an RMSE of 0.812.  In the 10-fold cross-validation, the mean RMSE was 

0.812 for the training set and 0.825 for the testing set.  Mann-Whitney’s test revealed no 

significant difference in the model's performance between the two data sets.  The SVM 

model with a polynomial kernel was tuned to optimal parameters, resulting in a cost of 

14.782, degree of 3, scale factor of 0.0001, and margin of 0.188.  The optimal model 

explained 32.2% of the variance with an RMSE of 0.812.  Mann-Whitney’s test indicated 

no significant difference in the evaluation metrics between the training (0.812) and 

testing (0.825) data sets.  The tuned SVM model with a radial basis function kernel 

exhibited an optimal cost of 19.46, sigma of 0.0005, and a margin of 0.123.  The optimal 

model accounted for 32.5% of the variance with an RMSE of 0.812. Mean RMSE values 

of 0.812 for the training set and 0.824 for the testing set indicated no significant 

difference between the data sets, based on the Mann-Whitney’s test. 
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Developing the optimal random forest model involved tuning parameters for mtry, 

trees, and min_n.  The optimal model, with 1,580 trees, mtry of 9, and min_n of 37, 

explained 34.0% of the variance with an RMSE value of 0.787.  Performance metrics 

indicated mean RMSE values of 0.787 for the training set and 0.798 for the testing set 

were consistent with no significant differences, based on the Mann-Whitney’s test.  For 

the final algorithm, XGBoost optimal model consisted of 1,264 trees, mtry of 22, min_n 

of 20, tree depth of 5, learn rate of 0.007, loss reduction of 0.004, and sample size of 

0.285.  The optimal model accounted for 35.2% of the variance with an RMSE of 0.779.  

Mean RMSE values for the training and testing sets were 0.779 and 0.794, respectively, 

with no statistical difference according to Mann-Whitney’s test.  On the training set, 

XGBoost was found to be the optimal based on Friedman’s test and Wilcoxon signed-

ranked test, while for the testing data set no statistical significance was found between 

XGBoost and the random forest model in their overall performance. 

The ensemble learning methods employing the mean approach exhibited an 

RMSE of 0.786 for the training set and 0.789 for the testing set.  The blended approach 

yielded an RMSE of 0.780 for the training set and 0.794 for the testing set.  Neither 

ensemble methods resulted in any enhancements to the predictions. 

One-year retention status.  A total of six algorithms with two ensemble learning 

methods were initially developed on the training data without addressing data imbalance.  

Subsequently, the algorithms were redeveloped with the data sets undergoing both 

downsampling and upsampling techniques.  Performance metrics, including overall 

accuracy, sensitivity, specificity, f-measure score, and AUC value, were evaluated for 

each algorithm across the two data sets.  Following Dey's (2021) recommendation, the 
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AUC value was analyzed to assess the models' performance across the training and 

testing data sets.  The performance metrics of the retention models are displayed in Table 

28 to Table 30. 

 The initial logistic regression model, developed with the glm engine, did not 

demonstrate significance based on the Hosmer-Lemeshow’s goodness-of-fit test (χ2(8) = 

12.189, p = .143), indicating that the model was a good fit.  The model accounted for 

4.7% and 7.4% of the variance with McFadden’s pseudo-R2 and Nagelkerke’s pseudo-R2, 

respectively.  The logistic regression model developed from the downsampled training 

data was also not found to be significant (Hosmer-Lemeshow’s χ2(8) = 6.985, p = .538) 

and explained 5.1% and 9.1% of the variance with McFadden’s pseudo-R2 and 

Nagelkerke’s pseudo-R2.  The logistic regression model from the upsampled training data 

was found to be significant (Hosmer-Lemeshow’s, χ2(8) = 17.555, p = .025) and 

explained 5.0% and 8.9% of the variance with McFadden’s pseudo-R2 and Nagelkerke’s 

pseudo-R2.  Based on the testing data set, the model was not significant (Hosmer-

Lemeshow’s, χ2(8) = 11.158, p = .193) and explained 4.8% and 7.7% of the variance with 

McFadden’s pseudo-R2 and Nagelkerke’s pseudo-R2. 
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Table 28  

 

One-Year Retention Predictive Algorithm’s Evaluation Metrics on Training and Testing 

Data Set without Sampling Techniques 

 
  Accuracy Sensitivity Specificity F-measure AUC 

Logistic Regression      
Training .778 .994 .023 .875 .640 
Testing .774 .992 .031 .871 .643 

SVM Linear      
Training .778 1.000 .000 .875 .554 
Testing .773 1.000 .000 .872 .503 

SVM Polynomial      
Training .778 1.000 .000 .875 .625 
Testing .773 1.000 .000 .872 .623 

SVM Radial Basis Function      
Training .778 1.000 .000 .875 .626 
Testing .773 1.000 .000 .872 .623 

Random Forest      
Training .778 .999 .003 .875 .655 
Testing .773 .999 .004 .872 .649 

XGBoost      
Training .779 .988 .046 .874 .663 
Testing .773 .988 .038 .870 .653 

Ensemble Learning Mean      
Training .779 .997 .016 .875 .662 
Testing .773 .997 .010 .871 .656 

Ensemble Learning Blended      
Training .778 .984 .055 .873 .663 
Testing .772 .987 .042 .870 .656 

 
The Mann-Whitney’s test revealed consistency in the AUC values with no 

significant difference found within the model developed with no sampling modifications.  

The downsampled model was found to be consistent with no significant differences 

between the training and testing data sets per the Mann-Whitney’s test.  Additionally, the 

downsampled AUC across 10-fold cross-validations suggested similar performance to all 

models except XGBoost on the training data set; yet logistic regression model’s 

performance was found to be like the random forest and XGBoost on the testing data set.  

AUC values were consistent between training and testing data sets, based on the Mann-

Whitney’s test from the upsampled model.  The Friedman’s test and Wilcoxon signed-
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ranked test identified logistic regression as statistically the best algorithm for AUC 

performance on the testing data set. 

The SVM model with a linear kernel was initially developed and resulted in an 

optimal model with a cost of 0.008 and a margin of 0.120.  The SVM model was retuned 

using the downsampled data set, with the optimal model exhibiting a cost of 0.002 and a 

margin of 0.122.  The SVM model was retuned using the upsampled data set, resulting in 

an optimal model with a cost of 0.001 and a margin of 0.067.  Examining the AUC values 

across the 10-folds, the Mann-Whitney’s test revealed that the initial, downsampled, and 

upsampled SVM models using the linear kernel did not consistently perform across the 

training and testing data sets. 

The SVM model using the polynomial kernel was initially developed, with the 

optimal model exhibiting a cost of 0.115, a degree of 1, a scale factor of 0.001, and a 

margin of 0.034.  The SVM model was retuned using the downsampled data set, where 

the optimal model exhibited a cost of 0.004, a degree of 3, a scale factor of 0.076, and a 

margin of 0.089.  The SVM model was retuned using the upsampled data set, with the 

optimal model exhibiting a cost of 0.004, a degree of 3, a scale factor of 0.076, and a 

margin of 0.089.  In examining the AUC values across the 10-folds, the Mann-Whitney’s 

test revealed the initial SVM model's performance was not significantly different, 

indicating consistency between the training and testing data sets.  However, the 

performance of the downsampled and upsampled SVM models using the polynomial 

kernel did not exhibit consistent performance across the training and testing data sets 

based on the Mann-Whitney’s test.  
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Table 29  

 

One-Year Retention Predictive Algorithm’s Evaluation Metrics on Training and Testing 

Data Set Utilizing Downsampling Techniques 

 
  Accuracy Sensitivity Specificity F-measure AUC 

Logistic Regression      
Training .602 .661 .543 .624 .638 
Testing .774 .992 .031 .871 .643 

SVM Linear      
Training .588 .797 .379 .659 .644 
Testing .773 1.000 .000 .872 .514 

SVM Polynomial      
Training .599 .729 .471 .645 .644 
Testing .773 .999 .001 .872 .548 

SVM Radial Basis Function      
Training .588 .797 .379 .659 .644 
Testing .773 1.000 .000 .872 .550 

Random Forest      
Training .618 .634 .602 .623 .650 
Testing .773 .999 .004 .872 .649 

XGBoost      
Training .612 .622 .603 .615 .658 
Testing .772 .989 .033 .870 .652 

Ensemble Learning Mean      
Training .616 .652 .580 .629 .656 
Testing .773 .997 .011 .872 .656 

Ensemble Learning Blended      
Training .613 .633 .594 .621 .658 
Testing .772 .987 .042 .870 .655 

 

The SVM model using the polynomial kernel was initially developed, with the 

optimal model exhibiting a cost of 0.115, a degree of 1, a scale factor of 0.000, and a 

margin of 0.034.  The SVM model was retuned using the downsampled data set, where 

the optimal model exhibited a cost of 0.004, a degree of 3, a scale factor of 0.076, and a 

margin of 0.089.  The SVM model was retuned using the upsampled data set, with the 

optimal model exhibiting a cost of 0.004, a degree of 3, a scale factor of 0.076, and a 

margin of 0.089.  In examining the AUC values across the 10-folds, the Mann-Whitney’s 

test revealed the initial SVM model's performance was not significantly different, 

indicating consistency between the training and testing data sets.  However, the 
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performance of the downsampled and upsampled SVM models using the polynomial 

kernel did not exhibit consistent performance across the training and testing data sets 

based on the Mann-Whitney’s test. 

The SVM model using the radial basis function kernel was developed with the 

optimal model exhibiting a cost of 0.024, radial basis function sigma of 0.001, and a 

margin of 0.048.  The SVM model was retuned using the downsampled data set, in which 

the optimal model exhibited a cost of 19.463, radial basis function sigma of 0.000, and a 

margin of 0.123.  The SVM model was retuned using the upsampled data set, in which 

the optimal model exhibited a cost of 0.019, radial basis function sigma of 0.467, and a 

margin of 0.013.  In examining the AUC values of the 10-folds, the Mann-Whitney’s test 

revealed the initial SVM model’s performance was not significantly different, indicating 

consistent performance between the training and testing data sets.  However, the 

performance of the downsampled and upsampled SVM models using the radial basis 

function kernel did not exhibit consistent performance across the training and testing data 

sets based on the Mann-Whitney’s test. 
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Table 30  

 

One-Year Retention Predictive Algorithm’s Evaluation Metrics on Training and Testing 

Data Set Utilizing Upsampling Techniques 
  Accuracy Sensitivity Specificity F-measure AUC 

Logistic Regression      
Training .606 .660 .552 .626 .645 
Testing .774 .992 .031 .871 .643 

SVM Linear      
Training .587 .801 .373 .660 .644 
Testing .773 1.000 .000 .872 .513 

SVM Polynomial      
Training .631 .693 .568 .652 .687 
Testing .773 .999 .001 .872 .548 

SVM Radial Basis Function      
Training .493 .400 .600 .659 .950 
Testing .773 1.000 .000 .872 .558 

Random Forest      
Training .939 .911 .966 .937 .984 
Testing .768 .967 .090 .866 .633 

XGBoost      
Training .915 .861 .969 .910 .976 
Testing .745 .910 .184 .847 .607 

Ensemble Learning Mean      
Training .919 .870 .969 .915 .976 
Testing .768 .964 .101 .865 .642 

Ensemble Learning Blended      
Training .966 .972 .961 .967 .983 
Testing .773 .987 .046 .871 .655 

 
For the initial random forest algorithm, the optimal model was tuned using the 

ranger engine, resulting in 1,710 trees, an mtry value of 2, and a minimum value of 29.  

The random forest was retuned utilizing the downsampled training data set and exhibited 

1,306 trees, an mtry value of 3, and a minimum value of 24.  The final random forest 

model, retuned using the upsampled training data set, comprised 731 trees, an mtry value 

of 24, and a minimum value of 3.  The Mann-Whitney’s test indicated only the 

performance of the random forest tuned using the upsampled data set was statistically 

different, suggesting inconsistency between the training and testing data sets.  The 

Friedman’s test and Wilcoxon signed-ranked test identified the initial random forest 
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model’s performance did not differ from the XGBoost model on both the training and 

testing data sets.  For the model tuned with the downsampled training data set, the 

performance of the algorithm was found not to be significantly different from the logistic 

regression and XGBoost models based on the Friedman’s test and the Wilcoxon signed-

ranked test.  The upsampled model’s performance was not consistent between the training 

and testing data sets based on the Mann-Whitney’s test.  Based on the training data set, 

the Friedman’s test and Wilcoxon signed-ranked test indicated the random forest was the 

best algorithm; however, the analysis on the testing data set did not reveal the same 

results. 

Using the xgboost engine to tune to optimal performance, the initial XGBoost 

algorithm exhibited 1,264 trees with an mtry of 22, minimum observations of 20, tree 

depth of 5, learning rate of 0.007, loss reduction of 0.004, and sample size of 0.285.  

After retuning with the downsample, the revised XGBoost algorithm exhibited 123 trees 

with an mtry of 7, minimum observations of 17, tree depth of 9, learning rate of 0.020, 

loss reduction of 0.006, and sample size of 0.370.  For the upsample model, the revised 

XGBoost algorithm exhibited 1,686 trees with an mtry of 29, minimum observations of 9, 

tree depth of 12, learning rate of 0.058, loss reduction of 0.116, and sample size of 0.876.  

The Mann-Whitney’s test only found the upsample model to be statistically different, 

indicating inconsistent performance between the training and testing data sets.  The 

Friedman’s test and Wilcoxon signed-ranked test found the XGBoost model to be the 

best-performing model on the initial data set; yet the performance was not significantly 

different from the random forest on the training and testing data sets.  For the 

downsample model, the XGBoost model’s performance was only found to be similar to 
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the logistic regression and random forest when conducting the Friedman’s test and 

Wilcoxon signed-ranked test on the testing data set. 

Utilizing the initial models, the ensemble learning methods exhibited varied 

accuracy metrics.  The mean method results between the training and testing data sets 

without sampling modifications exhibited similar rates, while the blended method 

exhibited slight differences.  While the results in the training data set in the downsampled 

models indicated slight improvements, both methods of the ensemble learning resulted in 

the testing data set exhibiting very limited improvements in the predictive power.  The 

ensemble learning method from the upsampled models exhibited very noticeable 

improvements in the training data set’s predictive power but reverted back to bias toward 

the majority class in the testing data set.  The blended method exhibited slight 

improvements in the accuracy metrics in the training testing data sets. 

Discussions of Findings 

 The study aimed to identify key factors influencing the first-year academic 

performance of FTFTFs enrolled in GA’s RCUs.  The effectiveness of predictive 

algorithms in forecasting academic outcomes was also evaluated.  Additionally, the 

research incorporated the utilization of ensemble learning methods to enhance the 

predictions.  Significant factors influencing first-year academic performance were 

identified, with at least one predictive algorithm demonstrating superior performance 

compared to others. 

 First research question.  Continuing to play a crucial role, factors such as 

student characteristics, pre-college characteristics, and financial situations significantly 

influence first-year academic performance.  Tinto's (1993) integration model highlights 
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the impact of internal and external factors across three phases as students integrate into 

the academic and social communities of their postsecondary institution.  Particularly, HS 

GPA emerges as the most influential factor in first-fall and first-year GPA, with a notable 

impact on one-year retention status.  Higher HS GPA correlates with students' ability to 

successfully manage multiple subjects in HS, potentially translating the needed skills for 

continued academic success and integration into the postsecondary community, resulting 

in higher retention rates.  Conversely, lower HS GPA is associated with academic 

struggles, lower first-year grades, and a higher likelihood of departure.  Except for the 

SVM models, the inclusion of HS curriculum variables affected first-fall GPA, first-year 

GPA, and one-year retention status depending on the model.  The mean content mastery 

and readiness scores consistently influenced these academic performance metrics with the 

highest impact noted in the XGBoost models.  Although not as potent as HS GPA, 

students from HS with higher content mastery and readiness rates are more likely to be 

academically prepared, improving their chances of success.  Conversely, students from 

HS with lower content mastery and readiness rates may face challenges adjusting to the 

rigor of postsecondary coursework, potentially impacting their academic integration.  

Proficiency levels in the four subject areas and their contributions to students' 

performance and retention largely depended upon the predictive algorithm, with the 

largest impact found in the XGBoost models. 

The Georgia HOPE scholarship emerged as the second most influential factor in 

first-fall and first-year GPAs and overwhelmingly the strongest factor in retention 

decisions.  Despite being linked to an HS GPA requirement, recipients of the merit-based 

financial aid were more likely to succeed academically and retain, eliminating the burden 
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of the full cost of attendance on the student.  In contrast, non-recipients, even if 

academically successful in the first year, were less likely to remain at the institution, 

potentially due to the financial burden of covering attendance costs.  The amount of the 

PELL grant and EFC exhibited moderate impacts on first-year academic performance, 

excluding SVM models.  These variables reflect the capacity to cover the full cost of 

attendance, with lower family contributions potentially leading to one-year departures 

and lower academic performance.  Even with a high HS GPA and the GA HOPE 

scholarship, students from families with lower expected contributions might leave the 

institution due to the financial burden of continued attendance costs. 

Second research question.  The study assessed the performance metrics of 

predictive algorithms for three academic variables.  Two ensemble learning methods were 

also employed to explore potential enhancements in predictive power.  Additionally, 

statistical inference tests were conducted to evaluate the consistency of algorithm 

performance across cross-validated training and testing data sets and determine the most 

effective algorithm.  For first-fall and first-year GPA, the evaluation focused on RMSE 

values generated by each model on training and testing data sets.  One-year retention 

algorithm performance was assessed based on overall accuracy, sensitivity, specificity, F-

measure, and AUC values from training and testing data sets, with AUC values 

prioritized, aligning with recommendations by Dey (2021). 

The examination of RMSE values visualized for first-fall GPA algorithms 

indicated the XGBoost model demonstrated the highest accuracy, closely followed by the 

random forest algorithm.  Statistically, the predictive power of both the random forest and 

XGBoost models showed consistency, with no significant difference detected, resulting in 
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two viable options for developing a predictive algorithm.  Likewise, for first-year GPA 

predictions, the XGBoost model outperformed others, with the random forest model as 

the second-best performing algorithm.  Predictive performances of the random forest and 

XGBoost algorithms were consistent and statistically indistinguishable, resulting in two 

options for developing a predictive algorithm.  Particularly, the evaluation of the two 

ensemble learning methods revealed no enhancements in predictive power for first-fall 

and first-year GPA.  For administrators looking to utilize predictive analytics to identify 

at-risk students based on projected first-fall and first-year GPAs, the XGBoost or random 

forest algorithms are recommended given the consistent performance between data sets 

and exhibited similar predictive power of all the algorithms. 

Derived for the training and testing data sets, the analysis of accuracy metrics for 

one-year retention predictive algorithms revealed a bias towards the majority class with 

low specificity rates across various models.  The algorithms developed from both the 

downsample and upsample techniques showed improvements in specificity rates during 

the evaluation of the training data set.  However, when assessing the testing data set, the 

high bias towards the majority class was observed.  In the initial model, XGBoost 

exhibited the highest AUC value, with the random forest model ranking second.  

Statistically, there was no significant difference between the random forest and XGBoost 

models, resulting in two viable options for developing predictive algorithms without 

sampling techniques.  For the downsample algorithms, logistic regression, random forest, 

and XGBoost were statistically equivalent, while the logistic regression model emerged 

as the best-performing model for the upsample algorithms.  Notably, the evaluation of the 

two ensemble learning methods revealed no enhancements in the predictive power of 
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one-year retention algorithms, except for slight improvements in the upsample models.  

The recommended application of algorithms to identify at-risk student of departing from 

the institution, administrators have some choices.  For developing algorithms without any 

sampling modifications, the recommended models are the XGBoost and random forest 

because of the consistent performance between data sets and exhibiting similar predictive 

power.  Administrators can select from logistic regression, random forest, and XGBoost 

models when looking to implement algorithms utilizing downsample modification.  

These three models will exhibit consistent performance between data sets with similar 

predictive power.  In upsample modifications algorithms, administrators could implement 

a logistic regression model or an ensemble learning model utilizing the blended method.   

Limitations of the Study 

The primary aim of this study was to evaluate the impact of the secondary 

curriculum on academic performance within postsecondary institutions.  Yet, several 

limitations restrict the generalizability of the findings.  Firstly, the study focused solely 

on four public RCUs in the southeastern United States, limiting its applicability to 

institutions in other geographical regions or various institutional types.  The study 

specifically examined FTFTFs who entered their initial institution after graduating from a 

public Georgia HS in 2018 or 2019.  Therefore, the results cannot be generalized to 

individuals who graduated before 2018 or after 2019, those from private Georgia HS, 

students graduating from out-of-state HS, or homeschooled students.  Additionally, it is 

important to note the integration of CCRPI and EOC variables involved aggregated 

school-level data rather than individual student-level data within RCUs.  Furthermore, the 

data's validity relies on the absence of modifications to the CCRPI and EOC variables by 
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the GaDOE in 2018 and 2019, and the study does not account for potential changes due 

to the COVID-19 pandemic.  Any alterations to these variables could impact the study's 

generalizability to the broader population. 

The independent variables incorporated into this study were chosen to specifically 

assess academic performance before students enrolled in their classes.  However, it is 

crucial to acknowledge this selection does not represent an exhaustive list of variables 

identified in previous research.  The inclusion of additional elements, such as class types, 

online course participation, employment status while attending college, and housing 

arrangements, has the potential to influence the study's outcomes.  Furthermore, the 

current study did not incorporate survey-based assessments of student mindset or grit, 

both of which could measure students' mental preparedness to adapt to the demands of 

college life.  Additionally, the study did not explore student engagement within academic 

or social communities.  The inclusion of engagement factors introduces a potential 

avenue for the study’s refinement, as their inclusion could potentially lead to altered 

findings. 

The selection of four predictive algorithms provides a diverse set of models for 

analyzing factors impacting academic performance and assessing their predictive power.  

Yet, these algorithms represent only a small fraction of the various models available in 

data science techniques.  The utilization of different models has the potential to influence 

the analysis and reveal distinct factors influencing academic performance.  Prior to 

developing the models, thorough evaluations of preliminary considerations and 

assumptions were conducted on the training data set.  While random forest and XGBoost 

algorithms demonstrated tolerance towards deviations from these considerations and 
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assumptions, a detailed review was undertaken for linear regression and logistic 

regression due to their sensitivity to such violations.  Additionally, the support vector 

machine algorithm is sensitive to extreme values and extreme class imbalances.  These 

considerations included examining missing data points and reviewing univariate and 

multivariate outliers.  The assumptions involved a comprehensive assessment of 

observation independence, linearity and collinearity, univariate and multivariate 

normality, and homogeneity of variance.  The class imbalance correction utilized 

downsampling and upsampling techniques.   

Missing data were addressed through various methods.  The small number of 

missing observations in EOC and CCRPI variables underwent median imputation, while 

student-level data were set to zero for certain variables based on the USG data collection 

method.  The Zell Miller indicator used "N" for missing values, while the missing values 

for the four college preparatory curriculum areas were marked as "U".  K-Nearest 

Neighbors imputation was employed for missing HS GPA, admissions test scores, and 

expected family contribution.  Visual inspection of histograms and Q-Q plots were used 

for outlier detection, and Grubb's statistical test identified outliers in certain variables.  

Mahalanobis’ test for multivariate outliers revealed violations in approximately one-third 

of observations, but no outlier capping was applied.  Observation independence and 

linearity assumptions were not violated.  However, during multicollinearity examination, 

three clusters of independent variables displayed linearity.  To mitigate this, college 

preparatory curriculum variables were consolidated, CCRPI and EOC variables were 

adjusted, and institutional expenditure variables were combined.  Most variables did not 

conform to a univariate normal distribution, confirmed by Q-Q plots, Shapiro-Wilks, and 
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Jarque-Bera tests.  Mardia’s test indicated multivariate normality violations, despite  

Yeo-Johnson transformation method being applied with only minimal improvements.  

Furthermore, the analysis in this study did not include interactions among the variables.  

The inclusion of interactions among the independent variables could potentially have an 

impact on the findings related to the factors influencing first-year academic performance.  

Several assumptions for the linear regression and logistic regression models were 

violated.  In the models predicting first-fall GPA and first-year GPA, eight variables 

lacked identifiable correlation with the dependent variables.  Normal distribution 

assessments, using Kolmogorov-Smirnov, Jarque-Bera, and Shapiro-Wilk’s statistical 

tests, revealed violations.  Additionally, for the two GPA models, the assumption of 

homogeneity of variance was also violated.  In the retention status model, five variables 

showed no correlation with the log odds of non-retention probabilities.  These violations 

may impact both evaluation metrics and variable importance within the models. 

The data set was split into a training set comprising 60% of the total observations 

(N = 13,078) and a testing set containing the remaining 40% (N = 8,719) to prevent 

overfitting through data leakage.  Additionally, a 10-fold cross-validation approach was 

applied to both sets, providing a robust assessment of predictive performance and helping 

identify overfitting issues.  The seed used for data splitting remained consistent for 

replication purposes.  The development of models employed the tidymodels and tidyverse 

packages, widely recognized tools in data science, which streamlined data preprocessing 

and facilitated algorithm development.  In the tuning process for SVMs, random forest, 

and XGBoost algorithms, RMSE was used for the GPA models, while AUC was 
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employed for the retention variable models.  The choice of accuracy metrics potentially 

limited the models by not displaying each model's complete accuracy metrics. 

Implications for Future Research 

 The aim of the research was to identify significant factors impacting FTFTFs' 

academic performance in the first year, even before students enrolled in courses.  To 

enhance the study, exploring interaction effects among existing factors and incorporating 

typical first-year course selections could be beneficial.  Factors such as enrollment in 

first-year English and mathematics courses, credit hour load, course modality, living 

arrangements, employment status, and participation in engagement events could provide 

a more comprehensive understanding of students' integration into academic and social 

communities.  Additionally, expanding models by incorporating surveys’ assessment of 

students' grit and resilience mindsets could offer insights into their integration into 

postsecondary communities in the face of setbacks experienced.  After the first-fall 

semester has concluded, incorporating first-fall GPA could enhance predictions for first-

year GPA and one-year retention, aiding in identifying potential at-risk students who may 

need support. 

To expand the study's impact regarding the HS curriculum, modifying the EOC 

subject by not combining the two similar subjects into a single variable and incorporating 

all components of the CCRPI variables could be considered.  Two comparison analyses 

could be conducted to assess any changes in the study.  First, a comparison involving pre-

pandemic, mid-pandemic, and post-pandemic students could provide insights into the 

evolving impact of COVID-19 on education and help identify at-risk students requiring 

support post-pandemic adjustment.  The second comparison would involve changes to 
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EOC or CCRPI variables over time.  As the GaDOE may modify these variables, a 

comparison analysis could determine whether these variables gained or lost any 

significance within the study. 

Advancing the study could involve exploring different predictive algorithms, 

especially considering technological advancements introduce new models.  Different or 

new algorithms might uncover additional influential factors in first-year academic 

performance.  The use of diverse ensemble learning methods could further enhance 

predictions.  Developing optimal algorithms with varied accuracy metrics, such as R2 

values or specificity, or different engines might yield different insights into significant 

factors and predictive powers. 

Recommendations for Practice 

 Postsecondary institutions stand to benefit greatly from leveraging the power of 

predictive analytics to identify at an early stage students who exhibit signs of at-risk 

tendencies of unsuccessful academic performance.  From the forecast outcomes, such as 

GPA or the likelihood of departing, these students can be categorized into distinct risk 

levels, ranging from minimal to high risk.  This stratification enables tailored strategies 

and plans to be developed and implemented.  Specifically, students identified as high risk 

would receive a comprehensive, hands-on set of strategies and support plans designed to 

address their unique challenges and to provide them a launching pad towards success.  

This intensive support mechanism is aimed at equipping these students with the essential 

skills required for academic and personal success, both within the classroom environment 

and beyond.  Conversely, students deemed to be at minimal risk would benefit from a 

more flexible, as-needed support system, allowing for intervention when necessary but 
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otherwise permitting them to proceed with their studies unencumbered.  This 

differentiated approach not only ensures resources are allocated efficiently but also 

fosters an environment where all students have the opportunity to succeed and thrive 

while at the institution.  

 Expanding wraparound services represents a pivotal strategy in bolstering support 

for at-risk students within educational institutions.  Creating a comprehensive support 

team comprising of faculty mentors, academic advisors, and peer mentors holds potential 

in providing tailored assistance for students facing academic challenges.  These support 

teams serve as invaluable resources for at-risk students, offering guidance on navigating 

both the academic and social communities of the institution.  Furthermore, reallocating 

staff members’ responsibilities to facilitate targeted outreach efforts for high-risk 

students, particularly those enrolled in courses with historically gateway courses, can be 

highly effective.  Individuals tasked with outreach can identify when students are 

struggling in their courses and connect them with resources, such as tutoring services, to 

address their academic difficulties promptly and to mitigate the risk of academic 

setbacks.  Another essential wraparound service is the implementation of mandatory 

study hall hours for high-risk students.  These structured study sessions offer a dedicated 

environment for at-risk students to develop crucial study skills and habits essential for 

academic success.  By fostering a culture of targeted academic support, such initiatives 

have the potential to yield long-term benefits beyond the students' first year, equipping 

the students with the tools necessary for sustained academic achievement. 

 

  



 

318 
 

Conclusions 

 Given ongoing challenges and an anticipated decline in the traditional-age student 

population, identifying at-risk students and providing support during their integration into 

postsecondary communities is crucial for sustaining healthy enrollment levels.  In the 

development of at-risk models, HS GPA continues to emerge as a primary factor 

influencing students' success in coursework and subsequently achieving successful GPAs 

in the first year.  The majority of predictive models highlight the significance of mean 

content mastery and readiness scores, along with proficiency levels in selected subject 

areas from the graduating high school, in shaping academic performance during the first 

year.  These variables signify the overall rates of preparedness from high school as a 

supplementary factor influencing students' ability to manage postsecondary coursework. 

Furthermore, students' capacity to afford the cost of attendance remains a primary 

factor of whether they retain or depart after the first year.  In Georgia, the HOPE 

scholarship significantly contributes to students' ability to retain by alleviating some 

financial burden through reducing the total attendance cost.  Certain predictive algorithms 

indicated expected family contributions and the PELL grant also impacted one-year 

retention, making these variables vital factors.  These variables may be particularly of 

interest for administrators and policymakers to understand the impact of students from 

families with lower expected contributions, despite having a successful HS GPA, might 

opt to leave the institution due to the ongoing financial burden of continued attendance.  

There were no consistent patterns across predictive algorithms for many other factors 

influencing academic performance.  For student characteristic and financial situation 
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variables, including them in models can assist postsecondary institutions in 

comprehending these factors. 

In comparing predictive models, both XGBoost and random forest models 

emerged as the recommended viable options for forecasting students' first-fall and first-

year GPAs.  These two models consistently performed well, with no statistically 

significant differences in predictive power on unseen data.  Despite being a common 

method for GPA analysis, the linear regression model did not outperform XGBoost and 

random forest.  In the retention models' comparison, models applied to the testing data set 

exhibited bias towards the majority class, even with class imbalance corrections.  Among 

models not utilizing imbalance sampling techniques, random forest and XGBoost are 

recommended algorithms given consistency between data sets and showed no statistical 

differences in predictive power.  Logistic regression, random forest, and XGBoost models 

utilizing downsample modifications are recommended models because of exhibiting 

consistency between data sets and no statistical differences in the predictive power.  

Logistic regression and employing an ensemble learning method utilizing the blended 

method are recommended as viable options with upsampling techniques.  The 

underperformance of linear regression and logistic regression without imbalance 

corrections may be attributed to assumption violations.  The SVM model, using three 

different kernels, consistently performed the worst.  Overall, the utilization of ensemble 

learning methods did not provide enhancements to the predictions.  The only 

improvement was exhibited in the blended method for the upsample models for one-year 

retention projections. 
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################################ 

## USG Data Clean Up Source File ## 

################################ 

 
## libraries and options utilized 
library(tidyverse); library(readxl) 
options(scipen=999) 
select <- dplyr::select 
 
## import data 
usg2018 <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/Term_Enrollment_data_20192.xlsx') 
usg2019 <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/Term_Enrollment_data_20202.xlsx') 
efc2018 <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/EFC_data_20192.xlsx') 
efc2019 <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/EFC_data_20202.xlsx') 
hope2018 <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/HOPE_data_20192.xlsx') 
hope2019 <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/HOPE_data_20202.xlsx') 
pell2018 <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/Pell_data_20192.xlsx') 
pell2019 <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/Pell_data_20202.xlsx') 
loans2018 <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/Loan_data_20192 (2).xlsx') 
loans2019 <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/Loan_data_20202 (1).xlsx') 
ga_hs <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/ga_public_private_ 
highschools.xlsx') 
cip_groupings <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/cip_codes_ 
groupings.xlsx') 
old_sat_xwalk <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/sat_act_xwalk.xlsx', sheet = 'sat_old_new') 
act_sat_xwalk <- read_excel('C:/Users/bdfitzgerald/Desktop/Dissertation/USG 
Data/sat_act_xwalk.xlsx', sheet = 'act_to_new_sat') 
 
## adjusting column names 
colnames(usg2018) <- tolower(colnames(usg2018)) 
colnames(usg2019) <- tolower(colnames(usg2019)) 
colnames(efc2018) <- tolower(colnames(efc2018)) 
colnames(efc2019) <- tolower(colnames(efc2019)) 
colnames(hope2018) <- tolower(colnames(hope2018)) 
colnames(hope2019) <- tolower(colnames(hope2019)) 
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colnames(pell2018) <- tolower(colnames(pell2018)) 
colnames(pell2019) <- tolower(colnames(pell2019)) 
colnames(loans2018) <- tolower(colnames(loans2018)) 
colnames(loans2019) <- tolower(colnames(loans2019)) 
colnames(ga_hs) <- tolower(colnames(ga_hs)) 
colnames(cip_groupings) <- tolower(colnames(cip_groupings)) 
colnames(old_sat_xwalk) <- tolower(colnames(old_sat_xwalk)) 
colnames(act_sat_xwalk) <- tolower(colnames(act_sat_xwalk)) 
 
## adjusting terms to common terms 
term_transpose <- usg2018 %>% select(academic_term) %>% 
 rbind(usg2019 %>% select(academic_term)) %>% 
 filter(!duplicated(academic_term)) %>%  arrange(academic_term) %>% 
 mutate(academic_term = as.integer(academic_term),  
        term_enrolled = paste0(ifelse(as.integer(substring(academic_term, 5, 5)) == 4,  
                                      as.integer(substring(academic_term, 1, 4)), 
                                      as.integer(substring(academic_term, 1, 4)) - 1),  
                               ifelse(as.integer(substring(academic_term, 5, 5)) == 1, '05',  
                                      ifelse(as.integer(substring(academic_term, 5, 5)) == 2, 
                                             '08', '02')))) 
 
## grouping the data together 
usg <- usg2018 %>% mutate(cohort_term = '201808') %>% 
 rbind(usg2019 %>%mutate(cohort_term = '201908')) %>% 
 left_join(term_transpose) 
 
## unique_student_list 
unique_stus <- usg %>% filter(cohort_term == term_enrolled) %>% 
 select(cohort_term, uniqueid, setid_consol, term_enrolled) 
 
## developing the dependent variables 
initial_fall <- usg %>% filter(cohort_term == term_enrolled) %>% 
 ## creating the one-year retention variable DV 
 left_join(usg %>% filter(as.integer(cohort_term) + 100 ==  
                     as.integer(term_enrolled)) %>% 
            select(cohort_term, uniqueid) %>% mutate(next_fall = 1)) %>% 
 mutate(dv_next_fall = ifelse(is.na(next_fall), 0, next_fall)) %>% 
 select(-next_fall) %>% 
## labeling the first fall GPA DV 
 rename(dv_first_fall_gpa = usg_cum_gpa) %>% 
 ## creating the end of first year GPA DV 
 left_join(usg %>%  
            select(cohort_term, term_enrolled, uniqueid) %>% 
            filter(as.integer(term_enrolled) >= as.integer(cohort_term) & 
                    as.integer(term_enrolled) < (as.integer(cohort_term) + 100)) %>% 
            group_by(cohort_term, uniqueid) %>% 
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            summarise(term_enrolled = max(term_enrolled), .groups = 'drop') %>% 
            left_join(usg %>% select(cohort_term, uniqueid, term_enrolled,  
          usg_cum_gpa) %>% 
                       rename(dv_first_yr_gpa = usg_cum_gpa)) %>% 
            select(-term_enrolled)) %>%  
 ## pulling in the expected family contribution 
 left_join(unique_stus %>% 
            inner_join(efc2018 %>% 
                        mutate(cohort_term = paste0('20', substr(award_year, 1, 2),  
                                                    '08')) %>% 
                        select(uniqueid, setid_consol, cohort_term,  

          expected_family_contribution) %>% 
                        rbind(efc2019 %>% 
                               mutate(cohort_term = paste0('20', substr(award_year, 1, 2),  
                                                           '08')) %>% 
                               select(uniqueid, setid_consol, cohort_term,  
                                      expected_family_contribution)))) %>%  
 ## pulling in the hope/zell scholarship 
 left_join(unique_stus %>% 
            inner_join(hope2018 %>%  
                        select(uniqueid, setid_consol, grant_type, total_award,  

          hope_academic_term) %>% 
                        rename(academic_term = hope_academic_term) %>% 
                        left_join(term_transpose) %>% select(-academic_term) %>% 
                        rbind(hope2019 %>%  
                               select(uniqueid, setid_consol, grant_type, total_award,  
                                      hope_academic_term) %>% 
                               rename(academic_term = hope_academic_term) %>% 
                               left_join(term_transpose) %>% select(-academic_term)) %>% 
                        mutate(grant_type = substr(grant_type, 1, 1),  
                               grant_type = ifelse(grant_type == 'H', 'hope',  
                                                   ifelse(grant_type== 'Z', 'zell', 'check')))) %>% 
            group_by(uniqueid, setid_consol, grant_type, term_enrolled) %>% 
            summarise(dollars = sum(total_award), .groups = 'drop') %>% 
            spread(grant_type, dollars) %>% 
            mutate(ga_hope = ifelse(is.na(hope), 0, hope) + ifelse(is.na(zell), 0, zell),  
                   zell_ind = ifelse(is.na(zell), 'N', 'Y')) %>% select(-hope, -zell)) %>% 
 ## pulling in pell amount 
 left_join(unique_stus %>% 
            inner_join(pell2018 %>% 
                        select(uniqueid, setid_consol, academic_term, regents_fund_code,  
                               paid_amt) %>% 
                        rbind(pell2019 %>% 
                               select(uniqueid, setid_consol, academic_term, regents_fund_code,  
                                      paid_amt)) %>% 
                        left_join(term_transpose)) %>% 
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            mutate(regents_fund_code = tolower(regents_fund_code)) %>% 
            spread(regents_fund_code,  paid_amt)) %>% 
 ## pulling in loan amounts 
 left_join( 
  unique_stus %>% 
   inner_join( 
    loans2018 %>% 
     select(uniqueid, setid_consol, academic_term, regents_fund_code, paid_amt) %>% 
     mutate(regents_fund_code = tolower(regents_fund_code),  
            regents_fund_code = case_when(regents_fund_code %in% c('loand',  
                                                 'stlnd') ~  'oth_loans', TRUE ~ regents_fund_code)) %>% 
     group_by(uniqueid, setid_consol, academic_term, regents_fund_code) %>% 
     summarise(paid_amt = sum(paid_amt, na.rm = TRUE), .groups = 'drop') %>% 
     filter(paid_amt != 0) %>% spread(regents_fund_code, paid_amt) %>% 
     left_join(term_transpose) %>% 
     rbind(loans2019 %>% 
         select(uniqueid, setid_consol, academic_term,  regents_fund_code, paid_amt) %>% 
            mutate(regents_fund_code = tolower(regents_fund_code),  
             regents_fund_code = case_when(regents_fund_code %in% c('loand',  

'stlnd') ~ 'oth_loans', TRUE ~ regents_fund_code)) %>% 
            group_by(uniqueid, setid_consol, academic_term, regents_fund_code) %>% 
            summarise(paid_amt = sum(paid_amt, na.rm = TRUE),  .groups = 'drop') %>% 
            filter(paid_amt != 0) %>% spread(regents_fund_code, paid_amt) %>% 
            left_join(term_transpose) ) %>% 
     rename(fed_sub_loans = direct, fed_unsub_loans = dluns) %>% 
     select(-academic_term))) %>% 
 ## majors to the groupings 
 left_join(cip_groupings) %>% select(-enrollment_cip_code_enrolled) %>% 
 ## sorting variable identification variables 
select(uniqueid, cohort_term,  
        ## dependent variables 
        dv_first_fall_gpa, dv_first_yr_gpa,dv_next_fall, 
        ## will need to be removed as only used for validation of the stu population 
        ## and retention rates 
        enrollment_institution_name, setid_consol, 
        ## used to filter down to recent hs graduates and public hs then removed afterwards 
        hs_grad_year, hs_code,  
        ## student characteristics 
        gender_descr, admit_first_gen_ind, ipeds_race_ethnicity_descr,  
        ## pre-college preparation 
        hs_gpa, act_composite, sat_math, sat_verbal, sat_2016_total_score, 
        ## extra pre-college preparation 
        adv_standing_ap_hrs, adv_standing_clep_hrs, adv_standing_ib_hrs,  
        adv_standing_other_hrs, cpc_english_code, cpc_foreign_language_code,  
        cpc_math_code, cpc_science_code, cpc_social_science_code,  
        ## major/program of student  
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        cip_categories,  
        ## finanical situations 
        expected_family_contribution, ga_hope, zell_ind, pell, fed_sub_loans,  
        fed_unsub_loans, oth_loans)  
 
## filter down to students who graduated in 2018 and 2019 
recent_hs_grads <- initial_fall %>% filter(hs_grad_year %in% c(2018, 2019)) 
 
## filtering down to identified public hs codes 
recent_ga_public_hs <- recent_hs_grads %>% 
 inner_join(ga_hs %>% filter(substr(state_school_id, 1, 2) == 'GA' &  

   ceeb_code != 'NA') %>% 
             select(ceeb_code) %>% filter(!duplicated(ceeb_code)) %>% 
             rename(hs_code = ceeb_code))   
 
## developing the admissions test scores 
## sat and act crosswalk 
recent_ga_public_hs <- recent_ga_public_hs %>% left_join(act_sat_xwalk) %>% 
 mutate(old_sat_total_score = sat_verbal + sat_math) %>% 
 left_join(old_sat_xwalk) %>% 
 mutate(adm_test_score = ifelse(is.na(sat_2016_total_score) & 
                                 !is.na(new_sat_total), new_sat_total, NA),  
        adm_test_score = ifelse(is.na(adm_test_score) & !is.na(sat_2016_total_score) & 
                                 is.na(new_sat_total), sat_2016_total_score, adm_test_score),  
        adm_test_score = ifelse(is.na(adm_test_score) & !is.na(sat_2016_total_score) & 
                                 !is.na(new_sat_total),  pmax(sat_2016_total_score, new_sat_total),  
                                adm_test_score),  
        adm_test_score_rv = ifelse(is.na(adm_test_score) & !is.na(new_sat_total_score),  
                                   new_sat_total_score, NA),  
        adm_test_score_rv = ifelse(is.na(adm_test_score_rv) & !is.na(adm_test_score) & 
                                    is.na(new_sat_total_score), adm_test_score, adm_test_score_rv),  
        adm_test_score_rv = ifelse(is.na(adm_test_score_rv) & !is.na(adm_test_score) & 
                                    !is.na(new_sat_total_score),  
                                   pmax(adm_test_score, new_sat_total_score),  
                                   adm_test_score_rv)) %>% 
 select(-act_composite, -sat_verbal, -sat_math, -old_sat_total_score,  

-sat_2016_total_score, -new_sat_total, -new_sat_total_score,  
         -adm_test_score) %>% rename(adm_test_score = adm_test_score_rv) 
 
## high schools file 
ga_hs <- ga_hs %>% filter(substr(state_school_id, 1, 2) == 'GA' &  

ceeb_code != 'NA') %>% 
 select(ceeb_code, state_school_id, locale_code, locale) %>% 
 filter(!duplicated(ceeb_code)) %>% rename(hs_code = ceeb_code) 
 
## removing unnecessary objects 
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rm(usg2018, usg2019, efc2018, efc2019, hope2018, hope2019, pell2018, pell2019,     
   loans2018, loans2019,  unique_stus, term_transpose, usg, cip_groupings,  
   initial_fall, recent_hs_grads, act_sat_xwalk, old_sat_xwalk) 
 
################################### 

## CCRPI Data Clean Up Source File ## 

################################### 

 
## libraries utilized 
library(rio) 
 
## import data files from web 
ccrpi18 <- rio::import('https://www.gadoe.org/CCRPI/Documents/2018/2018%20 
CCRPI%20Scoring%20by%20Component_12_14_18.xlsx') 
ccrpi19 <- rio::import('https://www.gadoe.org/CCRPI/Documents/2019/2019%20 
CCRPI%20Scoring%20by%20Component_04_01_20.xls') 
 
## fixing column names 
dat_colnames <- as.data.frame(colnames(ccrpi18)) %>% 
 cbind(as.data.frame(colnames(ccrpi19)))  
 
## since the names matched decided to select ccrpi19 names 
## for easer modifications 
colnames(ccrpi18) <- gsub(x = tolower(colnames(ccrpi19)),  
                          pattern = ' ', replacement = '_') 
colnames(ccrpi19) <- gsub(x = tolower(colnames(ccrpi19)),  
                          pattern = ' ', replacement = '_') 
 
## combining the ccrpi data together 
ccrpi <- ccrpi18 %>% rbind(ccrpi19) %>% 
 filter(school_id != 'ALL' & grade_cluster == 'H') %>% 
 select(school_year, system_id, system_name, school_id, school_name,  

content_mastery, readiness) %>% 
 mutate(content_mastery = as.numeric(content_mastery),  
        readiness = as.numeric(readiness),  
        school_code = paste('GA', system_id, school_id, sep = '-'))  
 
rm(dat_colnames , ccrpi18, ccrpi19) 
 
################################# 

## EOC Data Clean Up Source File ## 

################################# 

 
## libraries utilized 
library(tidyverse) 
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## import data 
eoc18 <- readr::read_csv('https://download.gosa.ga.gov/2018/EOC_2018_By_ 
Grad_FEB_24_2020.csv') 
eoc19 <- readr::read_csv('https://download.gosa.ga.gov/2019/EOC_2019_By_ 
Grad_FEB_24_2020.csv') 
 
colnames(eoc18) <- tolower(colnames(eoc18)) 
colnames(eoc19) <- tolower(colnames(eoc19)) 
 
## rbinding the data together 
eoc <- eoc18 %>% 
 rbind(eoc19) %>% 
 ## only selecting the 9th through 12th grade schools 
 filter(subgroup_name == 'All Students' & instn_number != 'ALL' & 
         acdmc_lvl >= 9) %>% 
 mutate(instn_number = as.character(instn_number), 
        instn_number = if_else(nchar(instn_number) == 3, paste0('0',  
                                                                instn_number), instn_number), 
        school_code = paste('GA', school_distrct_cd, instn_number, sep = '-'),  
        test_type = ifelse((test_cmpnt_typ_nm == '9th Grade Literature and Composition' | 
                             test_cmpnt_typ_nm == 'American Literature and Composition'),  
                           'english', NA),  
        test_type = ifelse((test_cmpnt_typ_nm == 'Algebra I' | 
                             test_cmpnt_typ_nm == 'Geometry' | 
                             test_cmpnt_typ_nm == 'Analytic Geometry' | 
                             test_cmpnt_typ_nm == 'Coordinate Algebra'), 'math', test_type),  
        test_type = ifelse((test_cmpnt_typ_nm == 'Physical Science' | 
                             test_cmpnt_typ_nm == 'Biology' ),  'science', test_type), 
        test_type = ifelse((test_cmpnt_typ_nm == 'US History' | 
                             test_cmpnt_typ_nm == 'Economics/Business/Free Enterprise' ),  
                           'social_studies', test_type),  
        year = paste0('20',substring(long_school_year, 6, 7)), 
        numb_tested = ifelse(num_tested_cnt == 'TFS', 0, as.numeric(num_tested_cnt)),  
        prof_numb = ifelse(as.numeric(proficient_cnt) >= 0,  
                           as.numeric(proficient_cnt ), NA), 
        prof_numb = ifelse(is.na(prof_numb) & !is.na(proficient_pct / 100),  
                           round(numb_tested * (proficient_pct / 100), 0), prof_numb), 
        prof_numb = ifelse(is.na(prof_numb), 0, prof_numb), 
        dist_numb = ifelse(as.numeric(distinguished_cnt) >= 0,  
                           as.numeric(distinguished_cnt ), NA), 
        dist_numb = ifelse(is.na(dist_numb) & !is.na(distinguished_pct / 100),  
                           round(numb_tested * (distinguished_pct / 100), 0), dist_numb), 
        dist_numb = ifelse(is.na(dist_numb), 0, dist_numb)) %>% 
 select(-test_cmpnt_typ_nm) 
 
## distinct high schools 
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hs <- eoc18 %>% rbind(eoc19) %>% 
 ## only selecting the 9th through 12th grade schools 
 filter(subgroup_name == 'All Students' & instn_number != 'ALL' & 
         acdmc_lvl >= 9) %>% 
 mutate(instn_number = as.character(instn_number), 
        instn_number = if_else(nchar(instn_number) == 3, paste0('0', instn_number),  
                               instn_number), 
        school_code = paste('GA', school_distrct_cd, instn_number, sep = '-'),  
        test_type = ifelse((test_cmpnt_typ_nm == '9th Grade Literature and Composition' | 
                             test_cmpnt_typ_nm == 'American Literature and Composition'),  
                           'english', NA),  
        test_type = ifelse((test_cmpnt_typ_nm == 'Algebra I' | 
                             test_cmpnt_typ_nm == 'Geometry' | 
                             test_cmpnt_typ_nm == 'Analytic Geometry' | 
                             test_cmpnt_typ_nm == 'Coordinate Algebra'), 'math', test_type),  
        test_type = ifelse((test_cmpnt_typ_nm == 'Physical Science' | 
                             test_cmpnt_typ_nm == 'Biology' ),  'science', test_type), 
        test_type = ifelse((test_cmpnt_typ_nm == 'US History' | 
                             test_cmpnt_typ_nm == 'Economics/Business/Free Enterprise' ),  
                           'social_studies', test_type),  
        year = paste0('20',substring(long_school_year, 6, 7))) %>% 
 select(year, school_dstrct_nm, school_code, instn_name, test_type) %>% 
 group_by(school_code, school_dstrct_nm, instn_name, test_type) %>% 
 summarise(count = n_distinct(year), .groups = 'drop') %>% 
 spread(test_type, count) %>% 
 mutate(english = ifelse(is.na(english), 0, english),  
        math = ifelse(is.na(math), 0, math),  
        science = ifelse(is.na(science), 0, science),  
        social_studies = ifelse(is.na(social_studies), 0, social_studies),  
        missing = ifelse((english + math + science + social_studies) / 4 == 2, 'N', 'Y'))  
 
## high schools to investigate if the campus is like a 9th grade campus 
hs <- hs %>% 
 mutate(school_code_rv = ifelse(school_code == 'GA-634-0308', 'GA-634-0195',  
                                NA),  
        school_code_rv = ifelse(school_code == 'GA-635-3052', 'GA-635-1554',  
                                school_code_rv),  
        school_code_rv = ifelse(school_code == 'GA-642-0109', 'GA-642-0198',  
                                school_code_rv),  
        school_code_rv = ifelse(school_code == 'GA-668-0106', 'GA-668-2052',  
                                school_code_rv),  
        school_code_rv = ifelse(school_code == 'GA-688-0209', 'GA-688-0193',  
                                school_code_rv),  
        school_code_rv = ifelse(school_code == 'GA-729-0205', 'GA-729-0105',  
                                school_code_rv),  
        school_code_rv = ifelse(school_code == 'GA-737-3052', 'GA-737-0199',  
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                                school_code_rv),  
        school_code_rv = ifelse(school_code == 'GA-754-0204', 'GA-754-0105',  
                                school_code_rv),  
        school_code_rv = ifelse(is.na(school_code_rv), school_code,  
                                school_code_rv)) 
 
## data cleaned up 
eoc_prep <- eoc %>% left_join(hs %>% select(school_code, school_code_rv)) %>% 
 select(school_code_rv, year, test_type, numb_tested, prof_numb, dist_numb) %>% 
 group_by(school_code_rv, year, test_type) %>% 
 summarise(numb_tested = sum(numb_tested),  
           prof_numb = sum(prof_numb),  
           dist_numb = sum(dist_numb),  
           .groups = 'drop') %>% 
 mutate(prof_dist = prof_numb + dist_numb) %>% 
 select(-prof_numb, -dist_numb) %>% 
 mutate(prof_dist_rate = ifelse(numb_tested == 0, NA, prof_dist / numb_tested)) %>% 
 select(-numb_tested, -prof_dist) %>% spread(test_type, prof_dist_rate) %>% 
 left_join(eoc %>% left_join(hs %>% select(school_code, school_code_rv)) %>% 
            select(year, school_code_rv, school_dstrct_nm, instn_name) %>% 
            filter(!duplicated(paste0(year, school_code_rv)))) 
 
rm(eoc, eoc18, eoc19, hs)  
 
################################## 

## IPEDS Data Clean Up Source File ## 

################################## 
 
## libraries utilized 
library(tidyverse) 
 
## import data 
ipeds <- read.csv('C:/Users/bdfitzgerald.VSU/Desktop/ipeds_expend_fte.csv') 
 
## ipeds data clean up 
ipeds.clean <- ipeds %>% 
 gather(var_type, var_results, -UnitID, -Institution.Name) %>% 
 mutate(fy = as.numeric(substr(substr(var_type, nchar(var_type) - 7,  
                                      nchar(var_type)), 1, 4)) - 1,  
        var_type = ifelse(str_detect(var_type, 'Instruction.expenses.per.FTE'), 'instr_exp',  
                          var_type),  
        var_type = ifelse(str_detect(var_type, 'Research.expenses.per.FTE'), 'rsch_exp',  
                          var_type), 
        var_type = ifelse(str_detect(var_type, 'Public.service.expenses.per.FTE'),  

  'public_serv_exp', var_type),  
        var_type = ifelse(str_detect(var_type, 'Academic.support.expenses.per.FTE'),  
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  'acay_sup_exp', var_type),  
        var_type = ifelse(str_detect(var_type, 'Student.service.expenses.per.FTE'),  

  'stu_serv_exp', var_type),  
        var_type = ifelse(str_detect(var_type, 'Institutional.support.expenses.per.FTE'),  

 'inst_sup_exp', var_type),  
        var_type = ifelse(str_detect(var_type, 'All.other.core.expenses.per.FTE'),  

 'all_other_exp', var_type)) %>% 
 spread(var_type, var_results) 
 
rm(ipeds) 
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APPENDIX D:  

R Code for Analysis 
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############### 

## ANALYSIS ## 

############### 

 
## libraries utilized 
library(tidyverse); library(tidymodels); library(lsr); library(regclass) 
library(car); library(DescTools) (vip); library(pdp); library(psych); library(tseries) 
library(doParallel); library(xgboost); library(kernlab); library(stacks) 
library(rstatix) 
 
select <- dplyr::select 
 
## setting working directory         
setwd(' C:/Users/bdfitzgerald/Desktop/Dissertation/') 
 
## data clean up source files 
## USG Data 
source('./dissertation_scripts/01.0 USG Data Clean Up.R') 
## CCRPI Data 
source('./dissertation_scripts/02.0 CCRPI Data Clean Up.R') 
## EOC Data 
source('./dissertation_scripts/03.0 EOC Data Clean Up.R') 
## IPEDS Data 
source('./dissertation_scripts/04.0 IPEDS Data Clean Up.R') 
 
###################### 

## COMBING DATA   ## 

###################### 

 
## USG data to IPEDS expenditures 
dat <- recent_ga_public_hs %>%mutate(fy = as.integer(substr(cohort_term, 1, 4))) %>% 
 left_join(ipeds.clean %>% 
            rename(enrollment_institution_name = Institution.Name)) %>% 
 select(-fy, -UnitID) 
 
## ga public high schools data 
## EOC and CCRPI to the distinct high schools represented 
## in the four RCUs 
hs_curriculum <- dat %>% select(hs_code, hs_grad_year) %>% 
 filter(!duplicated(paste0(hs_grad_year, hs_code))) %>%  
 left_join(ga_hs) %>% 
 left_join(ccrpi %>% 
            rename(state_school_id = school_code,  
                   hs_grad_year = school_year) %>%  
            mutate(content_mastery = content_mastery / 100,  
                   readiness = readiness / 100) %>% 
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            select(hs_grad_year, content_mastery, readiness, state_school_id)) %>% 
 left_join(eoc_prep %>% 
            select(-school_dstrct_nm, -instn_name) %>% 
            mutate(year = as.integer(year)) %>% 
            rename(hs_grad_year = year, state_school_id = school_code_rv)) 
 
## removing unnecessary objects 
rm(ccrpi, eoc_prep, ga_hs, ipeds.clean, recent_ga_public_hs) 
 
## modifying USG data 
dat <- dat %>% mutate(dv_next_fall = case_when(dv_next_fall == 1 ~ 0, TRUE ~ 1),  
        race_eth = case_when(ipeds_race_ethnicity_descr %in%  

           c('White', 'Black or African American',  
                                                               'Hispanic or Latino') ~  

ipeds_race_ethnicity_descr, TRUE ~ 'Other'),  
        unique_identifer = paste(uniqueid, cohort_term, enrollment_institution_name,  
                                 setid_consol, sep = '.')) %>% 
 select(-ipeds_race_ethnicity_descr, -uniqueid, -cohort_term,  
        -enrollment_institution_name, -setid_consol) 
 
########################## 

## DATA PARTITIONING ## 

########################## 

 
## data splitting 
set.seed(51823) 
dat_split <- initial_split(data = dat, prop = .6) 
dat_train <- training(dat_split); dat_test <- testing(dat_split) 
 
############################  

## DEPENDENT VARAIBLE ## 

## FIRST-FALL GPA               ## 

############################ 

 
## data clean up recipe 
fsgpa_rec <- recipe(dv_first_fall_gpa ~ ., data = dat_train) %>% 
 update_role(unique_identifer,  new_role = 'id variable') %>% 
 step_filter(!is.na(dv_first_fall_gpa)) %>% 
 step_mutate_at(c(adv_standing_ap_hrs:adv_standing_other_hrs,  
                  ga_hope,  pell:oth_loans),  fn = ~ replace_na(., 0)) %>% 
 step_mutate_at(zell_ind,  fn = ~ replace_na(., 'N')) %>% 
 step_novel(c(cpc_english_code:cpc_social_science_code)) %>% 
 step_unknown(c(cpc_english_code:cpc_social_science_code), new_level = 'U') %>% 
 step_mutate(gender_descr = case_when(gender_descr == 'Male' ~ 1, TRUE ~ 0),  
      admit_first_gen_ind = case_when(admit_first_gen_ind == 'Y' ~ 1,  TRUE ~ 0),  
      college_prep = case_when(cpc_english_code == 'S' ~ 1,  



 

374 
 

                                      cpc_english_code == 'X' ~ 1,  TRUE ~ 0) + 
      case_when(cpc_foreign_language_code == 'S' ~ 1,  
                        cpc_foreign_language_code == 'X' ~ 1, TRUE ~ 0) + 
      case_when(cpc_math_code == 'S' ~ 1, cpc_math_code == 'X' ~ 1, TRUE ~ 0)  + 
      case_when(cpc_science_code == 'S' ~ 1, cpc_science_code == 'X' ~ 1, TRUE ~ 0) + 
      case_when(cpc_social_science_code == 'S' ~ 1,  
                        cpc_social_science_code == 'X' ~ 1, TRUE ~ 0), 
      acay_inst_sup_exp = (acay_sup_exp + inst_sup_exp),  
      public_rsch_exp = (public_serv_exp + rsch_exp),              
      cm_ready = (content_mastery + readiness) / 2,  english_cm = english - cm_ready,  
      math_cm = math - cm_ready, science_cm = science - cm_ready,  
      social_studies_cm = social_studies - cm_ready,              
      cip_categories = case_when(cip_categories == 'Social Sciences' ~ 1, 
                 cip_categories == 'Fine Arts' ~ 2, cip_categories == 'Human Services' ~ 3,  
                 cip_categories == 'Business' ~ 4, cip_categories == 'STEM' ~ 5,  
                 cip_categories == 'General/Interdisciplinary Studies' ~ 6,  
                 cip_categories == 'Healthcare' ~ 7, cip_categories == 'Education' ~ 8,  
                 TRUE ~ 9),  
      zell_ind = case_when(zell_ind == 'Y' ~ 1, TRUE ~ 0),  
      locale_group = case_when(locale_group == 'City' ~ 1, locale_group == 'Suburb' ~ 2,  
                                      locale_group == 'Town' ~ 3, TRUE ~ 4),  
      race_eth = case_when(race_eth == 'White' ~ 1,  
                                  race_eth == 'Black or African American' ~ 2,  
                                  race_eth == 'Hispanic or Latino' ~ 3, TRUE ~ 4),  
      adv_standing_ib_hrs = adv_standing_ib_hrs, 
      adv_standing_clep_hrs = adv_standing_clep_hrs, 
      adv_standing_other_hrs = adv_standing_other_hrs) %>% 
 step_rm(cpc_english_code, cpc_foreign_language_code,  
      cpc_math_code, cpc_science_code, cpc_social_science_code, acay_sup_exp,  
      inst_sup_exp, public_serv_exp, rsch_exp, english, math, science,  
      social_studies, dv_next_fall, content_mastery, readiness, 
      dv_first_yr_gpa, hs_code, hs_grad_year, state_school_id, locale_code, locale) %>% 
 step_impute_knn(c(hs_gpa, adm_test_score, expected_family_contribution),  
      neighbors = 10) %>% 
 step_rename(hsgpa_knn = hs_gpa,  ats_knn = adm_test_score,  
      efc_knn = expected_family_contribution) %>% 
 step_YeoJohnson(hsgpa_knn, ats_knn, college_prep, adv_standing_ap_hrs,  
      adv_standing_clep_hrs, adv_standing_ib_hrs, adv_standing_other_hrs, cm_ready,  
      english_cm, math_cm, science_cm, social_studies_cm, efc_knn, ga_hope, pell,  
      fed_sub_loans, fed_unsub_loans, oth_loans, acay_inst_sup_exp,  all_other_exp,  
      instr_exp, stu_serv_exp, public_rsch_exp) %>% 
 step_normalize(hsgpa_knn,  ats_knn, college_prep, adv_standing_ap_hrs,  
      adv_standing_clep_hrs, adv_standing_ib_hrs, adv_standing_other_hrs, cm_ready,  
      college_prep, english_cm, math_cm, science_cm, social_studies_cm, efc_knn,  
      ga_hope, pell, fed_sub_loans, fed_unsub_loans, oth_loans, acay_inst_sup_exp, 
      all_other_exp, instr_exp, stu_serv_exp, public_rsch_exp) 
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####################### 

## CLEAN DATA SETS ## 

####################### 

 
## produce clean training data set 
fs_gpa <- fsgpa_rec %>% prep() %>% juice() 
fs_gpa_rec <- recipe(dv_first_fall_gpa ~ .,  data = fs_gpa %>% select(-unique_identifer)) 
## processing testing data 
fs_gpa_test <- fsgpa_rec %>% prep() %>% bake(dat_test) %>% 
 filter(!is.na(dv_first_fall_gpa)) 
 
######################### 

##CROSS-VALIDATIONS## 

######################### 

 
## training cross validation 
set.seed(51823) 
fs_gpa_cv <- vfold_cv(fs_gpa %>% select(-unique_identifer), v = 10) 
## testing cross validation 
set.seed(51823) 
fs_gpa_cv_t <- vfold_cv(fs_gpa_test %>% select(-unique_identifer), v = 10) 
 
######################### 

## TUNING CONTROLS ## 

######################### 

 
## control grid set up 
ctrl_grid <- control_grid(save_pred = TRUE, save_workflow = TRUE) 
## model_metrics 
model_metrics <- metric_set(rmse, rsq) 
 
########################## 

##LINEAR REGRESSION ## 

########################## 

 
## training data set 
gpa_ln <- lm(formula = dv_first_fall_gpa ~ .,  
             data = fs_gpa %>% select(-unique_identifer)) 
## model summary 
gpa_ln %>% summary() 
## rmse 
data.frame(predicted = predict(object = gpa_ln, fs_gpa),  
                  actuals = fs_gpa$dv_first_fall_gpa) %>%  
 mutate(diff = (predicted - actuals)^2) %>% 
 select(diff) %>% summarise(rmse = sqrt(mean(diff))) 
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## coefficients aka beta weights 
gpa_ln %>% coefficients()  
## confidence intervals of coefficients 
gpa_ln %>% confint() 
## standardized regression coefficients 
gpa_ln %>% lm.beta() 
## standardized and unstandardized coefficients 
gpa_ln %>% standardCoefs() 
 
## linear regression assumptions 

## correlation with dv 
fs_gpa_corr <- fs_gpa %>% select(-unique_identifer) %>% 
 corr.test(use = 'pairwise', method = 'pearson', adjust = 'holm', alpha = .05)  
## VIF 
gpa_ln %>% VIF() %>% data.frame() 
## means of errors 
gpa_ln %>% rstandard() %>% mean() 
gpa_ln %>% rstudent() %>% mean() 
##correlation amongst the residuals 
gpa_ln %>% durbinWatsonTest() 
## homogeneity of variance 
gpa_ln %>% ncvTest() 
## normality of residuals 
gpa_ln %>% rstudent() %>% LillieTest() 
(gpa_ln %>% rstudent())[0:5000] %>% shapiro.test() 
gpa_ln %>% rstudent() %>% jarque.bera.test() 
 
## results of the model on testing data set 
gpa_ln_test <- lm(formula = dv_first_fall_gpa ~ .,  
                  data = fs_gpa_test %>% select(-unique_identifer)) 
## model summary 
gpa_ln_test %>% summary() 
## rmse 
data.frame(predicted = predict(object = gpa_ln_test, fs_gpa_test),  
           actuals = fs_gpa_test$dv_first_fall_gpa) %>% 
 mutate(diff = (predicted - actuals)^2) %>%  select(diff) %>% 
 summarise(rmse = sqrt(mean(diff))) 
 
## variable importance analysis 

## creating the tidymodels linear regression 
ln_reg <- linear_reg() %>% set_engine(engine = 'lm') %>% set_mode('regression') 
## tidymodels workflow 
ln_reg_wf <- workflow() %>% add_model(ln_reg) %>% add_recipe(fs_gpa_rec) 
lin_reg_vi <- fit(ln_reg_wf, fs_gpa) %>% extract_fit_parsnip() %>%  vi() %>% 
 left_join(fit(ln_reg_wf, fs_gpa) %>% extract_fit_parsnip() %>%  
            vi(scale = TRUE) %>% select(-Sign) %>% 
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            rename(rescaled_importance = Importance)) 
lin_reg_vi_test <- fit(ln_reg_wf, fs_gpa_test) %>% extract_fit_parsnip() %>%  vi() %>% 
 left_join(fit(ln_reg_wf, fs_gpa_test) %>% extract_fit_parsnip() %>%  
            vi(scale = TRUE) %>% select(-Sign) %>% 
            rename(rescaled_importance = Importance)) 
 
lin_reg_vi %>% mutate(data_set = '1. Training') %>% 
 rbind(lin_reg_vi_test %>% mutate(data_set = '2. Testing')) %>% 
 rename(Impact = Sign) %>% 
 mutate(Impact = case_when(Impact == 'NEG' ~ 'Negative', TRUE ~ 'Positive'), 
        Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, abs(rescaled_importance)), y = rescaled_importance, 
            fill = Impact)) + geom_bar(aes(fill = Impact), stat = 'identity') + 
 theme_classic() + ylab("Rescaled Importance") + 
 theme(legend.position = 'top', axis.title.y = element_blank(),  
       text = element_text(size = 15)) + coord_flip() + facet_wrap(.~ data_set) 
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## predictive power 

## assessing training data set 
ln_reg_wf_eval <- ln_reg_wf %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv, 
               metrics = model_metrics, control = ctrl_grid) 
ln_reg_wf_eval %>% collect_metrics  
## assessing testing data set 
ln_reg_wf_eval_t <- ln_reg_wf %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv_t, 
               metrics = model_metrics, control = ctrl_grid) 
ln_reg_wf_eval_t %>% collect_metrics 
 
###################################### 

##Support Vector Machine-Linear Kernel ## 

###################################### 

 
## model specifications 
svm_l_spec <- svm_linear(cost = tune(),margin = tune()) %>% 
 set_mode('regression') %>%set_engine('kernlab') 
## model workflow 
svm_l_wf <- workflow() %>% add_model(svm_l_spec) %>% add_recipe(fs_gpa_rec) 
## tuning 
set.seed(52323) 
svm_l_tune <- tune_grid(svm_l_wf,  resamples = fs_gpa_cv,  grid = 20) 
## selecting best model 
svm_l_final <- select_best(svm_l_tune, 'rmse') 
## model fixed to the best outcome model 
svml_tune_final <- finalize_model(svm_l_spec, svm_l_final) 
 
## variable importance analysis 

## training data set 
set.seed(51923) 
svml_fit <- workflow() %>% add_model(svml_tune_final)  %>% 
 add_recipe(fs_gpa_rec) %>% fit(fs_gpa %>% select(-unique_identifer)) 
set.seed(51923) 
svml_vi <- svml_fit %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = FALSE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa %>% select(-unique_identifer))  
set.seed(51923) 
svml_vi_rs <- svml_fit %>%extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa %>% select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 



 

379 
 

## testing data set 
## vip of the xgb 
set.seed(51923) 
svml_fit_test <- workflow() %>%  add_model(svml_tune_final)  %>% 
 add_recipe(fs_gpa_rec) %>%  fit(fs_gpa_test %>%select(-unique_identifer)) 
set.seed(51923) 
svml_vi_test <- svml_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = FALSE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa_test %>% select(-unique_identifer))  
set.seed(51923) 
svml_vi_rs_test <- svml_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa_test %>% select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
svml_vi_rs %>% mutate(data_set = '1. Training') %>% 
 rbind(svml_vi_rs_test %>% mutate(data_set = '2. Testing')) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
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                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10),  stat = 'identity') + 
 theme_classic() + theme(legend.position = 'none',  axis.title.y = element_blank(),  
       text = element_text(size = 15)) + 
 ylab('Rescaled Importance') + coord_flip() + facet_wrap(. ~ data_set) 
 
## predictive power 

## assessing training data 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_l_cv <- svml_tune_final %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv, 
               metrics = model_metrics,  control = ctrl_grid)         
svm_l_cv %>% collect_metrics() 
 
## assessing testing data 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_l_cv_t <- svml_tune_final %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv_t, 
               metrics = model_metrics, control = ctrl_grid)         
svm_l_cv_t %>% collect_metrics() 
 
########################################## 

##Support Vector Machine-Polynomial Kernel ## 

########################################## 
 
## model specifications 
svm_p_spec <- svm_poly(cost = tune(), degree = tune(), scale_factor = tune(), 
                       margin = tune()) %>% set_mode('regression') %>% set_engine('kernlab') 
## model workflow 
svm_p_wf <- workflow() %>% add_model(svm_p_spec) %>% add_recipe(fs_gpa_rec) 
## tuning model 
set.seed(52323) 
svm_p_tune <- tune_grid(svm_p_wf, resamples = fs_gpa_cv, grid = 20) 
## selecting best model 
svm_p_final <- select_best(svm_p_tune, 'rmse') 
## model fixed to the best outcome model 
svmp_tune_final <- finalize_model(svm_p_spec, svm_p_final) 
 
## variable importance analysis 

## training data set 
set.seed(51923) 
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svmp_fit <- workflow() %>% add_model(svmp_tune_final)  %>% 
 add_recipe(fs_gpa_rec) %>% fit(fs_gpa %>% select(-unique_identifer)) 
set.seed(51923) 
svmp_vi <- svmp_fit %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = FALSE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa %>% select(-unique_identifer)) 
set.seed(51923) 
svmp_vi_rs <- svmp_fit %>%extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa %>% select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
## testing data set 
set.seed(51923) 
svmp_fit_test <- workflow() %>%add_model(svmp_tune_final)  %>% 
 add_recipe(fs_gpa_rec) %>% fit(fs_gpa_test %>% select(-unique_identifer)) 
set.seed(51923) 
svmp_vi_test <- svmp_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = FALSE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa_test %>% select(-unique_identifer)) 
set.seed(51923) 
svmp_vi_rs_test <- svmp_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa_test %>% select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
svmp_vi_rs %>% mutate(data_set = '1. Training') %>% 
 rbind(svmp_vi_rs_test %>% mutate(data_set = '2. Testing')) %>%  
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
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                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10), stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none', axis.title.y = element_blank(),  
       text = element_text(size = 15)) + 
 ylab('Rescaled Importance') + coord_flip() +  facet_wrap(. ~ data_set) 
 
## predictive power 

## assessing training data set 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_p_cv <- svmp_tune_final %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv, 
               metrics = model_metrics, control = ctrl_grid)         
svm_p_cv %>% collect_metrics() 
 
## assessing testing data set 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_p_cv_t <- svmp_tune_final %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv_t, 
               metrics = model_metrics, control = ctrl_grid)         
svm_p_cv_t %>% collect_metrics() 
 

################################################### 

##Support Vector Machine-Radial Basis Function Kernel ## 

################################################### 

 
## model specifications 
svm_r_spec <- svm_rbf(cost = tune(), rbf_sigma = tune(),margin = tune()) %>% 
 set_mode('regression') %>% set_engine('kernlab') 
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## model workflow 
svm_r_wf <- workflow() %>% add_model(svm_r_spec) %>% add_recipe(fs_gpa_rec) 
## tuning model 
set.seed(52323) 
svm_r_tune <- tune_grid(svm_r_wf, resamples = fs_gpa_cv, grid = 20) 
## selecting best model 
svm_r_final <- select_best(svm_r_tune, 'rmse') 
## model fixed to the best outcome model 
svmr_tune_final <- finalize_model(svm_r_spec, svm_r_final) 
 
## variable importance analysis 

## training data set 
set.seed(51923) 
svmr_fit <- workflow() %>% add_model(svmr_tune_final)  %>% 
 add_recipe(fs_gpa_rec) %>% fit(fs_gpa %>% select(-unique_identifer)) 
set.seed(51923) 
svmr_vi <- svmr_fit %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = FALSE, pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa %>%select(-unique_identifer)) 
set.seed(51923) 
svmr_vi_rs <- svmr_fit %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = TRUE, pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa %>% select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
# testing data set 
set.seed(51923) 
svmr_fit_test <- workflow() %>% add_model(svmr_tune_final)  %>% 
 add_recipe(fs_gpa_rec) %>% fit(fs_gpa_test %>% select(-unique_identifer)) 
set.seed(51923) 
svmr_vi_test <- svmr_fit_test %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = FALSE, pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa_test %>%select(-unique_identifer)) 
set.seed(51923) 
svmr_vi_rs_test <- svmr_fit_test %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = TRUE, pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_fall_gpa', 
    train = fs_gpa_test %>%select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
svmr_vi_rs %>% mutate(data_set = '1. Training') %>% 
 rbind(svmr_vi_rs_test %>% mutate(data_set = '2. Testing')) %>%  
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
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                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10),  stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(),  
       text = element_text(size = 15)) + 
 ylab('Rescaled Importance') + coord_flip() + facet_wrap(. ~ data_set) 
 
## predictive power 

## assessing training data set 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_r_cv <- svmr_tune_final %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv, 
               metrics = model_metrics,  control = ctrl_grid)         
svm_r_cv %>% collect_metrics() 
 
## assessing testing data set 
doParallel::registerDoParallel() 
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set.seed(51923) 
svm_r_cv_t <- svmr_tune_final %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv_t, 
               metrics = model_metrics,  control = ctrl_grid)         
svm_r_cv_t %>% collect_metrics() 
 

###################### 

##RANDOM FOREST ## 

###################### 

 
## model specifications 
rf_spec <- rand_forest(  mtry = tune(), trees = tune(),min_n = tune()) %>% 
 set_mode("regression") %>% set_engine("ranger") 
## workflow 
rf_wf <- workflow() %>% add_model(rf_spec) %>% add_recipe(fs_gpa_rec) 
## tuning model 
doParallel::registerDoParallel() 
set.seed(51823) 
rf_wf_tune <- tune_grid(rf_wf, resamples = fs_gpa_cv, grid = 20) 
## best model 
rf_tune_best <- select_best(rf_wf_tune, 'rmse') 
## model fixed to the best outcome model 
rf_tune_final <- finalize_model(rf_spec, rf_tune_best) 
 
## variable importance analysis 

## training data set 
set.seed(511923) 
rf_vi <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_first_fall_gpa ~ .,  data = fs_gpa %>% select(-unique_identifer)) %>% vi()  
set.seed(511923) 
rf_vi_rs <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_first_fall_gpa ~ ., data = fs_gpa %>% select(-unique_identifer)) %>% 
 vi(scale = TRUE) %>% rename(rescaled_importance = Importance) 
 
## testing data set 
set.seed(511923) 
rf_vi_test <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_first_fall_gpa ~ .,  data = fs_gpa_test %>% select(-unique_identifer)) %>% vi()  
set.seed(511923) 
rf_vi_rs_test <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_first_fall_gpa ~ .,  data = fs_gpa_test %>% select(-unique_identifer)) %>% 
 vi(scale = TRUE) %>% rename(rescaled_importance = Importance) 
 
rf_vi_rs %>% mutate(data_set = '1. Training') %>% 
 rbind(rf_vi_rs_test %>% mutate(data_set = '2. Testing')) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
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                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10),  stat = 'identity') + 
 theme_classic() + theme(legend.position = 'none',  axis.title.y = element_blank(),  
       text = element_text(size = 15)) + ylab('Rescaled Importance') + 
 coord_flip() + facet_wrap(.~ data_set) 
 
## predictive power 

rf_wf_final <- workflow() %>% add_model(rf_tune_final) %>% add_recipe(fs_gpa_rec) 
## assessing training data set 
doParallel::registerDoParallel() 
set.seed(51923) 
rf_train <- rf_wf_final %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv, 
               metrics = model_metrics, control = ctrl_grid) 
## model performance 
rf_train %>% collect_metrics() 
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## assessing testing data set 
doParallel::registerDoParallel() 
set.seed(51923) 
rf_test <- rf_wf_final %>% 
 fit_resamples(dv_first_fall_gpa ~.,  resamples = fs_gpa_cv_t, 
               metrics = model_metrics,  control = ctrl_grid)         
rf_test %>% collect_metrics() 
 
##################################### 

##EXTREME GRADIENT BOOSTING ## 

##################################### 

 
## building out model specs 
xgb <- boost_tree(trees = tune(), tree_depth = tune(),min_n = tune(), 
 loss_reduction = tune(), sample_size = tune(),  mtry = tune(),  learn_rate = tune()) %>% 
 set_engine('xgboost') %>% set_mode('regression') 
xgb_wf <- workflow() %>% add_model(xgb) %>% add_recipe(fs_gpa_rec) 
## tuning model 
doParallel::registerDoParallel() 
set.seed(51923) 
xgb_wf_tune <- tune_grid(xgb_wf, resamples = fs_gpa_cv, grid = 20) 
## best model 
xgb_tune_best <- select_best(xgb_wf_tune, 'rmse') 
## model fixed to the best outcome model 
xgb_tune_final <- finalize_model(xgb, xgb_tune_best) 
 
## variable importance analysis 

## training data set 
set.seed(51923) 
xgb_vi <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_first_fall_gpa ~ .,  data = fs_gpa %>% select(-unique_identifer)) %>% vi() 
set.seed(51923) 
xgb_vi_rs <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_first_fall_gpa ~ ., data = fs_gpa %>%select(-unique_identifer)) %>% 
 vi(scale = TRUE) %>% rename(rescaled_importance = Importance) 
 
## testing data set 
set.seed(51923) 
xgb_vi_test <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_first_fall_gpa ~ .,  data = fs_gpa_test %>% select(-unique_identifer)) %>% vi() 
set.seed(51923) 
xgb_vi_rs_test <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_first_fall_gpa ~ .,  
     data = fs_gpa_test %>% select(-unique_identifer)) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) 
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xgb_vi_rs %>% mutate(data_set = '1. Training') %>% 
 rbind(xgb_vi_rs_test %>% mutate(data_set = '2. Testing')) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10),  stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(),  
       text = element_text(size = 15)) + ylab('Rescaled Importance') + 
 coord_flip() + facet_wrap(. ~ data_set) 
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## predictive power 

xgb_wf_final <- workflow() %>% add_model(xgb_tune_final) %>% 
 add_recipe(fs_gpa_rec) 
## assessing training data 
doParallel::registerDoParallel() 
set.seed(51923) 
xgb_train <- xgb_wf_final %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv, 
               metrics = model_metrics, control = ctrl_grid) 
xgb_train %>%collect_metrics() 
 
## assessing testing data 
doParallel::registerDoParallel() 
set.seed(51923) 
xgb_test <- xgb_wf_final %>% 
 fit_resamples(dv_first_fall_gpa ~., resamples = fs_gpa_cv_t, 
               metrics = model_metrics,  control = ctrl_grid)         
xgb_test %>% collect_metrics() 
 
##################################################### 

##VARIABLE COMPARISON OF TESTING DATA SETS ## 

##################################################### 
 
lin_reg_vi_test %>% select(Variable, rescaled_importance) %>% 
 mutate(type = 'Linear Regression') %>% 
 rbind(svml_vi_rs_test %>% mutate(type = 'SVM Linear')) %>% 
 rbind(svmp_vi_rs_test %>% mutate(type = 'SVM Polynomial')) %>% 
 rbind(svmr_vi_rs_test %>% mutate(type = 'SVM Radial')) %>% 
 rbind(rf_vi_rs_test %>% mutate(type = 'Random Forest')) %>% 
 rbind(xgb_vi_rs_test %>% mutate(type = 'XGBoost')) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 



 

390 
 

                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, desc(Variable)), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10),  stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(),  
       text = element_text(size = 20)) + 
 ylab('Rescaled Importance') + coord_flip()+ facet_wrap(. ~ type,  ncol = 6) 
 
########################### 

##ENSEMBLE LEARNING ## 

########################### 

 
## pulling out predictions from training data set 
train_pred <- ln_reg_wf_eval %>%collect_predictions() %>% 
 select(dv_first_fall_gpa, .pred) %>% rename(linear_reg = .pred) %>% 
 cbind(svm_r_cv %>% collect_predictions() %>%  
        rename(svmrbf = .pred) %>%select(svmrbf)) %>% 
 cbind(rf_train %>% collect_predictions() %>% 
        rename(rf = .pred) %>% select(rf)) %>% 
 cbind(xgb_train %>% collect_predictions() %>% 
        rename(xgb = .pred) %>% select(xgb))  
 
## pulling out the predictions from testing data set 
test_pred <- ln_reg_wf_eval_t %>%collect_predictions() %>% 
 select(dv_first_fall_gpa, .pred) %>% rename(linear_reg = .pred) %>% 
 cbind(svm_r_cv_t %>% collect_predictions() %>% 
        rename(svmrbf = .pred) %>% select(svmrbf)) %>% 
 cbind(rf_test %>% collect_predictions() %>% 
        rename(rf = .pred) %>% select(rf)) %>% 
 cbind(xgb_test %>% collect_predictions() %>% 
        rename(xgb = .pred) %>% select(xgb)) 
 
## mean method 

## training data set 
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train_metrics_rv <- train_metrics %>% filter(.metric == 'rmse') %>% 
 select(-.metric) %>% 
 rbind(train_pred %>% 
        mutate(mean_pred = (linear_reg + svmrbf + rf + xgb) / 4,  
               diff = mean_pred - dv_first_fall_gpa,  
               diff = diff^2) %>% select(diff) %>% 
        summarise(mean = mean(diff),  mean = sqrt(mean)) %>% 
        mutate(`Data Set` = '1. Training',  model = '7. Ensemble Mean')) 
 
## testing data set 
test_metrics_rv <- test_metrics %>% filter(.metric == 'rmse') %>% 
 select(-.metric) %>% 
 rbind(test_pred %>% 
        mutate(mean_pred = (linear_reg + svmrbf + rf + xgb) / 4,  
               diff = mean_pred - dv_first_fall_gpa,  
               diff = diff^2) %>% select(diff) %>% 
        summarise(mean = mean(diff), mean = sqrt(mean)) %>% 
        mutate(`Data Set` = '2. Testing', model = '7. Ensemble Mean')) 
 
## blended method 

org_stack <- stacks() %>% add_candidates(ln_reg_wf_eval) %>% 
 add_candidates(svm_r_cv) %>% add_candidates(rf_train) %>% 
 add_candidates(xgb_train) 
 
set.seed(7423) 
org_stack_fit <- org_stack %>% blend_predictions() %>% fit_members() 
 
## training data set 
blend_train_lr <- linear_reg(penalty = (org_stack_fit$penalty)$penalty,  
                             mixture = (org_stack_fit$penalty)$mixture) %>% 
 set_engine('lm') %>% set_mode('regression') %>% 
 fit(dv_first_fall_gpa ~ ., data = train_pred)  
 
train_metrics_rv <- train_metrics_rv %>% 
 rbind(train_pred %>% cbind(blend_train_lr %>% predict(train_pred)) %>% 
        mutate(diff = .pred - dv_first_fall_gpa, diff = diff^2) %>% select(diff) %>% 
        summarise(mean = mean(diff), mean = sqrt(mean)) %>% 
        mutate(`Data Set` = '1. Training', model = '8. Ensemble Blend')) 
 
## testing data set 
test_metrics_rv <- test_metrics_rv %>% 
 rbind(test_pred %>% cbind(blend_train_lr %>% predict(test_pred)) %>% 
        mutate(diff = .pred - dv_first_fall_gpa,  diff = diff^2) %>% 
        select(diff) %>% summarise(mean = mean(diff),  mean = sqrt(mean)) %>% 
        mutate(`Data Set` = '2. Testing',  model = '8. Ensemble Blend')) 
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train_metrics_rv %>% rbind(test_metrics_rv) %>% ggplot() + 
 geom_bar(aes(x = reorder(model, desc(model)), y = mean,  
              fill = `Data Set`),  stat = 'identity', position = 'dodge') + 
 geom_text(aes(x = reorder(model, desc(model)),  y = mean, 
               group = `Data Set`, label = format(round(mean, 3), nsmall = 3)),  
           position = position_dodge(width = 1),  hjust = 1,  fontface = 'bold',  
           size = 4) + theme_classic() + 
 theme(legend.position = 'top',  axis.title = element_blank(),  
       text = element_text(size = 15)) + coord_flip()  
 
######################### 

## RMSE COMPARISON ## 

######################### 
 
rmse_rs <- ln_reg_wf_eval[[3]]  %>% as.data.frame() %>% 
 filter(.metric == 'rmse') %>% gather(var_type, train) %>% 
 filter(var_type %like% '%estimate%') %>% 
 mutate(fold = 1:10,  model = '1. Linear Regression') %>% 
 select(model, fold, train) %>% 
 left_join(ln_reg_wf_eval_t[[3]]  %>% as.data.frame() %>% 
            filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
            filter(var_type %like% '%estimate%') %>% 
            mutate(fold = 1:10,  model = '1. Linear Regression') %>% 
            select(model, fold, test)) %>% 
 rbind(svm_l_cv[[3]]  %>% as.data.frame() %>% 
        filter(.metric == 'rmse') %>% gather(var_type,  train) %>% 
        filter(var_type %like% '%estimate%') %>% 
        mutate(fold = 1:10,  model = '2. SVM Linear Kernel') %>% 
        select(model, fold, train) %>% 
        left_join(svm_l_cv_t[[3]]  %>% as.data.frame() %>% 
                   filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
                   filter(var_type %like% '%estimate%') %>% 
                   mutate(fold = 1:10,  model = '2. SVM Linear Kernel') %>% 
                   select(model, fold, test))) %>% 
 rbind(svm_p_cv[[3]]  %>% as.data.frame() %>% 
        filter(.metric == 'rmse') %>% gather(var_type,  train) %>% 
        filter(var_type %like% '%estimate%') %>% 
        mutate(fold = 1:10,  model = '3. SVM Polynomial Kernel') %>% 
        select(model, fold, train) %>% 
        left_join(svm_p_cv_t[[3]]  %>% as.data.frame() %>% 
                   filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
                   filter(var_type %like% '%estimate%') %>% 
                   mutate(fold = 1:10,  model = '3. SVM Polynomial Kernel') %>% 
                   select(model, fold, test))) %>% 
 rbind(svm_r_cv[[3]]  %>% as.data.frame() %>% 
        filter(.metric == 'rmse') %>% gather(var_type,  train) %>% 
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        filter(var_type %like% '%estimate%') %>% 
        mutate(fold = 1:10,  model = '4. SVM Radial BF Kernel') %>% 
        select(model, fold, train) %>% 
        left_join(svm_r_cv_t[[3]]  %>% as.data.frame() %>% 
                   filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
                   filter(var_type %like% '%estimate%') %>% 
                   mutate(fold = 1:10,  model = '4. SVM Radial BF Kernel') %>% 
                   select(model, fold, test))) %>% 
 rbind(rf_train[[3]]  %>% as.data.frame() %>% 
        filter(.metric == 'rmse') %>% gather(var_type,  train) %>% 
        filter(var_type %like% '%estimate%') %>% 
        mutate(fold = 1:10,  model = '5. Random Forest') %>% 
        select(model, fold, train) %>% 
        left_join(rf_test[[3]]  %>% as.data.frame() %>% 
                   filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
                   filter(var_type %like% '%estimate%') %>% 
                   mutate(fold = 1:10,  model = '5. Random Forest') %>% 
                   select(model, fold, test))) %>% 
 rbind(xgb_train[[3]]  %>% as.data.frame() %>% 
        filter(.metric == 'rmse') %>% gather(var_type,  train) %>% 
        filter(var_type %like% '%estimate%') %>% 
        mutate(fold = 1:10, model = '6. XGBoost') %>% 
        select(model, fold, train) %>% 
        left_join(xgb_test[[3]]  %>% as.data.frame() %>% 
                   filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
                   filter(var_type %like% '%estimate%') %>% 
                   mutate(fold = 1:10,  model = '6. XGBoost') %>% 
                   select(model, fold, test))) %>% 
 mutate(train = as.numeric(train), test = as.numeric(test)) 
 
rmse_rs %>%  gather(data_set, values, -model, -fold) %>% 
 mutate(values = as.numeric(values),  
        data_set = case_when(data_set == 'test' ~ '2. Testing',  TRUE ~ '1. Training')) %>% 
 rename(`Data Set` = data_set) %>% 
 ggplot(aes(x = reorder(model, desc(model)), y = values, fill = `Data Set`)) + 
 geom_boxplot() + theme_classic() + 
 theme(legend.position = 'none',  text = element_text(size = 15),  
       axis.title = element_blank()) + coord_flip() + facet_wrap(. ~ `Data Set`) 
 
## inferential statistics on algorithms 

## wilcox test between the training and testing dataset 
wilcox.test(as.numeric((rmse_rs %>%filter(model == '1. Linear Regression'))$train),  
            as.numeric((rmse_rs %>% filter(model == '1. Linear Regression'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
wilcox.test(as.numeric((rmse_rs %>% filter(model == '2. SVM Linear Kernel'))$train),  
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            as.numeric((rmse_rs %>% filter(model == '2. SVM Linear Kernel'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
wilcox.test(as.numeric((rmse_rs %>% 
                         filter(model == '3. SVM Polynomial Kernel'))$train),  
            as.numeric((rmse_rs %>%filter(model == '3. SVM Polynomial Kernel'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
wilcox.test(as.numeric((rmse_rs %>% 
                         filter(model == '4. SVM Radial BF Kernel'))$train),  
            as.numeric((rmse_rs %>%filter(model == '4. SVM Radial BF Kernel'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
wilcox.test(as.numeric((rmse_rs %>%filter(model == '5. Random Forest'))$train),  
            as.numeric((rmse_rs %>%filter(model == '5. Random Forest'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
wilcox.test(as.numeric((rmse_rs %>%filter(model == '6. XGBoost'))$train),  
            as.numeric((rmse_rs %>%filter(model == '6. XGBoost'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
 
## friedmen test of the best model 

## training data set 
rmse_rs %>% friedman_test(train ~ model|fold) 
rmse_rs %>% friedman_effsize(train ~ model|fold) 
rmse_rs %>% wilcox_test(train ~ model, paired = TRUE, p.adjust.method = 'bonferroni') 
 
## testing data set 
rmse_rs %>% friedman_test(test ~ model|fold) 
rmse_rs %>% friedman_effsize(test ~ model|fold) 
rmse_rs %>% wilcox_test(test ~ model, paired = TRUE, p.adjust.method = 'bonferroni') 
 
## median rmse values 
rmse_rs %>% select(-fold) %>% group_by(model) %>% 
 summarise(train = median(train), test = median(test),.groups = 'drop') 
 
############################  

## DEPENDENT VARAIBLE ## 

## FIRST-YEAR GPA              ## 

############################ 

 
## data clean up recipe 
fygpa_rec <- recipe(dv_first_yr_gpa ~ ., data = dat_train) %>% 
 update_role(unique_identifer, new_role = 'id variable') %>% 
 step_filter(!is.na(dv_first_yr_gpa)) %>% 
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 step_mutate_at(c(adv_standing_ap_hrs:adv_standing_other_hrs, ga_hope,  
                  pell:oth_loans), fn = ~ replace_na(., 0)) %>% 
 step_mutate_at(zell_ind, fn = ~ replace_na(., 'N')) %>% 
 step_novel(c(cpc_english_code:cpc_social_science_code)) %>% 
 step_unknown(c(cpc_english_code:cpc_social_science_code), new_level = 'U') %>% 
 step_mutate(gender_descr = case_when(gender_descr == 'Male' ~ 1, TRUE ~ 0),  
      admit_first_gen_ind = case_when(admit_first_gen_ind == 'Y' ~ 1,  TRUE ~ 0),  
      college_prep = case_when(cpc_english_code == 'S' ~ 1,  
                                      cpc_english_code == 'X' ~ 1,  TRUE ~ 0) + 
      case_when(cpc_foreign_language_code == 'S' ~ 1,  
                        cpc_foreign_language_code == 'X' ~ 1, TRUE ~ 0) + 
      case_when(cpc_math_code == 'S' ~ 1, cpc_math_code == 'X' ~ 1, TRUE ~ 0)  + 
      case_when(cpc_science_code == 'S' ~ 1, cpc_science_code == 'X' ~ 1, TRUE ~ 0) + 
      case_when(cpc_social_science_code == 'S' ~ 1,  
                        cpc_social_science_code == 'X' ~ 1, TRUE ~ 0), 
      acay_inst_sup_exp = (acay_sup_exp + inst_sup_exp),  
      public_rsch_exp = (public_serv_exp + rsch_exp),              
      cm_ready = (content_mastery + readiness) / 2,  english_cm = english - cm_ready,  
      math_cm = math - cm_ready, science_cm = science - cm_ready,  
      social_studies_cm = social_studies - cm_ready,              
      cip_categories = case_when(cip_categories == 'Social Sciences' ~ 1, 
                 cip_categories == 'Fine Arts' ~ 2, cip_categories == 'Human Services' ~ 3,  
                 cip_categories == 'Business' ~ 4, cip_categories == 'STEM' ~ 5,  
                 cip_categories == 'General/Interdisciplinary Studies' ~ 6,  
                 cip_categories == 'Healthcare' ~ 7, cip_categories == 'Education' ~ 8,  
                 TRUE ~ 9),  
      zell_ind = case_when(zell_ind == 'Y' ~ 1, TRUE ~ 0),  
      locale_group = case_when(locale_group == 'City' ~ 1, locale_group == 'Suburb' ~ 2,  
                                      locale_group == 'Town' ~ 3, TRUE ~ 4),  
      race_eth = case_when(race_eth == 'White' ~ 1,  
                                  race_eth == 'Black or African American' ~ 2,  
                                  race_eth == 'Hispanic or Latino' ~ 3, TRUE ~ 4),  
      adv_standing_ib_hrs = adv_standing_ib_hrs, 
      adv_standing_clep_hrs = adv_standing_clep_hrs, 
      adv_standing_other_hrs = adv_standing_other_hrs) %>%  
step_rm(cpc_english_code, cpc_foreign_language_code,  
      cpc_math_code, cpc_science_code, cpc_social_science_code, acay_sup_exp,  
      inst_sup_exp, public_serv_exp, rsch_exp, english, math, science,  
      social_studies, dv_next_fall, content_mastery, readiness, 
      dv_first_fall_gpa, hs_code, hs_grad_year, state_school_id, locale_code, locale) %>% 
 step_impute_knn(c(hs_gpa, adm_test_score, expected_family_contribution),  
      neighbors = 10) %>% 
 step_rename(hsgpa_knn = hs_gpa,  ats_knn = adm_test_score,  
      efc_knn = expected_family_contribution) %>% 
 step_YeoJohnson(hsgpa_knn, ats_knn, college_prep, adv_standing_ap_hrs,  
      adv_standing_clep_hrs, adv_standing_ib_hrs, adv_standing_other_hrs, cm_ready,  
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      english_cm, math_cm, science_cm, social_studies_cm, efc_knn, ga_hope, pell,  
      fed_sub_loans, fed_unsub_loans, oth_loans, acay_inst_sup_exp,  all_other_exp,  
      instr_exp, stu_serv_exp, public_rsch_exp) %>% 
 step_normalize(hsgpa_knn,  ats_knn, college_prep, adv_standing_ap_hrs,  
      adv_standing_clep_hrs, adv_standing_ib_hrs, adv_standing_other_hrs, cm_ready,  
      college_prep, english_cm, math_cm, science_cm, social_studies_cm, efc_knn,  
      ga_hope, pell, fed_sub_loans, fed_unsub_loans, oth_loans, acay_inst_sup_exp, 
      all_other_exp, instr_exp, stu_serv_exp, public_rsch_exp) 
 
####################### 

## CLEAN DATA SETS ## 

####################### 

 
## produce clean training data set 
fy_gpa <- fygpa_rec %>% prep() %>% juice() 
fy_gpa_rec <- recipe(dv_first_yr_gpa ~ ., data = fy_gpa %>% select(-unique_identifer)) 
## processing testing data 
fy_gpa_test <- fygpa_rec %>% prep() %>% bake(dat_test) %>% 
 filter(!is.na(dv_first_yr_gpa)) 
 
########################## 

## CROSS-VALIDATIONS ## 

########################## 

 
## training cross validation 
set.seed(51823) 
fy_gpa_cv <- vfold_cv(fy_gpa %>% select(-unique_identifer), v = 10) 
## testing cross validation 
set.seed(51823) 
fy_gpa_cv_t <- vfold_cv(fy_gpa_test %>% select(-unique_identifer), v = 10) 
 
######################## 

##TUNING CONTROLS ## 

######################## 

 
## control grid set up 
ctrl_grid <- control_grid(save_pred = TRUE, save_workflow = TRUE) 
## model_metrics 
model_metrics <- metric_set(rmse, rsq) 
 
########################## 

##LINEAR REGRESSION ## 

########################## 

 
## training data set 
gpa_ln <- lm(formula = dv_first_yr_gpa ~ .,  
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             data = fy_gpa %>% select(-unique_identifer)) 
## model summary 
gpa_ln %>% summary() 
## rmse 
data.frame(predicted = predict(object = gpa_ln, fy_gpa),  
                  actuals = fy_gpa$dv_first_yr_gpa) %>% 
 mutate(diff = (predicted - actuals)^2) %>% 
 select(diff) %>% summarise(rmse = sqrt(mean(diff))) 
## coefficients aka beta weights 
gpa_ln %>% coefficients()  
## confidence intervals of coefficients 
gpa_ln %>% confint() 
## standardized regression coefficients 
gpa_ln %>% lm.beta() 
## standardized and unstandardized coefficients 
gpa_ln %>% standardCoefs() 
 
## linear regression assumptions 

## correlation with dv 
fy_gpa_corr <- fy_gpa %>% select(-unique_identifer) %>% 
 corr.test(use = 'pairwise', method = 'pearson', adjust = 'holm', alpha = .05)  
## VIF 
gpa_ln %>% VIF() %>% data.frame() 
## means of errors 
gpa_ln %>% rstandard() %>%mean() 
gpa_ln %>% rstudent() %>% mean() 
##correlation amongst the residuals 
gpa_ln %>% durbinWatsonTest() 
## homogeneity of variance 
gpa_ln %>% ncvTest() 
## normality of residuals 
gpa_ln %>% rstudent() %>% LillieTest(); 
(gpa_ln %>% rstudent())[0:5000] %>% shapiro.test() 
gpa_ln %>% rstudent() %>% jarque.bera.test() 
 
## results of the model on testing data set 
gpa_ln_test <- lm(formula = dv_first_yr_gpa ~ .,  
                  data = fy_gpa_test %>% select(-unique_identifer)) 
## model summary 
gpa_ln_test %>% summary() 
## rmse 
data.frame(predicted = predict(object = gpa_ln_test, fy_gpa_test),  
           actuals = fy_gpa_test$dv_first_yr_gpa) %>% 
 mutate(diff = (predicted - actuals)^2) %>%  select(diff) %>% 
 summarise(rmse = sqrt(mean(diff))) 
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## variable importance analysis 

## creating the tidymodels linear regression 
ln_reg <- linear_reg() %>% set_engine(engine = 'lm') %>% set_mode('regression') 
## tidymodels workflow 
ln_reg_wf <- workflow() %>% add_model(ln_reg) %>% add_recipe(fy_gpa_rec) 
lin_reg_vi <- fit(ln_reg_wf, fy_gpa) %>% extract_fit_parsnip() %>%  vi() %>% 
 left_join(fit(ln_reg_wf, fy_gpa) %>% extract_fit_parsnip() %>%  
            vi(scale = TRUE) %>% select(-Sign) %>% 
            rename(rescaled_importance = Importance)) 
lin_reg_vi_test <- fit(ln_reg_wf, fy_gpa_test) %>% extract_fit_parsnip() %>% vi() %>% 
 left_join(fit(ln_reg_wf, fy_gpa_test) %>% extract_fit_parsnip() %>%  
            vi(scale = TRUE) %>% select(-Sign) %>% 
            rename(rescaled_importance = Importance)) 
 
lin_reg_vi %>% mutate(data_set = '1. Training') %>% 
 rbind(lin_reg_vi_test %>% mutate(data_set = '2. Testing')) %>% 
 rename(Impact = Sign) %>% 
 mutate(Impact = case_when(Impact == 'NEG' ~ 'Negative', TRUE ~ 'Positive'), 
        Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
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                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, abs(rescaled_importance)), y = rescaled_importance, 
            fill = Impact)) + geom_bar(aes(fill = Impact), stat = 'identity') + 
 theme_classic() + ylab("Rescaled Importance") + 
 theme(legend.position = 'top', axis.title.y = element_blank(),  
       text = element_text(size = 15)) + coord_flip() + facet_wrap(.~ data_set) 
 
## predictive power 

## assessing training data set 
ln_reg_wf_eval <- ln_reg_wf %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv, 
               metrics = model_metrics, control = ctrl_grid) 
ln_reg_wf_eval %>% collect_metrics  
 
## assessing testing data set 
ln_reg_wf_eval_t <- ln_reg_wf %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv_t, 
               metrics = model_metrics, control = ctrl_grid) 
ln_reg_wf_eval_t %>% collect_metrics 
 
###################################### 

##Support Vector Machine-Linear Kernel ## 

###################################### 

 
## model specifications 
svm_l_spec <- svm_linear(cost = tune(),margin = tune()) %>% 
 set_mode('regression') %>%set_engine('kernlab') 
## model workflow 
svm_l_wf <- workflow() %>% add_model(svm_l_spec) %>% add_recipe(fy_gpa_rec) 
## tuning 
set.seed(52323) 
svm_l_tune <- tune_grid(svm_l_wf,  resamples = fy_gpa_cv,  grid = 20) 
## selecting best model 
svm_l_final <- select_best(svm_l_tune, 'rmse') 
## model fixed to the best outcome model 
svml_tune_final <- finalize_model(svm_l_spec, svm_l_final) 
 
## variable importance analysis 

## training data set 
set.seed(51923) 
svml_fit <- workflow() %>% add_model(svml_tune_final)  %>% 
 add_recipe(fy_gpa_rec) %>% fit(fy_gpa %>% select(-unique_identifer)) 
set.seed(51923) 
svml_vi <- svml_fit %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = FALSE,  pred_wrapper = kernlab::predict, 
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    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa %>% select(-unique_identifer))  
set.seed(51923) 
svml_vi_rs <- svml_fit %>%extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa %>% select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
## testing data set 
## vip of the xgb 
set.seed(51923) 
svml_fit_test <- workflow() %>%  add_model(svml_tune_final)  %>% 
 add_recipe(fy_gpa_rec) %>%  fit(fy_gpa_test %>%select(-unique_identifer)) 
set.seed(51923) 
svml_vi_test <- svml_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = FALSE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa_test %>% select(-unique_identifer))  
set.seed(51923) 
svml_vi_rs_test <- svml_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa_test %>% select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
svml_vi_rs %>% mutate(data_set = '1. Training') %>% 
 rbind(svml_vi_rs_test %>% mutate(data_set = '2. Testing')) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
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                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10),  stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(),  
       text = element_text(size = 15)) + 
 ylab('Rescaled Importance') + coord_flip() + facet_wrap(. ~ data_set) 
 
## predictive power 

## assessing training data 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_l_cv <- svml_tune_final %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv, 
               metrics = model_metrics,  control = ctrl_grid)         
svm_l_cv %>% collect_metrics() 
 
## assessing testing data 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_l_cv_t <- svml_tune_final %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv_t, 
               metrics = model_metrics, control = ctrl_grid)         
svm_l_cv_t %>% collect_metrics() 
 
########################################## 

##Support Vector Machine-Polynomial Kernel ## 

########################################## 

 
## model specifications 
svm_p_spec <- svm_poly(cost = tune(), degree = tune(), scale_factor = tune(), 
                       margin = tune()) %>% set_mode('regression') %>% set_engine('kernlab') 
## model workflow 
svm_p_wf <- workflow() %>% add_model(svm_p_spec) %>% add_recipe(fy_gpa_rec) 
## tuning model 
set.seed(52323) 
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svm_p_tune <- tune_grid(svm_p_wf, resamples = fy_gpa_cv, grid = 20) 
## selecting best model 
svm_p_final <- select_best(svm_p_tune, 'rmse') 
## model fixed to the best outcome model 
svmp_tune_final <- finalize_model(svm_p_spec, svm_p_final) 
 
## variable importance analysis 

## training data set 
set.seed(51923) 
svmp_fit <- workflow() %>% add_model(svmp_tune_final)  %>% 
 add_recipe(fy_gpa_rec) %>% fit(fy_gpa %>% select(-unique_identifer)) 
set.seed(51923) 
svmp_vi <- svmp_fit %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = FALSE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa %>% select(-unique_identifer)) 
set.seed(51923) 
svmp_vi_rs <- svmp_fit %>%extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa %>% select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
## testing data set 
set.seed(51923) 
svmp_fit_test <- workflow() %>%add_model(svmp_tune_final)  %>% 
 add_recipe(fy_gpa_rec) %>% fit(fy_gpa_test %>% select(-unique_identifer)) 
set.seed(51923) 
svmp_vi_test <- svmp_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = FALSE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa_test %>% select(-unique_identifer)) 
 
set.seed(51923) 
svmp_vi_rs_test <- svmp_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE,  pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa_test %>% select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
svmp_vi_rs %>% mutate(data_set = '1. Training') %>% 
 rbind(svmp_vi_rs_test %>% mutate(data_set = '2. Testing')) %>%  
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
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                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10), stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none', axis.title.y = element_blank(),  
       text = element_text(size = 15)) + 
 ylab('Rescaled Importance') + coord_flip() +  facet_wrap(. ~ data_set) 
 
## predictive power 

## assessing training data set 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_p_cv <- svmp_tune_final %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv, 
               metrics = model_metrics, control = ctrl_grid)         
svm_p_cv %>% collect_metrics() 
 
## assessing testing data set 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_p_cv_t <- svmp_tune_final %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv_t, 
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               metrics = model_metrics, control = ctrl_grid)         
svm_p_cv_t %>% collect_metrics() 
 
################################################### 

##Support Vector Machine-Radial Basis Function Kernel ## 

################################################### 
 
## model specifications 
svm_r_spec <- svm_rbf(cost = tune(), rbf_sigma = tune(),margin = tune()) %>% 
 set_mode('regression') %>% set_engine('kernlab') 
## model workflow 
svm_r_wf <- workflow() %>% add_model(svm_r_spec) %>% add_recipe(fy_gpa_rec) 
## tuning model 
set.seed(52323) 
svm_r_tune <- tune_grid(svm_r_wf, resamples = fy_gpa_cv, grid = 20) 
## selecting best model 
svm_r_final <- select_best(svm_r_tune, 'rmse') 
## model fixed to the best outcome model 
svmr_tune_final <- finalize_model(svm_r_spec, svm_r_final) 
 
## variable importance analysis 

## training data set 
set.seed(51923) 
svmr_fit <- workflow() %>% add_model(svmr_tune_final)  %>% 
 add_recipe(fy_gpa_rec) %>% fit(fy_gpa %>% select(-unique_identifer)) 
set.seed(51923) 
svmr_vi <- svmr_fit %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = FALSE, pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa %>%select(-unique_identifer)) 
set.seed(51923) 
svmr_vi_rs <- svmr_fit %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = TRUE, pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa %>% select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
# testing data set 
set.seed(51923) 
svmr_fit_test <- workflow() %>% add_model(svmr_tune_final)  %>% 
 add_recipe(fy_gpa_rec) %>% fit(fy_gpa_test %>% select(-unique_identifer)) 
set.seed(51923) 
svmr_vi_test <- svmr_fit_test %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = FALSE, pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa_test %>%select(-unique_identifer)) 
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set.seed(51923) 
svmr_vi_rs_test <- svmr_fit_test %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = TRUE, pred_wrapper = kernlab::predict, 
    metric = 'rmse', target = 'dv_first_yr_gpa', 
    train = fy_gpa_test %>%select(-unique_identifer)) %>% 
 rename(rescaled_importance = Importance) 
 
svmr_vi_rs %>% mutate(data_set = '1. Training') %>% 
 rbind(svmr_vi_rs_test %>% mutate(data_set = '2. Testing')) %>%  
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10),  stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(),  
       text = element_text(size = 15)) + 
 ylab('Rescaled Importance') + coord_flip() + facet_wrap(. ~ data_set) 
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## predictive power 

## assessing training data set 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_r_cv <- svmr_tune_final %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv, 
               metrics = model_metrics,  control = ctrl_grid)         
svm_r_cv %>% collect_metrics() 
 
## assessing testing data set 
doParallel::registerDoParallel() 
set.seed(51923) 
svm_r_cv_t <- svmr_tune_final %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv_t, 
               metrics = model_metrics,  control = ctrl_grid)         
svm_r_cv_t %>% collect_metrics() 
 
###################### 

##RANDOM FOREST ## 

###################### 

 
## model specifications 
rf_spec <- rand_forest(  mtry = tune(), trees = tune(),min_n = tune()) %>% 
 set_mode("regression") %>% set_engine("ranger") 
## workflow 
rf_wf <- workflow() %>% add_model(rf_spec) %>% add_recipe(fy_gpa_rec) 
## tuning model 
doParallel::registerDoParallel() 
set.seed(51823) 
rf_wf_tune <- tune_grid(rf_wf, resamples = fy_gpa_cv, grid = 20) 
## best model 
rf_tune_best <- select_best(rf_wf_tune, 'rmse') 
## model fixed to the best outcome model 
rf_tune_final <- finalize_model(rf_spec, rf_tune_best) 
 
## variable importance analysis 

## training data set 
set.seed(511923) 
rf_vi <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_first_yr_gpa ~ .,  data = fy_gpa %>% select(-unique_identifer)) %>% vi()  
set.seed(511923) 
rf_vi_rs <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_first_yr_gpa ~ ., data = fy_gpa %>% select(-unique_identifer)) %>% 
 vi(scale = TRUE) %>% rename(rescaled_importance = Importance) 
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## testing data set 
set.seed(511923) 
rf_vi_test <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_first_yr_gpa ~ .,  data = fy_gpa_test %>% select(-unique_identifer)) %>% vi()  
set.seed(511923) 
rf_vi_rs_test <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_first_yr_gpa ~ .,  data = fy_gpa_test %>% select(-unique_identifer)) %>% 
 vi(scale = TRUE) %>% rename(rescaled_importance = Importance) 
 
rf_vi_rs %>% mutate(data_set = '1. Training') %>% 
 rbind(rf_vi_rs_test %>% mutate(data_set = '2. Testing')) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10),  stat = 'identity') + 
 ylab('Rescaled Importance') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(),  
       text = element_text(size = 15)) + coord_flip() + facet_wrap(.~ data_set) 
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## predictive power 

rf_wf_final <- workflow() %>% add_model(rf_tune_final) %>% add_recipe(fy_gpa_rec) 
## assessing training data set 
doParallel::registerDoParallel() 
set.seed(51923) 
rf_train <- rf_wf_final %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv, 
               metrics = model_metrics, control = ctrl_grid) 
rf_train %>% collect_metrics() 
 
## assessing testing data set 
doParallel::registerDoParallel() 
set.seed(51923) 
rf_test <- rf_wf_final %>% 
 fit_resamples(dv_first_yr_gpa ~.,  resamples = fy_gpa_cv_t, 
               metrics = model_metrics,  control = ctrl_grid)         
rf_test %>% collect_metrics() 
 
##################################### 

##EXTREME GRADIENT BOOSTING ## 

##################################### 

 
## building out model specs 
xgb <- boost_tree(trees = tune(), tree_depth = tune(),min_n = tune(), 
 loss_reduction = tune(), sample_size = tune(),  mtry = tune(),  learn_rate = tune()) %>% 
 set_engine('xgboost') %>% set_mode('regression') 
xgb_wf <- workflow() %>% add_model(xgb) %>% add_recipe(fy_gpa_rec) 
## tuning model 
doParallel::registerDoParallel() 
set.seed(51923) 
xgb_wf_tune <- tune_grid(xgb_wf, resamples = fy_gpa_cv, grid = 20) 
## best model 
xgb_tune_best <- select_best(xgb_wf_tune, 'rmse') 
## model fixed to the best outcome model 
xgb_tune_final <- finalize_model(xgb, xgb_tune_best) 
 
## variable importance analysis 

## training data set 
set.seed(51923) 
xgb_vi <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_first_yr_gpa ~ .,  data = fy_gpa %>% select(-unique_identifer)) %>% vi() 
set.seed(51923) 
xgb_vi_rs <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_first_yr_gpa ~ ., data = fy_gpa %>%select(-unique_identifer)) %>% 
 vi(scale = TRUE) %>% rename(rescaled_importance = Importance) 
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## testing data set 
set.seed(51923) 
xgb_vi_test <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_first_yr_gpa ~ .,  data = fy_gpa_test %>% select(-unique_identifer)) %>% vi() 
set.seed(51923) 
xgb_vi_rs_test <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_first_yr_gpa ~ .,  
     data = fy_gpa_test %>% select(-unique_identifer)) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) 
 
xgb_vi_rs %>% mutate(data_set = '1. Training') %>% 
 rbind(xgb_vi_rs_test %>% mutate(data_set = '2. Testing')) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10),  stat = 'identity') + 
 ylab('Rescaled Importance') + theme_classic() + 
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 theme(legend.position = 'none',  axis.title.y = element_blank(),  
       text = element_text(size = 15)) + coord_flip() + facet_wrap(. ~ data_set) 
 
## predictive power 

xgb_wf_final <- workflow() %>% add_model(xgb_tune_final) %>% 
 add_recipe(fy_gpa_rec) 
## assessing training data 
doParallel::registerDoParallel() 
set.seed(51923) 
xgb_train <- xgb_wf_final %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv, 
               metrics = model_metrics, control = ctrl_grid) 
xgb_train %>%collect_metrics() 
 
## assessing testing data 
doParallel::registerDoParallel() 
set.seed(51923) 
xgb_test <- xgb_wf_final %>% 
 fit_resamples(dv_first_yr_gpa ~., resamples = fy_gpa_cv_t, 
               metrics = model_metrics,  control = ctrl_grid)         
xgb_test %>% collect_metrics() 
  
##################################################### 

## VARIABLE COMPARISON OF TESTING DATA SETS ## 

##################################################### 
 
lin_reg_vi_test %>% select(Variable, rescaled_importance) %>% 
 mutate(type = 'Linear Regression') %>% 
 rbind(svml_vi_rs_test %>% mutate(type = 'SVM Linear')) %>% 
 rbind(svmp_vi_rs_test %>% mutate(type = 'SVM Polynomial')) %>% 
 rbind(svmr_vi_rs_test %>% mutate(type = 'SVM Radial')) %>% 
 rbind(rf_vi_rs_test %>% mutate(type = 'Random Forest')) %>% 
 rbind(xgb_vi_rs_test %>% mutate(type = 'XGBoost')) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
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                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
 ggplot(aes(x = reorder(Variable, desc(Variable)), y = rescaled_importance)) + 
 geom_bar(aes(fill = rescaled_importance/10),  stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(),  
       text = element_text(size = 20)) + 
 ylab('Rescaled Importance') + coord_flip()+ facet_wrap(. ~ type,  ncol = 6) 
 
########################### 

##ENSEMBLE LEARNING ## 

########################### 
 
## pulling out predictions from training data set 
train_pred <- ln_reg_wf_eval %>%collect_predictions() %>% 
 select(dv_first_yr_gpa, .pred) %>% rename(linear_reg = .pred) %>% 
 cbind(svm_r_cv %>% collect_predictions() %>%  
        rename(svmrbf = .pred) %>%select(svmrbf)) %>% 
 cbind(rf_train %>% collect_predictions() %>% 
        rename(rf = .pred) %>% select(rf)) %>% 
 cbind(xgb_train %>% collect_predictions() %>% 
        rename(xgb = .pred) %>% select(xgb))  
## pulling out the predictions from testing data set 
test_pred <- ln_reg_wf_eval_t %>%collect_predictions() %>% 
 select(dv_first_yr_gpa, .pred) %>% rename(linear_reg = .pred) %>% 
 cbind(svm_r_cv_t %>% collect_predictions() %>% 
        rename(svmrbf = .pred) %>% select(svmrbf)) %>% 
 cbind(rf_test %>% collect_predictions() %>% 
        rename(rf = .pred) %>% select(rf)) %>% 
 cbind(xgb_test %>% collect_predictions() %>% 
        rename(xgb = .pred) %>% select(xgb)) 
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## mean method 

## training data set 
train_metrics_rv <- train_metrics %>% filter(.metric == 'rmse') %>% 
 select(-.metric) %>% 
 rbind(train_pred %>% 
        mutate(mean_pred = (linear_reg + svmrbf + rf + xgb) / 4,  
               diff = mean_pred - dv_first_yr_gpa,  
               diff = diff^2) %>% select(diff) %>% 
        summarise(mean = mean(diff),  mean = sqrt(mean)) %>% 
        mutate(`Data Set` = '1. Training',  model = '7. Ensemble Mean')) 
 
## testing data set 
test_metrics_rv <- test_metrics %>% filter(.metric == 'rmse') %>% 
 select(-.metric) %>% 
 rbind(test_pred %>% 
        mutate(mean_pred = (linear_reg + svmrbf + rf + xgb) / 4,  
               diff = mean_pred - dv_first_yr_gpa,  
               diff = diff^2) %>% select(diff) %>% 
        summarise(mean = mean(diff), mean = sqrt(mean)) %>% 
        mutate(`Data Set` = '2. Testing', model = '7. Ensemble Mean')) 
 
## blended method 
org_stack <- stacks() %>% add_candidates(ln_reg_wf_eval) %>% 
 add_candidates(svm_r_cv) %>% add_candidates(rf_train) %>% 
 add_candidates(xgb_train) 
set.seed(7423) 
org_stack_fit <- org_stack %>% blend_predictions() %>% 
 fit_members() 
 
## training data set 
blend_train_lr <- linear_reg(penalty = (org_stack_fit$penalty)$penalty,  
                             mixture = (org_stack_fit$penalty)$mixture) %>% 
 set_engine('lm') %>% set_mode('regression') %>% 
 fit(dv_first_yr_gpa ~ ., data = train_pred)  
train_metrics_rv <- train_metrics_rv %>% 
 rbind(train_pred %>% cbind(blend_train_lr %>% predict(train_pred)) %>% 
        mutate(diff = .pred - dv_first_yr_gpa, diff = diff^2) %>% select(diff) %>% 
        summarise(mean = mean(diff), mean = sqrt(mean)) %>% 
        mutate(`Data Set` = '1. Training', model = '8. Ensemble Blend')) 
 
## testing data set 
test_metrics_rv <- test_metrics_rv %>% 
 rbind(test_pred %>% cbind(blend_train_lr %>% predict(test_pred)) %>% 
        mutate(diff = .pred - dv_first_yr_gpa,  diff = diff^2) %>% 
        select(diff) %>% summarise(mean = mean(diff),  mean = sqrt(mean)) %>% 
        mutate(`Data Set` = '2. Testing',  model = '8. Ensemble Blend')) 
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train_metrics_rv %>% rbind(test_metrics_rv) %>% ggplot() + 
 geom_bar(aes(x = reorder(model, desc(model)), y = mean,  
              fill = `Data Set`),  stat = 'identity', position = 'dodge') + 
 geom_text(aes(x = reorder(model, desc(model)),  y = mean, 
               group = `Data Set`, label = format(round(mean, 3), nsmall = 3)),  
           position = position_dodge(width = 1),  hjust = 1,  fontface = 'bold',  
           size = 4) + 
theme_classic() + theme(legend.position = 'top',  axis.title = element_blank(),  
       text = element_text(size = 15)) + coord_flip()  
 
######################### 

## RMSE COMPARISON ## 

######################### 
 
rmse_rs <- ln_reg_wf_eval[[3]]  %>% as.data.frame() %>% 
 filter(.metric == 'rmse') %>% gather(var_type, train) %>% 
 filter(var_type %like% '%estimate%') %>% 
 mutate(fold = 1:10,  model = '1. Linear Regression') %>% 
 select(model, fold, train) %>% 
 left_join(ln_reg_wf_eval_t[[3]]  %>% as.data.frame() %>% 
            filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
            filter(var_type %like% '%estimate%') %>% 
            mutate(fold = 1:10,  model = '1. Linear Regression') %>% 
            select(model, fold, test)) %>% 
 rbind(svm_l_cv[[3]]  %>% as.data.frame() %>% 
        filter(.metric == 'rmse') %>% gather(var_type,  train) %>% 
        filter(var_type %like% '%estimate%') %>% 
        mutate(fold = 1:10,  model = '2. SVM Linear Kernel') %>% 
        select(model, fold, train) %>% 
        left_join(svm_l_cv_t[[3]]  %>% as.data.frame() %>% 
                   filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
                   filter(var_type %like% '%estimate%') %>% 
                   mutate(fold = 1:10,  model = '2. SVM Linear Kernel') %>% 
                   select(model, fold, test))) %>% 
 rbind(svm_p_cv[[3]]  %>% as.data.frame() %>% 
        filter(.metric == 'rmse') %>% gather(var_type,  train) %>% 
        filter(var_type %like% '%estimate%') %>% 
        mutate(fold = 1:10,  model = '3. SVM Polynomial Kernel') %>% 
        select(model, fold, train) %>% 
        left_join(svm_p_cv_t[[3]]  %>% as.data.frame() %>% 
                   filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
                   filter(var_type %like% '%estimate%') %>% 
                   mutate(fold = 1:10,  model = '3. SVM Polynomial Kernel') %>% 
                   select(model, fold, test))) %>% 
 rbind(svm_r_cv[[3]]  %>% as.data.frame() %>% 
        filter(.metric == 'rmse') %>% gather(var_type,  train) %>% 
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        filter(var_type %like% '%estimate%') %>% 
        mutate(fold = 1:10,  model = '4. SVM Radial BF Kernel') %>% 
        select(model, fold, train) %>% 
        left_join(svm_r_cv_t[[3]]  %>% as.data.frame() %>% 
                   filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
                   filter(var_type %like% '%estimate%') %>% 
                   mutate(fold = 1:10,  model = '4. SVM Radial BF Kernel') %>% 
                   select(model, fold, test))) %>% 
 rbind(rf_train[[3]]  %>% as.data.frame() %>% 
        filter(.metric == 'rmse') %>% gather(var_type,  train) %>% 
        filter(var_type %like% '%estimate%') %>% 
        mutate(fold = 1:10,  model = '5. Random Forest') %>% 
        select(model, fold, train) %>% 
        left_join(rf_test[[3]]  %>% as.data.frame() %>% 
                   filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
                   filter(var_type %like% '%estimate%') %>% 
                   mutate(fold = 1:10,  model = '5. Random Forest') %>% 
                   select(model, fold, test))) %>% 
 rbind(xgb_train[[3]]  %>% as.data.frame() %>% 
        filter(.metric == 'rmse') %>% gather(var_type,  train) %>% 
        filter(var_type %like% '%estimate%') %>% 
        mutate(fold = 1:10, model = '6. XGBoost') %>% 
        select(model, fold, train) %>% 
        left_join(xgb_test[[3]]  %>% as.data.frame() %>% 
                   filter(.metric == 'rmse') %>% gather(var_type,  test) %>% 
                   filter(var_type %like% '%estimate%') %>% 
                   mutate(fold = 1:10,  model = '6. XGBoost') %>% 
                   select(model, fold, test))) %>% 
 mutate(train = as.numeric(train), test = as.numeric(test)) 
 
rmse_rs %>%  gather(data_set, values, -model, -fold) %>% 
 mutate(values = as.numeric(values),  
        data_set = case_when(data_set == 'test' ~ '2. Testing',  TRUE ~ '1. Training')) %>% 
 rename(`Data Set` = data_set) %>% 
 ggplot(aes(x = reorder(model, desc(model)), y = values, fill = `Data Set`)) + 
 geom_boxplot() + theme_classic() + 
 theme(legend.position = 'none',  text = element_text(size = 15),  
       axis.title = element_blank()) + coord_flip() + facet_wrap(. ~ `Data Set`) 
 
## inferential statistics on algorithms 

## wilcox test between the training and testing dataset 
wilcox.test(as.numeric((rmse_rs %>%filter(model == '1. Linear Regression'))$train),  
            as.numeric((rmse_rs %>% filter(model == '1. Linear Regression'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
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wilcox.test(as.numeric((rmse_rs %>% filter(model == '2. SVM Linear Kernel'))$train),  
            as.numeric((rmse_rs %>% filter(model == '2. SVM Linear Kernel'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
 
wilcox.test(as.numeric((rmse_rs %>% 
                         filter(model == '3. SVM Polynomial Kernel'))$train),  
            as.numeric((rmse_rs %>%filter(model == '3. SVM Polynomial Kernel'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
 
wilcox.test(as.numeric((rmse_rs %>% 
                         filter(model == '4. SVM Radial BF Kernel'))$train),  
            as.numeric((rmse_rs %>%filter(model == '4. SVM Radial BF Kernel'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
 
wilcox.test(as.numeric((rmse_rs %>%filter(model == '5. Random Forest'))$train),  
            as.numeric((rmse_rs %>%filter(model == '5. Random Forest'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
 
wilcox.test(as.numeric((rmse_rs %>%filter(model == '6. XGBoost'))$train),  
            as.numeric((rmse_rs %>%filter(model == '6. XGBoost'))$test),  
            paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
            conf.level = 0.95) 
 
## friedmen test of the best model 

## training data set 
rmse_rs %>% friedman_test(train ~ model|fold) 
rmse_rs %>% friedman_effsize(train ~ model|fold) 
rmse_rs %>% wilcox_test(train ~ model, paired = TRUE, p.adjust.method = 'bonferroni') 
 
## testing data set 
rmse_rs %>% friedman_test(test ~ model|fold) 
rmse_rs %>% friedman_effsize(test ~ model|fold) 
rmse_rs %>% wilcox_test(test ~ model, paired = TRUE, p.adjust.method = 'bonferroni') 
 
## median rmse values 
rmse_rs %>% select(-fold) %>% group_by(model) %>% 
 summarise(train = median(train), test = median(test),.groups = 'drop') 
 
############################  

## DEPENDENT VARAIBLE ## 

## ONE-YEAR RETENTION ## 

############################ 
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## data clean up recipe 
retain_rec <- recipe(dv_next_fall ~ .,  data = dat_train) %>% 
 update_role(unique_identifer,  new_role = 'id variable') %>% 
 step_mutate_at(c(adv_standing_ap_hrs:adv_standing_other_hrs,  
                  ga_hope, pell:oth_loans),  fn = ~ replace_na(., 0)) %>% 
 step_mutate_at(zell_ind,  fn = ~ replace_na(., 'N')) %>% 
 step_novel(c(cpc_english_code:cpc_social_science_code)) %>% 
 step_unknown(c(cpc_english_code:cpc_social_science_code),  new_level = 'U') %>% 
 step_mutate(gender_descr = case_when(gender_descr == 'Male' ~ 1, TRUE ~ 0),  
      admit_first_gen_ind = case_when(admit_first_gen_ind == 'Y' ~ 1,  TRUE ~ 0),  
      college_prep = case_when(cpc_english_code == 'S' ~ 1,  
                                      cpc_english_code == 'X' ~ 1,  TRUE ~ 0) + 
      case_when(cpc_foreign_language_code == 'S' ~ 1,  
                        cpc_foreign_language_code == 'X' ~ 1, TRUE ~ 0) + 
      case_when(cpc_math_code == 'S' ~ 1, cpc_math_code == 'X' ~ 1, TRUE ~ 0)  + 
      case_when(cpc_science_code == 'S' ~ 1, cpc_science_code == 'X' ~ 1, TRUE ~ 0) + 
      case_when(cpc_social_science_code == 'S' ~ 1,  
                        cpc_social_science_code == 'X' ~ 1, TRUE ~ 0), 
      acay_inst_sup_exp = (acay_sup_exp + inst_sup_exp),  
      public_rsch_exp = (public_serv_exp + rsch_exp),              
      cm_ready = (content_mastery + readiness) / 2,  english_cm = english - cm_ready,  
      math_cm = math - cm_ready, science_cm = science - cm_ready,  
      social_studies_cm = social_studies - cm_ready,              
      cip_categories = case_when(cip_categories == 'Social Sciences' ~ 1, 
                 cip_categories == 'Fine Arts' ~ 2, cip_categories == 'Human Services' ~ 3,  
                 cip_categories == 'Business' ~ 4, cip_categories == 'STEM' ~ 5,  
                 cip_categories == 'General/Interdisciplinary Studies' ~ 6,  
                 cip_categories == 'Healthcare' ~ 7, cip_categories == 'Education' ~ 8,  
                 TRUE ~ 9),  
      zell_ind = case_when(zell_ind == 'Y' ~ 1, TRUE ~ 0),  
      locale_group = case_when(locale_group == 'City' ~ 1, locale_group == 'Suburb' ~ 2,  
                                      locale_group == 'Town' ~ 3, TRUE ~ 4),  
      race_eth = case_when(race_eth == 'White' ~ 1,  
                                  race_eth == 'Black or African American' ~ 2,  
                                  race_eth == 'Hispanic or Latino' ~ 3, TRUE ~ 4),  
      adv_standing_ib_hrs = adv_standing_ib_hrs, 
      adv_standing_clep_hrs = adv_standing_clep_hrs, 
      adv_standing_other_hrs = adv_standing_other_hrs) %>% 
 step_rm(cpc_english_code, cpc_foreign_language_code,  
      cpc_math_code, cpc_science_code,  cpc_social_science_code, acay_sup_exp,  
      inst_sup_exp, public_serv_exp,  rsch_exp, english, math, science,  
      social_studies, dv_first_yr_gpa,  content_mastery, readiness, 
      dv_first_fall_gpa, hs_code,  hs_grad_year, state_school_id, locale_code, locale) %>% 
 step_impute_knn(c(hs_gpa, adm_test_score, expected_family_contribution),  
      neighbors = 10) %>% 
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 step_rename(hsgpa_knn = hs_gpa,  ats_knn = adm_test_score,  
      efc_knn = expected_family_contribution) %>% 
 step_YeoJohnson(hsgpa_knn, ats_knn, college_prep, adv_standing_ap_hrs,  
      adv_standing_clep_hrs, adv_standing_ib_hrs, adv_standing_other_hrs, cm_ready,  
      english_cm, math_cm, science_cm, social_studies_cm, efc_knn, ga_hope, pell,  
      fed_sub_loans, fed_unsub_loans, oth_loans, acay_inst_sup_exp,  all_other_exp,  
      instr_exp, stu_serv_exp, public_rsch_exp) %>% 
 step_normalize(hsgpa_knn,  ats_knn, college_prep, adv_standing_ap_hrs,  
      adv_standing_clep_hrs, adv_standing_ib_hrs, adv_standing_other_hrs, cm_ready,  
      college_prep, english_cm, math_cm, science_cm, social_studies_cm, efc_knn,  
      ga_hope, pell, fed_sub_loans, fed_unsub_loans, oth_loans, acay_inst_sup_exp, 
      all_other_exp, instr_exp, stu_serv_exp, public_rsch_exp) 
####################### 

## CLEAN DATA SETS ## 

####################### 

 
## no modifications 
retain <- retain_rec %>% step_rm(unique_identifer) %>% 
 step_mutate(dv_next_fall = as.factor(dv_next_fall)) %>% prep() %>% juice() 
retain_rec_rv <- recipe(dv_next_fall ~ ., data = retain) 
## downsample technique 
retain_ds <- retain_rec %>% step_rm(unique_identifer) %>% 
 step_mutate(dv_next_fall = as.factor(dv_next_fall)) %>% 
 step_downsample(dv_next_fall) %>% prep() %>% juice() 
retain_rec_ds <- recipe(dv_next_fall ~ .,  data = retain_ds) 
## upsample technique 
retain_us <- retain_rec %>% step_rm(unique_identifer) %>% 
 step_mutate(dv_next_fall = as.factor(dv_next_fall)) %>% 
 step_upsample(dv_next_fall) %>% prep() %>% juice() 
retain_rec_us <- recipe(dv_next_fall ~ .,  data = retain_us) 
## testing data set 
retain_test <- retain_rec %>% step_rm(unique_identifer) %>% 
 step_mutate(dv_next_fall = as.factor(dv_next_fall)) %>% prep() %>% bake(dat_test) 
retain_test_rec_rv <- recipe(dv_next_fall ~ ., data = retain_test) 
 
########################## 

## CROSS-VALIDATIONS ## 

########################## 
 
## splitting the no modifications 
set.seed(51823) 
retain_cv <- vfold_cv(retain, v = 10) 
## splitting the downsample modifications 
set.seed(51823) 
retain_cv_ds <- vfold_cv(retain_ds, v = 10) 
## splitting the upsample modifications 
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set.seed(51823) 
retain_cv_us <- vfold_cv(retain_us, v = 10) 
## splitting the testing data set 
set.seed(7323) 
retain_test_cv <- vfold_cv(retain_test, v = 10) 
 
######################### 

## TUNING CONTROLS ## 

######################### 

 
## control grid set up 
ctrl_grid <- control_grid(save_pred = TRUE, save_workflow = TRUE) 
## model_metrics 
model_metrics <- metric_set(roc_auc, accuracy, spec, f_meas, sens) 
 
############################ 

##LOGISTIC REGRESSION ## 

############################ 

 
## no modifications--training data set 
retain_lr <- retain %>% glm(formula = dv_next_fall ~ .,  family = 'binomial') 
retain_lr %>% summary()  
## odds ratios 
exp(coef(retain_ lr)); exp(confint(retain_ lr)) 
## model stats 
retain_lr %>% blr_model_fit_stats() 
retain_lr %>% blr_test_hosmer_lemeshow() 
 
## logistic regression assumptions 

## linear relationship with log odds 
retain_probs <- predict(retain_lr, type = "response") 
retain_cor <- retain %>% cbind(retain_probs) %>% 
 mutate(logit = log(retain_probs / (1 - retain_probs))) %>% 
 select(-dv_next_fall, -retain_probs) 
logit_linear <- as.data.frame((retain_cor %>% 
                                corr.test(use = 'pairwise',method = 'pearson',  
                                          adjust = 'holm', alpha = .05))$r) %>% select(logit) %>% 
 cbind(as.data.frame((retain_cor %>% 
                       corr.test(use = 'pairwise', method = 'pearson',  adjust = 'holm',  
                                 alpha = .05))$p) %>% 
        rename(logit_p = logit) %>% select(logit_p)) %>% mutate(logit = round(logit, 5)) 
logit_linear$Variable <- logit_linear %>% row.names() 
logit_linear %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
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                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)',  
                             TRUE ~ 'Logit of Probs')) %>% arrange(abs(logit)) %>% View() 
filter(Variable != 'Logit of Probs') %>% 
 mutate(Direction = case_when(logit < 0 ~ 'Negative', TRUE ~ 'Positive'),  
        prob = case_when(logit_p < .001 ~ '***', logit_p < .01 ~ '**', 
                         logit_p < .05 ~ '*', TRUE ~ '')) %>%  ggplot() + 
 geom_bar(aes(x = reorder(paste0(Variable, prob), abs(logit)), 
              y = logit,  fill = Direction), stat = 'identity') + 
 ylim(-1, 1) + ylab('Pearson R Correlational Value') + theme_classic() + 
 theme(legend.position = 'top',  axis.title.y = element_blank(), 
       text = element_text(size = 15)) + coord_flip() 
## multicollinearity 
cbind(retain_lr %>% vif() ) 
 
## downsample modification 
retain_lr_ds <- retain_ds %>% glm(formula = dv_next_fall ~ ., family = 'binomial') 
retain_lr_ds %>% summary() 
retain_lr_ds %>% summary() %>% coef() 
## odds ratio 
exp(coef(retain_lr_ds)); exp(confint(retain_lr_ds)) 
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## model stats 
retain_lr_ds %>% blr_model_fit_stats() 
retain_lr_ds %>% blr_test_hosmer_lemeshow() 
 
## upsample modification 
retain_lr_us <- retain_us %>% glm(formula = dv_next_fall ~ .,  family = 'binomial') 
retain_lr_us %>% summary() 
## odds ratio 
exp(coef(retain_lr_us)); exp(confint(retain_lr_us)) 
## model stats 
retain_lr_us %>% blr_model_fit_stats() 
retain_lr_us %>% blr_test_hosmer_lemeshow() 
 
## testing data set 
retain_test_lr <- retain_test %>% glm(formula = dv_next_fall ~ ., family = 'binomial') 
retain_test_lr %>% summary()  
## odds ratio 
exp(coef(retain_test_lr)); exp(confint(retain_test_lr)) 
## model stats  
retain_test_lr %>% blr_model_fit_stats() 
retain_test_lr %>% blr_test_hosmer_lemeshow() 
 
## variable importance analysis 

## Logistic Regression Specs 
log_reg_spec <- logistic_reg() %>% set_engine('glm') %>% set_mode('classification')  
## workflows 
## no modifications 
log_reg_wf <- workflow() %>% add_model(log_reg_spec) %>% 
 add_recipe(retain_rec_rv) 
## downsample modifications 
log_reg_ds_wf <- workflow() %>% add_model(log_reg_spec) %>% 
 add_recipe(retain_rec_ds) 
## upsample modifications 
log_reg_us_wf <- workflow() %>% add_model(log_reg_spec) %>% 
 add_recipe(retain_rec_us) 
 
## joining the three sample VI information together 
# no modifications 
log_reg_vi <- fit(log_reg_wf, retain) %>% extract_fit_parsnip() %>%  vi() %>% 
 left_join(fit(log_reg_wf,  retain) %>% extract_fit_parsnip() %>%  
            vi(scale = TRUE) %>%rename(rescale_importance = Importance) %>% 
            select(-Sign)) %>% mutate(log_reg_type = '1. None') %>% 
 rbind(fit(log_reg_wf, retain_test) %>% extract_fit_parsnip() %>%  vi() %>% 
        left_join(fit(log_reg_wf,  retain_test) %>% extract_fit_parsnip() %>%  
                   vi(scale = TRUE) %>% rename(rescale_importance = Importance) %>% 
                   select(-Sign)) %>% mutate(log_reg_type = '4. Testing')) %>% 
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 rbind(fit(log_reg_ds_wf,  retain_ds) %>% extract_fit_parsnip()  %>%  vi() %>% 
        left_join(fit(log_reg_ds_wf, retain_ds) %>% extract_fit_parsnip() %>%  
                   vi(scale = TRUE) %>% rename(rescale_importance = Importance) %>% 
                   select(-Sign)) %>% mutate(log_reg_type = '2. Downsample')) %>% 
 rbind(fit(log_reg_us_wf,  retain_us) %>% extract_fit_parsnip()  %>% vi() %>% 
        left_join(fit(log_reg_us_wf, retain_us) %>% extract_fit_parsnip() %>%  
                   vi(scale = TRUE) %>% rename(rescale_importance = Importance) %>% 
                   select(-Sign)) %>% mutate(log_reg_type = '3. Upsample')) 
 
log_reg_vi %>% rename(Impact = Sign) %>% 
 mutate(Impact = case_when(Impact == 'NEG' ~ 'Negative', TRUE ~ 'Positive'), 
        Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>%  
 ggplot() + geom_bar(aes(x = reorder(Variable, rescale_importance), 
              y = rescale_importance,  fill = Impact),  stat = 'identity') + theme_classic() + 
 theme(legend.position = 'top', axis.title.y = element_blank(),  
       text = element_text(size = 15)) + ylab('Rescale Importance') + coord_flip() + 
 facet_wrap(. ~ log_reg_type,  ncol = 4) 
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## predictive power 

## no modifications--training data set 
log_reg_cv_train <- log_reg_wf %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv,  metrics = model_metrics, control = ctrl_grid) 
log_reg_cv_train %>% collect_predictions() %>% conf_mat(dv_next_fall,  .pred_class) 
log_reg_cv_train %>% collect_metrics() 
 
## testing data set 
log_reg_cv_test <- log_reg_wf %>% update_recipe(retain_test_rec_rv) %>% 
 fit_resamples(as.factor(dv_next_fall) ~.,  resamples = retain_test_cv,  
               metrics = model_metrics, control = ctrl_grid) 
log_reg_cv_test %>% collect_predictions() %>% conf_mat(dv_next_fall,  .pred_class) 
log_reg_cv_test %>% collect_metrics() 
 
## downsample modification--training data set 
log_reg_cv_train_ds <- log_reg_ds_wf %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_ds,  metrics = model_metrics, control = ctrl_grid) 
log_reg_cv_train_ds %>% collect_predictions() %>% conf_mat(dv_next_fall,  
          .pred_class) 
log_reg_cv_train_ds %>% collect_metrics() 
 
## testing data set 
log_reg_cv_test_ds <- log_reg_ds_wf %>% update_recipe(retain_test_rec_rv) %>% 
 fit_resamples(as.factor(dv_next_fall) ~.,  resamples = retain_test_cv,  
               metrics = model_metrics, control = ctrl_grid) 
log_reg_cv_test_ds %>% collect_predictions() %>% conf_mat(dv_next_fall,  
          .pred_class) 
log_reg_cv_test_ds %>%  collect_metrics() 
 
## upsample modification--training data set 
log_reg_cv_train_us <- log_reg_us_wf %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_us,  metrics = model_metrics, control = ctrl_grid) 
log_reg_cv_train_us %>% collect_predictions() %>% conf_mat(dv_next_fall,  
          .pred_class) 
log_reg_cv_train_us %>%collect_metrics() 
 
## testing data set 
log_reg_cv_test_us <- log_reg_us_wf %>% update_recipe(retain_test_rec_rv) %>% 
 fit_resamples(as.factor(dv_next_fall) ~.,  resamples = retain_test_cv,  
               metrics = model_metrics, control = ctrl_grid) 
log_reg_cv_test_us %>% collect_predictions() %>% conf_mat(dv_next_fall,  
          .pred_class) 
log_reg_cv_test_us %>% collect_metrics() 
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## roc values 
log_roc <- log_reg_cv_train %>% collect_predictions() %>% 
 roc_curve(truth = dv_next_fall, `.pred_0`) %>% 
 mutate(model = '1. None',  type = 'Training') %>% 
 rbind(log_reg_cv_test %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  `.pred_0`) %>% 
        mutate(model = '1. None',  type = 'Testing')) %>% 
 rbind(log_reg_cv_train_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  `.pred_0`) %>% 
        mutate(model = '2. Downsample', type = 'Training')) %>% 
 rbind(log_reg_cv_test_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  `.pred_0`) %>% 
        mutate(model = '2. Downsample', type = 'Testing')) %>% 
 rbind(log_reg_cv_train_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, `.pred_0`) %>% 
        mutate(model = '3. Upsample', type = 'Training')) %>% 
 rbind(log_reg_cv_test_us %>%collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, `.pred_0`) %>% 
        mutate(model = '3. Upsample', type = 'Testing')) %>% 
 rename(`Data Set` = type) %>%  mutate(Algorithm = '1. Logistic Regression') 
 
####################################### 

## Support Vector Machine-Linear Kernel ## 

####################################### 
 
## model specifications 
svm_l_spec <- svm_linear(cost = tune(),margin = tune()) %>% 
 set_mode('classification') %>%set_engine('kernlab') 
## model workflow 
## no modifications 
svm_l_wf <- workflow() %>% add_model(svm_l_spec) %>% 
 add_recipe(retain_rec_rv) 
## downsample modifications 
svm_l_wf_ds <- workflow() %>% add_model(svm_l_spec) %>% 
 add_recipe(retain_rec_ds) 
## upsample modifications 
svm_l_wf_us <- workflow() %>% add_model(svm_l_spec) %>% 
 add_recipe(retain_rec_us) 
 
## tuning 
## no modifications 
set.seed(52323) 
doParallel::registerDoParallel() 
svm_l_tune <- tune_grid(svm_l_wf, resamples = retain_cv,  
                        metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model 
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svml_tune_best <- select_best(svm_l_tune, 'roc_auc') 
## model fixed to the best outcome model 
svml_tune_final <- finalize_model(svm_l_spec, svml_tune_best) 
## downsample modifications 
set.seed(52323) 
doParallel::registerDoParallel() 
svm_l_tune_ds <- tune_grid(svm_l_wf_ds, resamples = retain_cv_ds,  
                         metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model 
svml_tune_best_ds <- select_best(svm_l_tune_ds, 'roc_auc') 
## model fixed to the best outcome model 
svml_tune_final_ds <- finalize_model(svm_l_spec, svml_tune_best_ds) 
set.seed(52323) 
doParallel::registerDoParallel() 
svm_l_tune_us <- tune_grid(svm_l_wf_us,  resamples = retain_cv_us,  
                         metrics = model_metrics,  control = ctrl_grid, grid = 20) 
## best model 
svml_tune_best_us <- select_best(svm_l_tune_us, 'roc_auc') 
## model fixed to the best outcome model 
svml_tune_final_us <- finalize_model(svm_l_spec, svml_tune_best_us) 
 
## variable importance analysis 

## no modifications  
set.seed(51923) 
svml_fit <- workflow() %>% add_model(svml_tune_final)  %>% 
 add_recipe(retain_rec_rv) %>% fit(retain) 
## training data set 
set.seed(51923) 
svml_vi <- svml_fit %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain)  
set.seed(51923) 
svml_vi_rs <- svml_fit %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain) 
## testing data set  
set.seed(51923) 
svml_fit_test <- workflow() %>% add_model(svml_tune_final)  %>% 
 add_recipe(retain_rec_rv) %>% fit(retain_test) 
set.seed(51923) 
svml_vi_test <- svml_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_test)  
set.seed(51923) 
svml_vi_rs_test <- svml_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
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    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_test)  
 
## downsample modification--training data set 
set.seed(51923) 
svml_fit_ds <- workflow() %>% add_model(svml_tune_final_ds)  %>% 
 add_recipe(retain_rec_ds) %>% 
 fit(retain_ds) 
set.seed(51923) 
svml_vi_ds <- svml_fit_ds %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_ds) 
set.seed(51923) 
svml_vi_ds_rs <- svml_fit_ds %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_ds) %>% 
 rename(rescaled_importance = Importance) 
## testing data set 
set.seed(51923) 
svml_fit_ds_test <- workflow() %>% add_model(svml_tune_final_ds)  %>% 
 add_recipe(retain_rec_ds) %>% fit(retain_test 
set.seed(51923) 
svml_vi_ds_test <- svml_fit_ds_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_test) 
set.seed(51923) 
svml_vi_ds_rs_test <- svml_fit_ds_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_test) %>% 
 rename(rescaled_importance = Importance) 
 
## upsample modification--training data set 
set.seed(51923) 
svml_fit_us <- workflow() %>% add_model(svml_tune_final_us)  %>% 
 add_recipe(retain_rec_us) %>% fit(retain_us) 
set.seed(51923) 
svml_vi_us <- svml_fit_us %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_us) 
set.seed(51923) 
svml_vi_us_rs <- svml_fit_us %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_us) %>% 
 rename(rescaled_importance = Importance) 
## testing data set 
set.seed(51923) 
svml_fit_us_test <- workflow() %>% add_model(svml_tune_final_us)  %>% 
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 add_recipe(retain_rec_us) %>% fit(retain_test) 
set.seed(51923) 
svml_vi_us_test <- svml_fit_us_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_test) 
set.seed(51923) 
svml_vi_us_rs_test <- svml_fit_us_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict,  
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_test) %>% 
 rename(rescaled_importance = Importance) 
 
## joining the results together 
svml_vi_compar <- svml_vi %>% select(-Importance) %>% 
 mutate(rescaled_importance = 0,  type = '1. None') %>% 
 rbind(svml_vi_ds_rs %>% mutate(type = '2. Downsample')) %>% 
 rbind(svml_vi_us_rs %>% mutate(type = '3. Upsample')) 
 
svml_vi_compar %>%  
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
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                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>%  
 ggplot() + geom_bar(aes(x = reorder(Variable, rescaled_importance), 
              y = rescaled_importance,  fill = desc(rescaled_importance/100)),  
          stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(), 
       text = element_text(size = 15)) + ylab('Rescale Importance') + 
 coord_flip() + facet_wrap(. ~ type)   
 
## predictive power 

## no modifications--training data set 
set.seed(7323) 
svml_cv_train <- svml_tune_final %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv, metrics = model_metrics, control = ctrl_grid) 
svml_cv_train %>% collect_predictions() %>% conf_mat(dv_next_fall,  .pred_class) 
svml_cv_train %>% collect_metrics() 
## testing data set 
set.seed(7323) 
svml_cv_test <- svm_l_wf %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(svml_tune_final) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv,  metrics = model_metrics, control = ctrl_grid) 
svml_cv_test %>% collect_predictions() %>% conf_mat(dv_next_fall,  .pred_class) 
svml_cv_test %>% collect_metrics() 
 
## downsample modification--training data set 
set.seed(7323) 
svml_cv_train_ds <- svml_tune_final_ds %>%fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_ds, metrics = model_metrics, control = ctrl_grid) 
svml_cv_train_ds %>% collect_predictions() %>% conf_mat(dv_next_fall,  .pred_class) 
svml_cv_train_ds %>% collect_metrics() 
## testing data set 
set.seed(7323) 
svml_cv_test_ds <- svm_l_wf_ds %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(svml_tune_final_ds) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv,  metrics = model_metrics, control = ctrl_grid) 
svml_cv_test_ds %>% collect_predictions() %>% conf_mat(dv_next_fall,  .pred_class) 
svml_cv_test_ds %>%collect_metrics() 
 
## upsample modification--training data set 
set.seed(7323) 
svml_cv_train_us <- svml_tune_final_us %>%fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_us, metrics = model_metrics, control = ctrl_grid) 
svml_cv_train_us %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
svml_cv_train_us %>% collect_metrics() 
## testing data set 
set.seed(7323) 
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svml_cv_test_us <- svm_l_wf_us %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(svml_tune_final_us) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv,  metrics = model_metrics, control = ctrl_grid) 
svml_cv_test_us %>% collect_predictions() %>% conf_mat(dv_next_fall,  .pred_class) 
svml_cv_test_us %>%collect_metrics() 
 
## roc values 
svml_roc <- svml_cv_train %>% collect_predictions() %>% 
 roc_curve(truth = dv_next_fall,  .pred_0) %>% 
 mutate(model = '1. None',  type = 'Training') %>% 
 rbind(svml_cv_train %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '1. None',  type = 'Testing')) %>% 
 rbind(svml_cv_train_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '2. Downsample',  type = 'Training')) %>% 
 rbind(svml_cv_test_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '2. Downsample', type = 'Testing')) %>% 
 rbind(svml_cv_train_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, pred_0) %>% 
        mutate(model = '3. Upsample', type = 'Training')) %>% 
 rbind(svml_cv_test_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, .pred_0) %>% 
        mutate(model = '3. Upsample', type = 'Testing')) %>% 
 rename(`Data Set` = type) %>% mutate(Algorithm = '2. SVM Linear') 
 
########################################## 

##Support Vector Machine-Polynomial Kernel ## 

########################################## 

 
## model specifications 
svm_p_spec <- svm_poly(cost = tune(), degree = tune(), scale_factor = tune(), 
                       margin = tune()) %>% set_mode('classification') %>% 
 set_engine('kernlab') 
## model workflow 
## no modifications 
svm_p_wf <- workflow() %>% add_model(svm_p_spec) %>% 
 add_recipe(retain_rec_rv) 
## downsample modifications 
svm_p_wf_ds <- workflow() %>% add_model(svm_p_spec) %>% 
 add_recipe(retain_rec_ds) 
## upsample modifications 
svm_p_wf_us <- workflow() %>% add_model(svm_p_spec) %>% 
 add_recipe(retain_rec_us) 
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## tuning 
## no modifications 
set.seed(52323) 
doParallel::registerDoParallel() 
svm_p_tune <- tune_grid(svm_p_wf, resamples = retain_cv,  
                        metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model 
svmp_tune_best <- select_best(svm_p_tune, 'roc_auc') 
## model fixed to the best outcome model 
svmp_tune_final <- finalize_model(svm_p_spec, svmp_tune_best) 
## downsample modifications 
set.seed(52323) 
doParallel::registerDoParallel() 
svm_p_tune_ds <- tune_grid(svm_p_wf_ds, resamples = retain_cv_ds,  
                           metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model 
svmp_tune_best_ds <- select_best(svm_p_tune_ds, 'roc_auc') 
## model fixed to the best outcome model 
svmp_tune_final_ds <- finalize_model(svm_p_spec, svmp_tune_best_ds) 
## upsample modifications 
set.seed(52323) 
doParallel::registerDoParallel() 
svm_p_tune_us <- tune_grid(svm_p_wf_us, resamples = retain_cv_us,  
                           metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model 
svmp_tune_best_us <- select_best(svm_p_tune_us, 'roc_auc') 
## model fixed to the best outcome model 
svmp_tune_final_us <- finalize_model(svm_p_spec, svmp_tune_best_us) 
 
## variable importance analysis 

## no modifications 
set.seed(51923) 
svmp_fit <- workflow() %>% add_model(svmp_tune_final)  %>% 
 add_recipe(retain_rec_rv) %>% fit(retain) 
## training data set 
set.seed(51923) 
svmp_vi <- svmp_fit %>%extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain)  
set.seed(51923) 
svmp_vi_rs <- svmp_fit %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain) %>% 
 rename(rescaled_importance = Importance) 
## testing data set 
set.seed(51923) 
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svmp_fit_test <- workflow() %>% add_model(svmp_tune_final)  %>% 
 add_recipe(retain_rec_rv) %>% fit(retain_test) 
set.seed(51923) 
svmp_vi_test <- svmp_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_test)  
set.seed(51923) 
svmp_vi_rs_test <- svmp_fit_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_test) %>% 
 rename(rescaled_importance = Importance) 
 
## downsample modifications 
set.seed(51923) 
svmp_fit_ds <- workflow() %>% add_model(svmp_tune_final_ds)  %>% 
 add_recipe(retain_rec_ds) %>% fit(retain_ds) 
## training data set 
set.seed(51923) 
svmp_vi_ds <- svmp_fit_ds %>% extract_fit_parsnip() %>% 
 vi(method = 'permute', pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_ds)  
set.seed(51923) 
svmp_vi_ds_rs <- svmp_fit_ds %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', 
    train = retain_ds) %>% rename(rescaled_importance = Importance) 
## testing data set 
set.seed(51923) 
svmp_fit_ds_test <- workflow() %>% add_model(svmp_tune_final_ds)  %>% 
 add_recipe(retain_rec_ds) %>% fit(retain_test) 
set.seed(51923) 
svmp_vi_ds_test <- svmp_fit_ds_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_test)  
set.seed(51923) 
svmp_vi_ds_rs_test <- svmp_fit_ds_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_test) %>% 
 rename(rescaled_importance = Importance) 
 
## upsample modification--training data set 
set.seed(51923) 
svmp_fit_us <- workflow() %>% add_model(svmp_tune_final_us)  %>% 
 add_recipe(retain_rec_us) %>% fit(retain_us) 
set.seed(51923) 
svmp_vi_us <- svmp_fit_us %>% extract_fit_parsnip() %>% 
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 vi(method = 'permute', pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_us) 
set.seed(51923) 
svmp_vi_us_rs <- svmp_fit_us %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_us) %>% 
 rename(rescaled_importance = Importance) 
## testing data set 
set.seed(51923) 
svmp_fit_us_test <- workflow() %>% add_model(svmp_tune_final_us)  %>% 
 add_recipe(retain_rec_us) %>% fit(retain_test) 
set.seed(51923) 
svmp_vi_us_test <- svmp_fit_us_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_test) 
set.seed(51923) 
svmp_vi_us_rs_test <- svmp_fit_us_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_test) %>% 
 rename(rescaled_importance = Importance) 
 
## joining the results together 
svmp_vi_compar <- svmp_vi %>% select(-Importance) %>% 
 mutate(rescaled_importance = 0, type = '1.1 None - Train') %>% 
 rbind(svmp_vi_rs_test %>%  
        mutate(rescaled_importance = 0, type = '1.2 None - Test')) %>% 
 rbind(svmp_vi_ds_rs %>% mutate(type = '1.1 DS - Train')) %>% 
 rbind(svmp_vi_ds_rs_test %>% mutate(type = '1.2 DS - Test')) %>% 
 rbind(svmp_vi_us_rs %>% mutate(type = '2.1 US - Train')) %>% 
 rbind(svmp_vi_us_rs_test %>% mutate(type = '2.2 US - Test')) 
 
svmp_vi_compar %>% filter(!type %in% c('1.1 None - Train',  '1.2 None - Test') ) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
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                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>%ggplot() + 
 geom_bar(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance,  
              fill = desc(rescaled_importance/100)),  stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(), 
       text = element_text(size = 15)) + ylab('Rescale Importance') + coord_flip() + 
 facet_wrap(. ~ type,  ncol = 4)   
 
## predictive power 

## no modifications--training data set 
set.seed(7323) 
svmp_cv_train <- svmp_tune_final %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv, metrics = model_metrics, control = ctrl_grid) 
svmp_cv_train %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class)  
svmp_cv_train %>% collect_metrics() 
## testing data set 
set.seed(7323) 
svmp_cv_test <- svm_p_wf %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(svmp_tune_final) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv,  metrics = model_metrics, control = ctrl_grid) 
svmp_cv_test %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
svmp_cv_test %>% collect_metrics() 
 
## downsample modifications--training data set 
set.seed(7323) 
svmp_cv_train_ds <- svmp_tune_final_ds %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_ds, metrics = model_metrics, control = ctrl_grid) 
 
svmp_cv_train_ds %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
svmp_cv_train_ds %>% collect_metrics() 
## testing data set 
set.seed(7323) 
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svmp_cv_test_ds <- svm_p_wf_ds %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(svmp_tune_final_ds) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv,  metrics = model_metrics, control = ctrl_grid) 
svmp_cv_test_ds %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
svmp_cv_test_ds %>% collect_metrics() 
 
## upsample modifications--training data set 
set.seed(7323) 
svmp_cv_train_us <- svmp_tune_final_us %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_us, metrics = model_metrics, control = ctrl_grid) 
svmp_cv_train_us %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
svmp_cv_train_us %>% collect_metrics() 
## testing data set 
set.seed(7323) 
svmp_cv_test_us <- svm_p_wf_us %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(svmp_tune_final_us) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv,  metrics = model_metrics, control = ctrl_grid) 
svmp_cv_test_us %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
svmp_cv_test_us %>% collect_metrics() 
 
## roc values 
svmp_roc <- svmp_cv_train %>% collect_predictions() %>% 
 roc_curve(truth = dv_next_fall, .pred_0) %>% 
 mutate(model = '1. None', type = 'Training') %>% 
 rbind(svmp_cv_train %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '1. None',  type = 'Testing')) %>% 
 rbind(svmp_cv_train_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '2. Downsample', type = 'Training')) %>% 
 rbind(svmp_cv_test_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, .pred_0) %>% 
        mutate(model = '2. Downsample',  type = 'Testing')) %>% 
 rbind(svmp_cv_train_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, .pred_0) %>% 
        mutate(model = '3. Upsample',  type = 'Training')) %>% 
 rbind(svmp_cv_test_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, .pred_0) %>% 
        mutate(model = '3. Upsample',  type = 'Testing')) %>% 
 rename(`Data Set` = type) %>% mutate(Algorithm = '3. SVM Polynomial') 
 

################################################### 

##Support Vector Machine-Radial Basis Function Kernel ## 

################################################### 

 
## model specifications 
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svm_r_spec <- svm_rbf(cost = tune(),  rbf_sigma = tune(), margin = tune()) %>% 
 set_mode('classification') %>% set_engine('kernlab') 
## model workflow 
## no modifications 
svm_r_wf <- workflow() %>% add_model(svm_r_spec) %>%  
 add_recipe(retain_rec_rv) 
## downsample modifications 
svm_r_wf_ds <- workflow() %>%  add_model(svm_r_spec) %>% 
 add_recipe(retain_rec_ds) 
## upsample modifications 
svm_r_wf_us <- workflow() %>% add_model(svm_r_spec) %>% 
 add_recipe(retain_rec_us) 
 
## tuning 
## no modifications 
set.seed(52323) 
doParallel::registerDoParallel() 
svm_r_tune <- tune_grid(svm_r_wf, resamples = retain_cv, metrics = model_metrics,  
                        control = ctrl_grid, grid = 20) 
## best model 
svmr_tune_best <- select_best(svm_r_tune, 'roc_auc') 
## model fixed to the best outcome model 
svmr_tune_final <- finalize_model(svm_r_spec, svmr_tune_best) 
## downsample modifications 
set.seed(52323) 
doParallel::registerDoParallel() 
svm_r_tune_ds <- tune_grid(svm_r_wf_ds, resamples = retain_cv_ds,  
                           metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model 
svmr_tune_best_ds <- select_best(svm_r_tune_ds, 'roc_auc') 
## model fixed to the best outcome model 
svmr_tune_final_ds <- finalize_model(svm_r_spec, svmr_tune_best_ds) 
## upsample 
set.seed(52323) 
doParallel::registerDoParallel() 
svm_r_tune_us <- tune_grid(svm_r_wf_us, resamples = retain_cv_us,  
                           metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model 
svmr_tune_best_us <- select_best(svm_r_tune_us, 'roc_auc') 
## model fixed to the best outcome model 
svmr_tune_final_us <- finalize_model(svm_r_spec, svmr_tune_best_us) 
## variable importance analysis 

## no modifications--training data set 
set.seed(51923) 
svmr_fit <- workflow() %>%  add_model(svmr_tune_final)  %>% 
 add_recipe(retain_rec_rv) %>%fit(retain) 
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set.seed(51923) 
svmr_vi <- svmr_fit %>% extract_fit_parsnip() %>% 
 vi(method = 'permute', pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain) %>% 
 mutate(rescaled_importance = 0) 
## testing data set 
set.seed(51923) 
svmr_fit_test <- workflow() %>%add_model(svmr_tune_final)  %>% 
 add_recipe(retain_rec_rv) %>%fit(retain_test) 
set.seed(51923) 
svmr_vi_test <- svmr_fit_test %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_test) %>% 
 mutate(rescaled_importance = 0) 
 
## downsample modification 
set.seed(51923) 
svmr_fit_ds <- workflow() %>% add_model(svmr_tune_final_ds)  %>% 
 add_recipe(retain_rec_ds) %>% fit(retain_ds) 
set.seed(51923) 
svmr_vi_ds <- svmr_fit_ds %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_ds) 
set.seed(51923) 
svmr_vi_ds_rs <- svmr_fit_ds %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_ds) %>% 
 rename(rescaled_importance = Importance) 
## testing data set 
set.seed(51923) 
svmr_fit_ds_test <- workflow() %>% add_model(svmr_tune_final_ds)  %>% 
 add_recipe(retain_rec_ds) %>% fit(retain_test) 
set.seed(51923) 
svmr_vi_ds_test <- svmr_fit_ds_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_test) 
set.seed(51923) 
svmr_vi_ds_rs_test <- svmr_fit_ds_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_test) %>% 
 rename(rescaled_importance = Importance) 
## upsample modifications 
set.seed(51923) 
svmr_fit_us <- workflow() %>% add_model(svmr_tune_final_us)  %>% 
 add_recipe(retain_rec_us) %>% fit(retain_us) 
set.seed(51923) 
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svmr_vi_us <- svmr_fit_us %>% extract_fit_parsnip() %>% 
 vi(method = 'permute',  pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_us) 
set.seed(51923) 
svmr_vi_us_rs <- svmr_fit_us %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_us) %>% 
 rename(rescaled_importance = Importance) 
## testing data set 
set.seed(51923) 
svmr_fit_us_test <- workflow() %>% add_model(svmr_tune_final_us)  %>% 
 add_recipe(retain_rec_us) %>%fit(retain_test) 
set.seed(51923) 
svmr_vi_us_test <- svmr_fit_us_test %>% extract_fit_parsnip() %>% 
 vi(method = 'permute', pred_wrapper = kernlab::predict, reference_class = '1', 
    metric = 'auc', target = 'dv_next_fall', train = retain_test) 
set.seed(51923) 
svmr_vi_us_rs_test <- svmr_fit_us_test %>%extract_fit_parsnip() %>% 
 vi(method = 'permute', scale = TRUE, pred_wrapper = kernlab::predict, 
    reference_class = '1', metric = 'auc', target = 'dv_next_fall', train = retain_test) %>% 
 rename(rescaled_importance = Importance) 
 
## joining the results together 
svmr_vi_compar <- svmr_vi %>% select(-Importance) %>% 
 mutate(rescaled_importance = 0, type = '1.1 None - Train') %>% 
 rbind(svmr_vi_test %>% select(-Importance) %>% 
        mutate(type = '1.2 None - Test')) %>% 
 rbind(svmr_vi_ds_rs %>% mutate(type = '1.1 DS - Train')) %>% 
 rbind(svmr_vi_ds_rs_test %>% mutate(type = '1.2 DS - Test')) %>% 
 rbind(svmr_vi_us_rs %>% mutate(type = '2.1 US - Train')) %>% 
 rbind(svmr_vi_us_rs_test %>% mutate(rescaled_importance = 0,  type = '2.2 US - Test')) 
 
svmr_vi_compar %>%  filter(!type %in% c('1.1 None - Train',  '1.2 None - Test')) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
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                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>%ggplot() + 
 geom_bar(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance,  
              fill = desc(rescaled_importance/100)), stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none', axis.title.y = element_blank(), 
       text = element_text(size = 15)) + ylab('Rescale Importance') + coord_flip() + 
 facet_wrap(. ~ type, ncol = 4)   
 
## predictive power 

## no modifications--training data set 
set.seed(7323) 
svmr_cv_train <- svmr_tune_final %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv, metrics = model_metrics, control = ctrl_grid) 
svmr_cv_train %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
svmr_cv_train %>% collect_metrics() 
## testing data set 
set.seed(7323) 
svmr_cv_test <- svm_r_wf %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(svmr_tune_final) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv, metrics = model_metrics, control = ctrl_grid) 
svmr_cv_test %>% collect_predictions() %>% conf_mat(dv_next_fall,  .pred_class) 
svmr_cv_test %>% collect_metrics() 
 
## downsample modification--training data set 
set.seed(7323) 
svmr_cv_train_ds <- svmr_tune_final_ds %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_ds,  metrics = model_metrics, control = ctrl_grid) 
svmr_cv_train_ds %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
svmr_cv_train_ds %>% collect_metrics() 
## testing data set 
set.seed(7323) 
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svmr_cv_test_ds <- svm_r_wf_ds %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(svmr_tune_final_ds) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv, metrics = model_metrics, control = ctrl_grid) 
svmr_cv_test_ds %>% collect_predictions() %>% conf_mat(dv_next_fall,  
          .pred_class) 
svmr_cv_test_ds %>% collect_metrics() 
 
## upsample modifications--training data set 
set.seed(7323) 
svmr_cv_train_us <- svmr_tune_final_us %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_us, metrics = model_metrics, control = ctrl_grid) 
svmr_cv_train_us %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
svmr_cv_train_us %>% collect_metrics() 
## testing data set 
set.seed(7323) 
svmr_cv_test_us <- svm_r_wf_us %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(svmr_tune_final_us) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv,  metrics = model_metrics, control = ctrl_grid) 
svmr_cv_test_us %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
svmr_cv_test_us %>% collect_metrics() 
 
## roc values 
svmr_roc <- svmr_cv_train %>% collect_predictions() %>% 
 roc_curve(truth = dv_next_fall,  .pred_0) %>% 
 mutate(model = '1. None',  type = 'Training') %>% 
 rbind(svmr_cv_train %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '1. None',  type = 'Testing')) %>% 
 rbind(svmr_cv_train_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '2. Downsample', type = 'Training')) %>% 
 rbind(svmr_cv_test_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '2. Downsample',  type = 'Testing')) %>% 
 rbind(svmr_cv_train_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '3. Upsample', type = 'Training')) %>% 
 rbind(svmr_cv_test_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,.pred_0) %>% 
        mutate(model = '3. Upsample', type = 'Testing')) %>% 
 rename(`Data Set` = type) %>% mutate(Algorithm = '4. SVM Radial') 
 

###################### 

##RANDOM FOREST ## 

###################### 
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## model specifications 
rf_spec <- rand_forest(mtry = tune(), trees = tune(), min_n = tune()) %>% 
 set_mode("classification") %>% set_engine("ranger") 
## workflows 
## no modifications 
rf_wf <- workflow() %>%  add_model(rf_spec) %>% add_recipe(retain_rec_rv) 
## downsample modifications 
rf_wf_ds <- workflow() %>% add_model(rf_spec) %>% add_recipe(retain_rec_ds) 
## upsample modifications 
rf_wf_us <- workflow() %>% add_model(rf_spec) %>% add_recipe(retain_rec_us) 
 
##tuning 
## no modifications 
doParallel::registerDoParallel() 
set.seed(51823) 
rf_wf_tune <- tune_grid(rf_wf,resamples = retain_cv,  
                        metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model for no sample 
rf_tune_best <- select_best(rf_wf_tune, 'roc_auc') 
 
# finalized model for no sample 
rf_tune_final <- finalize_model(rf_spec, rf_tune_best) 
## downsample modifications 
doParallel::registerDoParallel() 
set.seed(51823) 
rf_wf_tune_ds <- tune_grid(rf_wf_ds, resamples = retain_cv_ds,  
                           metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model for downsample 
rf_tune_best_ds <- select_best(rf_wf_tune_ds, 'roc_auc') 
## finalized model for downsample 
rf_tune_final_ds <- finalize_model(rf_spec, rf_tune_best_ds) 
## upsample modifications 
doParallel::registerDoParallel() 
set.seed(51823) 
rf_wf_tune_us <- tune_grid(rf_wf_us,resamples = retain_cv_us,  
                           metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model for upsample 
rf_tune_best_us <- select_best(rf_wf_tune_us, 'roc_auc') 
## finalized model for upsample 
rf_tune_final_us <- finalize_model(rf_spec, rf_tune_best_us) 
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## variable importance analysis 

## no modifications--training data set 
set.seed(511923) 
rf_vi <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_next_fall ~ ., data = retain) %>%  vi()  
set.seed(511923) 
rf_vi_rs <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_next_fall ~ ., data = retain) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) %>% mutate(type = '1.1 None - Train')  
## testing data set 
set.seed(511923) 
rf_vi_test <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_next_fall ~ ., data = retain_test) %>% vi()  
set.seed(511923) 
rf_vi_rs_test <- rf_tune_final %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_next_fall ~ ., data = retain_test) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) %>% mutate(type = '1.2 None - Test')  
 
## downsample modification--training data set 
set.seed(511923) 
rf_vi_ds <- rf_tune_final_ds %>% set_engine('ranger', importance = 'permutation') %>% 
 fit(dv_next_fall ~ ., data = retain_ds) %>%vi() 
set.seed(511923) 
rf_vi_ds_rs <- rf_tune_final_ds %>% set_engine('ranger', 
            importance = 'permutation') %>% fit(dv_next_fall ~ ., data = retain_ds) %>% 
 vi(scale = TRUE) %>% rename(rescaled_importance = Importance) %>% 
 mutate(type = '2.1 DS - Train') 
## testing data set 
set.seed(511923) 
rf_vi_ds_test <- rf_tune_final_ds %>% set_engine('ranger', 
            importance = 'permutation') %>% fit(dv_next_fall ~ .,  
     data = retain_test) %>% vi() 
set.seed(511923) 
rf_vi_ds_rs_test <- rf_tune_final_ds %>%set_engine('ranger', 
            importance = 'permutation') %>% fit(dv_next_fall ~ .,  
     data = retain_test) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) %>% mutate(type = '2.2 DS - Test') 
 
## upsample modifications--training data set 
set.seed(511923) 
rf_vi_us <- rf_tune_final_us %>% set_engine('ranger', 
            importance = 'permutation') %>% fit(dv_next_fall ~ ., data = retain_us) %>% vi() 
set.seed(511923)             
rf_vi_us_rs <- rf_tune_final_us %>% set_engine('ranger', 
            importance = 'permutation') %>% fit(dv_next_fall ~ ., data = retain_us) %>% 
 vi(scale = TRUE) %>% rename(rescaled_importance = Importance) %>% 
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 mutate(type = '3.1 US - Train') 
## testing data set 
set.seed(511923) 
rf_vi_us_test <- rf_tune_final_us %>% set_engine('ranger', 
            importance = 'permutation') %>% fit(dv_next_fall ~ .,  
     data = retain_test) %>% vi() 
set.seed(511923)             
rf_vi_us_rs_test <- rf_tune_final_us %>% set_engine('ranger', 
            importance = 'permutation') %>% fit(dv_next_fall ~ .,  
     data = retain_test) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) %>% mutate(type = '3.2 US - Test') 
 
## joining result together 
rf_vi_rs %>% rbind(rf_vi_rs_test) %>% 
 rbind(rf_vi_ds_rs) %>%  rbind(rf_vi_ds_rs_test) %>% 
 rbind(rf_vi_us_rs) %>% rbind(rf_vi_us_rs_test) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>%ggplot() + 
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 geom_bar(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance,  
              fill = desc(rescaled_importance/100)), stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(), 
       text = element_text(size = 15)) + ylab('Rescale Importance') + coord_flip() + 
 facet_wrap(. ~ type,  ncol = 6) 
 
## predictive power 

## no modifications--training data set 
set.seed(7323) 
rf_cv_train <- rf_tune_final %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv, metrics = model_metrics, control = ctrl_grid) 
rf_cv_train %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
rf_cv_train %>%collect_metrics() 
## testing data set 
set.seed(7323) 
rf_cv_test <- rf_wf %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(rf_tune_final) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv, metrics = model_metrics, control = ctrl_grid) 
rf_cv_test %>% collect_predictions() %>% conf_mat(dv_next_fall,.pred_class) 
rf_cv_test %>% collect_metrics() 
 
## downsample modifications--training data set 
set.seed(7323) 
rf_cv_train_ds <- rf_tune_final_ds %>%fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_ds, metrics = model_metrics, control = ctrl_grid) 
rf_cv_train_ds %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
rf_cv_train_ds %>% collect_metrics() 
## testing data set 
set.seed(7323) 
rf_cv_test_ds <- rf_wf_ds %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(rf_tune_final_ds) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv, metrics = model_metrics, control = ctrl_grid) 
rf_cv_test_ds %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
rf_cv_test_ds %>% collect_metrics() 
 
## upsample modifications--training data set 
set.seed(7323) 
rf_cv_train_us <- rf_tune_final_us %>%fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_us, metrics = model_metrics, control = ctrl_grid) 
rf_cv_train_us %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
rf_cv_train_us %>% collect_metrics() 
## testing data set 
set.seed(7323) 
rf_cv_test_us <- rf_wf_us %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(rf_tune_final_us) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv, metrics = model_metrics, control = ctrl_grid) 
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rf_cv_test_us %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
rf_cv_test_us %>% collect_metrics() 
 
## roc values 
rf_roc <- rf_cv_train %>% collect_predictions() %>% 
 roc_curve(truth = dv_next_fall,.pred_0) %>% 
 mutate(model = '1. None', type = 'Training') %>% 
 rbind(rf_cv_train %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, .pred_0) %>% 
        mutate(model = '1. None',  type = 'Testing')) %>% 
 rbind(rf_cv_train_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, .pred_0) %>% 
        mutate(model = '2. Downsample', type = 'Training')) %>% 
 rbind(rf_cv_test_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '2. Downsample', type = 'Testing')) %>% 
 rbind(rf_cv_train_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, .pred_0) %>% 
        mutate(model = '3. Upsample', type = 'Training')) %>% 
 rbind(rf_cv_test_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall, .pred_0) %>% 
        mutate(model = '3. Upsample', type = 'Testing')) %>% 
 rename(`Data Set` = type) %>% mutate(Algorithm = '5. Random Forest') 
 
##################################### 

##EXTREME GRADIENT BOOSTING ## 

##################################### 

 
## model specifications 
xgb <- boost_tree(trees = tune(), tree_depth = tune(),  min_n = tune(), 
 loss_reduction = tune(), sample_size = tune(), mtry = tune(),          
 learn_rate = tune()) %>% set_engine('xgboost') %>% set_mode('classification') 
## workflows 
## no modifications 
xgb_wf <- workflow() %>% add_model(xgb) %>% add_recipe(retain_rec_rv) 
## downsample modifications 
xgb_wf_ds <- workflow() %>% add_model(xgb) %>% add_recipe(retain_rec_ds) 
## upsample modifications 
xgb_wf_us <- workflow() %>% add_model(xgb) %>% add_recipe(retain_rec_us) 
 
## tuning 
## no modifications 
doParallel::registerDoParallel() 
set.seed(51923) 
xgb_wf_tune <- tune_grid(xgb_wf, resamples = retain_cv, metrics = model_metrics,  
                         control = ctrl_grid, grid = 20) 
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## best model 
xgb_tune_best <- select_best(xgb_wf_tune, 'roc_auc') 
## model fixed to the best outcome model 
xgb_tune_final <- finalize_model(xgb, xgb_tune_best) 
## downsample 
doParallel::registerDoParallel() 
set.seed(51923) 
xgb_wf_tune_ds <- tune_grid(xgb_wf_ds, resamples = retain_cv_ds,  
                            metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model 
xgb_tune_best_ds <- select_best(xgb_wf_tune_ds, 'roc_auc') 
## model fixed to the best outcome model 
xgb_tune_final_ds <- finalize_model(xgb, xgb_tune_best_ds) 
## upsample 
doParallel::registerDoParallel() 
set.seed(51923) 
xgb_wf_tune_us <- tune_grid(xgb_wf_us, resamples = retain_cv_us,  
                            metrics = model_metrics, control = ctrl_grid, grid = 20) 
## best model 
xgb_tune_best_us <- select_best(xgb_wf_tune_us, 'roc_auc') 
## model fixed to the best outcome model 
xgb_tune_final_us <- finalize_model(xgb, xgb_tune_best_us) 
 
## variable importance analysis 

## no modifications--training data set 
set.seed(511923) 
xgb_vi <- xgb_tune_final %>% set_engine('xgboost') %>%fit(dv_next_fall ~ .,  
     data = retain ) %>% vi()  
set.seed(511923) 
xgb_vi_rs <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_next_fall ~ ., data = retain) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) %>% mutate(type = '1.1 None - Train')  
## testing data set 
set.seed(511923) 
xgb_vi_test <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_next_fall ~ .,  data = retain_test ) %>% vi()  
set.seed(511923) 
xgb_vi_rs_test <- xgb_tune_final %>% set_engine('xgboost') %>% 
 fit(dv_next_fall ~ ., data = retain_test) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) %>% mutate(type = '1.2 None - Test')  
 
## downsample modifications--training data set 
set.seed(511923) 
xgb_vi_ds <- xgb_tune_final_ds %>% set_engine('xgboost') %>% 
 fit(dv_next_fall ~ .,  data = retain_ds) %>%vi() 
set.seed(511923) 
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xgb_vi_ds_rs <- xgb_tune_final_ds %>% set_engine('xgboost') %>% 
 fit(dv_next_fall ~ ., data = retain_ds) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) %>% mutate(type = '2.1 DS - Train') 
## testing data set 
set.seed(511923) 
xgb_vi_ds_test <- xgb_tune_final_ds %>% set_engine('xgboost') %>% 
 fit(dv_next_fall ~ ., data = retain_test) %>% vi() 
set.seed(511923) 
xgb_vi_ds_rs_test <- xgb_tune_final_ds %>% set_engine('xgboost') %>% 
 fit(dv_next_fall ~ ., data = retain_test) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) %>% mutate(type = '2.2 DS - Test') 
 
## upsample modifications--training data set 
set.seed(511923) 
xgb_vi_us <- xgb_tune_final_us %>% set_engine('xgboost') %>% 
 fit(dv_next_fall ~ .,  data = retain_us) %>% vi()  
set.seed(511923) 
xgb_vi_us_rs <- xgb_tune_final_us %>% set_engine('xgboost') %>% 
 fit(dv_next_fall ~ ., data = retain_us) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) %>% mutate(type = '3.1 US - Train') 
## testing data set 
set.seed(511923) 
xgb_vi_us_test <- xgb_tune_final_us %>%set_engine('xgboost') %>% 
 fit(dv_next_fall ~ ., data = retain_test) %>% vi()  
set.seed(511923) 
xgb_vi_us_rs_test <- xgb_tune_final_us %>% set_engine('xgboost') %>% 
 fit(dv_next_fall ~ ., data = retain_test) %>% vi(scale = TRUE) %>% 
 rename(rescaled_importance = Importance) %>% mutate(type = '3.2 US - Test') 
 
## joining results together 
xgb_vi_rs %>% 
 rbind(xgb_vi_rs_test) %>% 
 rbind(xgb_vi_ds_rs) %>% 
 rbind(xgb_vi_ds_rs_test) %>% 
 rbind(xgb_vi_us_rs) %>% 
 rbind(xgb_vi_us_rs_test) %>% 
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
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                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>%  ggplot() + 
 geom_bar(aes(x = reorder(Variable, rescaled_importance), y = rescaled_importance,  
              fill = desc(rescaled_importance/100)),  stat = 'identity') + theme_classic() + 
 theme(legend.position = 'none',  axis.title.y = element_blank(), 
       text = element_text(size = 15)) + ylab('Rescale Importance') + coord_flip() + 
 facet_wrap(. ~ type,  ncol = 6) 
 
## predictive power 

## no modifications--training data set 
set.seed(7323) 
xgb_cv_train <- xgb_tune_final %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv,  metrics = model_metrics, control = ctrl_grid) 
xgb_cv_train %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
xgb_cv_train %>% collect_metrics() 
## testing data set 
set.seed(7323) 
xgb_cv_test <- xgb_wf %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(xgb_tune_final) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv, metrics = model_metrics, control = ctrl_grid) 
xgb_cv_test %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
xgb_cv_test %>% collect_metrics() 
 
## downsample modifications--training data set 
set.seed(7323) 
xgb_cv_train_ds <- xgb_tune_final_ds %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_ds, metrics = model_metrics, control = ctrl_grid) 
xgb_cv_train_ds %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
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xgb_cv_train_ds %>%collect_metrics() 
## testing data set 
set.seed(7323) 
xgb_cv_test_ds <- xgb_wf_ds %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(xgb_tune_final_ds) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv, metrics = model_metrics, control = ctrl_grid) 
xgb_cv_test_ds %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
xgb_cv_test_ds %>% collect_metrics() 
 
## upsample modifications--training data set 
set.seed(7323) 
xgb_cv_train_us <- xgb_tune_final_us %>% fit_resamples(dv_next_fall ~.,  
               resamples = retain_cv_us, metrics = model_metrics, control = ctrl_grid) 
xgb_cv_train_us %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
xgb_cv_train_us %>% collect_metrics() 
## testing data set 
set.seed(7323) 
xgb_cv_test_us <- xgb_wf_us %>% update_recipe(retain_test_rec_rv) %>% 
 update_model(xgb_tune_final_us) %>% fit_resamples(as.factor(dv_next_fall) ~.,  
               resamples = retain_test_cv, metrics = model_metrics, control = ctrl_grid) 
xgb_cv_test_us %>% collect_predictions() %>% conf_mat(dv_next_fall, .pred_class) 
xgb_cv_test_us %>% collect_metrics() 
 
## roc values 
xgb_roc <- xgb_cv_train %>% collect_predictions() %>% 
 roc_curve(truth = dv_next_fall,.pred_0) %>% 
 mutate(model = '1. None', type = 'Training') %>% 
 rbind(xgb_cv_train %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,.pred_0) %>% 
        mutate(model = '1. None', type = 'Testing')) %>% 
 rbind(xgb_cv_train_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,.pred_0) %>% 
        mutate(model = '2. Downsample', type = 'Training')) %>% 
 rbind(xgb_cv_test_ds %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,.pred_0) %>% 
        mutate(model = '2. Downsample', type = 'Testing')) %>% 
 rbind(xgb_cv_train_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '3. Upsample', type = 'Training')) %>% 
 rbind(xgb_cv_test_us %>% collect_predictions() %>% 
        roc_curve(truth = dv_next_fall,.pred_0) %>% 
        mutate(model = '3. Upsample', type = 'Testing')) %>% 
 rename(`Data Set` = type) %>% mutate(Algorithm = '6. XGBoost') 
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##################################################### 

## VARIABLE COMPARISON OF TESTING DATA SETS ## 

##################################################### 

 
## no modifications 
log_reg_vi %>% filter(log_reg_type == '4. Testing') %>% 
  mutate(type = '1. Log. Reg.') %>% 
  select(Variable, rescale_importance, type) %>% 
  rbind(svml_vi_rs_test %>% mutate(Importance = 0, type = '2.1 SVM Linear') %>% 
         rename(rescale_importance = Importance)) %>% 
  rbind(svmp_vi_rs_test %>% mutate(rescaled_importance = 0,  
                type = '2.2 SVM Poly.') %>% 
         rename(rescale_importance = rescaled_importance)) %>% 
  rbind(svmr_vi_test %>% mutate(type = '2.3 SVM RBF') %>% 
         rename(rescale_importance = rescaled_importance) %>% 
         select(Variable, rescale_importance, type)) %>% 
  rbind(rf_vi_rs_test %>% rename(rescale_importance = rescaled_importance) %>% 
         mutate(type = '3. RF') %>% 
         select(Variable, rescale_importance, type)) %>% 
  rbind(xgb_vi_rs_test %>% rename(rescale_importance = rescaled_importance) %>% 
         mutate(type = '4. XGB') %>% 
         select(Variable, rescale_importance, type)) %>%  
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
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                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
  ggplot(aes(x = reorder(Variable, desc(Variable)), y = rescale_importance)) + 
  geom_bar(aes(fill = rescale_importance/10),  stat = 'identity') + theme_classic() + 
  theme(legend.position = 'none',  axis.title = element_blank(), 
        axis.text.x = element_text(size = 10), axis.text.y = element_text(size = 12)) + 
  coord_flip() + facet_wrap(. ~ type, ncol = 6)  
  
 ## downsample modifications 
 log_reg_vi %>%   filter(log_reg_type == '4. Testing') %>% 
  mutate(type = '1. Log. Reg.') %>% 
  select(Variable, rescale_importance, type) %>% 
  rbind(svml_vi_ds_rs_test %>%  
         mutate(rescaled_importance = 0, type = '2.1 SVM Linear') %>% 
         rename(rescale_importance = rescaled_importance)) %>% 
  rbind(svmp_vi_ds_rs_test %>% mutate(type = '2.2 SVM Poly.') %>% 
         rename(rescale_importance = rescaled_importance)) %>% 
  rbind(svmr_vi_ds_rs_test %>% mutate(type = '2.3 SVM RBF') %>% 
         rename(rescale_importance = rescaled_importance) %>% 
         select(Variable,  rescale_importance,  type)) %>% 
  rbind(rf_vi_ds_rs_test %>% rename(rescale_importance = rescaled_importance) %>% 
         mutate(type = '3. RF') %>% 
         select(Variable, rescale_importance, type)) %>% 
  rbind(xgb_vi_ds_rs_test %>% 
         rename(rescale_importance = rescaled_importance) %>% 
         mutate(type = '4. XGB') %>% 
         select(Variable, rescale_importance, type)) %>%  
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
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                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
  ggplot(aes(x = reorder(Variable, desc(Variable)), y = rescale_importance)) + 
  geom_bar(aes(fill = rescale_importance/10), stat = 'identity') + theme_classic() + 
  theme(legend.position = 'none', axis.title = element_blank(), 
       axis.text.x = element_text(size = 10), axis.text.y = element_text(size = 12)) + 
  coord_flip()+ facet_wrap(. ~ type, ncol = 6) 
  
 ## upsample modifications 
 log_reg_vi %>%  filter(log_reg_type == '4. Testing') %>% 
  mutate(type = '1. Log. Reg.') %>% 
  select(Variable,  rescale_importance,  type) %>% 
  rbind(svml_vi_us_rs_test %>%  
         mutate(rescaled_importance = 0,  type = '2.1 SVM Linear') %>% 
         rename(rescale_importance = rescaled_importance)) %>% 
  rbind(svmp_vi_us_rs_test %>%  mutate(type = '2.2 SVM Poly.') %>% 
         rename(rescale_importance = rescaled_importance)) %>% 
  rbind(svmr_vi_us_rs_test %>% mutate(type = '2.3 SVM RBF') %>% 
         rename(rescale_importance = rescaled_importance) %>% 
         select(Variable, rescale_importance, type)) %>% 
  rbind(rf_vi_us_rs_test %>% 
         rename(rescale_importance = rescaled_importance) %>% 
         mutate(type = '3. RF') %>% 
         select(Variable, rescale_importance, type)) %>% 
  rbind(xgb_vi_us_rs_test %>% 
         rename(rescale_importance = rescaled_importance) %>% 
         mutate(type = '4. XGB') %>% 
         select(Variable, rescale_importance, type)) %>%  
 mutate(Variable = case_when(Variable == 'gender_descr' ~ 'Gender', 
                             Variable == 'admit_first_gen_ind' ~ 'First Generation Status', 
                             Variable == 'hsgpa_knn' ~ 'HS GPA', 
                             Variable == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             Variable == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
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                             Variable == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             Variable == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             Variable == 'cip_categories' ~ 'Major Groupings', 
                             Variable == 'efc_knn' ~ 'EFC', 
                             Variable == 'ga_hope' ~ 'GA HOPE Scholarship', 
                             Variable == 'zell_ind' ~ 'Zell Miller Indicator', 
                             Variable == 'pell' ~ 'PELL Grant', 
                             Variable == 'fed_sub_loans' ~ 'Federal Sub. Loans', 
                             Variable == 'fed_unsub_loans' ~ 'Federal Unsub. Loans', 
                             Variable == 'oth_loans' ~ 'Other Loans', 
                             Variable == 'ats_knn' ~ 'Admissions Test Scores', 
                             Variable == 'all_other_exp' ~ 'All Other', 
                             Variable == 'instr_exp' ~ 'Instruction', 
                             Variable == 'stu_serv_exp' ~ 'Student Services', 
                             Variable == 'race_eth' ~ 'Race Ethnicity', 
                             Variable == 'cm_ready' ~ 'CM & Ready Mean', 
                             Variable == 'locale_group' ~ 'HS Locale', 
                             Variable == 'college_prep' ~ 'College Prep. Curric.', 
                             Variable == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             Variable == 'public_rsch_exp' ~ 'Public Service  Research', 
                             Variable == 'english_cm' ~ 'English (CMR)', 
                             Variable == 'math_cm' ~ 'Math (CMR)', 
                             Variable == 'science_cm' ~ 'Science (CMR)', 
                             Variable == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ 'CHECK')) %>% 
  ggplot(aes(x = reorder(Variable, desc(Variable)), y = rescale_importance)) + 
  geom_bar(aes(fill = rescale_importance/10), stat = 'identity') + theme_classic() + 
  theme(legend.position = 'none',  axis.title = element_blank(), 
        axis.text.x = element_text(size = 10), axis.text.y = element_text(size = 12)) + 
  coord_flip() + facet_wrap(. ~ type, ncol = 6) 
  
########################### 

##ENSEMBLE LEARNING ## 

########################### 

 
## pulling out prediction 
## Logistic Regression 
## no modifications 
lr_train_preds <- log_reg_cv_train %>%collect_predictions() 
lr_test_preds <- log_reg_cv_test %>% collect_predictions() 
## downsample modifications 
lr_train_preds_ds <- log_reg_cv_train_ds %>% collect_predictions() 
lr_test_preds_ds <- log_reg_cv_test_ds %>% collect_predictions() 
## upsample modifications 
lr_train_preds_us <- log_reg_cv_train_us %>% collect_predictions() 
lr_test_preds_us <- log_reg_cv_test_us %>% collect_predictions() 
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## Random Forest 
## no modifications 
rf_train_pred <- rf_cv_train %>% collect_predictions() 
rf_test_pred <- rf_cv_test %>% collect_predictions() 
## downsample modifications 
rf_train_pred_ds <- rf_cv_train_ds %>% collect_predictions() 
rf_test_pred_ds <- rf_cv_test_ds %>% collect_predictions() 
## upsample modifications 
rf_train_pred_us <- rf_cv_train_us %>%collect_predictions() 
rf_test_pred_us <- rf_cv_test_us %>% collect_predictions() 
 
## Extreme Gradient Boosting 
## no modifications 
xgb_train_pred <- xgb_cv_train %>% collect_predictions() 
xgb_test_pred <- xgb_cv_test %>% collect_predictions() 
## downsample modifications 
xgb_train_pred_ds <- xgb_cv_train_ds %>% collect_predictions() 
xgb_test_pred_ds <- xgb_cv_test_ds %>% collect_predictions() 
## upsample modifications 
xgb_train_pred_us <- xgb_cv_train_us %>% collect_predictions() 
xgb_test_pred_us <- xgb_cv_test_us %>% collect_predictions() 
## no modifications--training data set 
blend_train <- lr_train_preds %>% select(.pred_0, dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_train_pred %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_train_pred %>% rename(xgb = .pred_0) %>% select(xgb)) 
 
## mean of the predictions 

## no  modifications--training data set 
mean_train <- lr_train_preds %>% select(.pred_0,  dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_train_pred %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_train_pred %>% rename(xgb = .pred_0) %>% select(xgb)) %>% 
 mutate(mean_prob = (log_reg + rand_for + xgb) / 3, 
        mean_pred_class = as.factor(case_when(mean_prob >= .5 ~ 0, TRUE ~ 1)),  
        mean_prob_1 = 1 - mean_prob) %>% 
 select(dv_next_fall,  mean_prob,  mean_prob_1, mean_pred_class) 
mean_train %>% 
 mutate(dv_next_fall = as.factor(dv_next_fall),  
        mean_pred_class = as.factor(mean_pred_class)) %>% 
 conf_mat(dv_next_fall, mean_pred_class) %>% summary() 
## auc value 
mean_train %>%  select(mean_prob,  dv_next_fall) %>% 
 roc_auc(mean_prob, truth = dv_next_fall) 
## testing data set 
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mean_test <- lr_test_preds %>% select(.pred_0, dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_test_pred %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_test_pred %>% rename(xgb = .pred_0) %>% select(xgb)) %>% 
 mutate(mean_prob = (log_reg + rand_for + xgb) / 3, 
        mean_pred_class = as.factor(case_when(mean_prob >= .5 ~ 0, TRUE ~ 1)),  
        mean_prob_1 = 1 - mean_prob) %>% 
 select(dv_next_fall, mean_prob, mean_prob_1, mean_pred_class) 
mean_test %>% 
 mutate(dv_next_fall = as.factor(dv_next_fall),  
        mean_pred_class = as.factor(mean_pred_class)) %>% 
 conf_mat(dv_next_fall, mean_pred_class) %>% summary() 
## auc value 
mean_test %>% select(mean_prob, dv_next_fall) %>% 
 roc_auc(mean_prob, truth = dv_next_fall) 
 
## downsample modifications—training data set 
mean_train_ds <- lr_train_preds_ds %>% select(.pred_0,  dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_train_pred_ds %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_train_pred_ds %>% rename(xgb = .pred_0) %>% select(xgb)) %>% 
 mutate(mean_prob = (log_reg + rand_for + xgb) / 3, 
        mean_pred_class = as.factor(case_when(mean_prob >= .5 ~ 0,  TRUE ~ 1)),  
        mean_prob_1 = 1 - mean_prob) %>% 
 select(dv_next_fall, mean_prob, mean_prob_1,  
        mean_pred_class) 
mean_train_ds %>% 
 mutate(dv_next_fall = as.factor(dv_next_fall),  
        mean_pred_class = as.factor(mean_pred_class)) %>% 
 conf_mat(dv_next_fall, mean_pred_class) %>%summary() 
## auc value 
mean_train_ds %>%  select(mean_prob, dv_next_fall) %>% 
 roc_auc(mean_prob, truth = dv_next_fall) 
## testing data set 
mean_test_ds <- lr_test_preds_ds %>% select(.pred_0, dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_test_pred_ds %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_test_pred_ds %>% rename(xgb = .pred_0) %>% select(xgb)) %>% 
 mutate(mean_prob = (log_reg + rand_for + xgb) / 3, 
        mean_pred_class = as.factor(case_when(mean_prob >= .5 ~ 0,  TRUE ~ 1)),  
        mean_prob_1 = 1 - mean_prob) %>% 
 select(dv_next_fall, mean_prob, mean_prob_1, mean_pred_class) 
mean_test_ds %>% 
 mutate(dv_next_fall = as.factor(dv_next_fall),  
        mean_pred_class = as.factor(mean_pred_class)) %>% 
 conf_mat(dv_next_fall, mean_pred_class) %>% summary() 



 

454 
 

## auc value 
mean_test_ds %>% select(mean_prob, dv_next_fall) %>% 
 roc_auc(mean_prob, truth = dv_next_fall) 
 
## upsample modifications--training data set 
mean_train_us <- lr_train_preds_us %>% select(.pred_0, dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_train_pred_us %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_train_pred_us %>% rename(xgb = .pred_0) %>% select(xgb)) %>% 
 mutate(mean_prob = (log_reg + rand_for + xgb) / 3, 
        mean_pred_class = as.factor(case_when(mean_prob >= .5 ~ 0, TRUE ~ 1)),  
        mean_prob_1 = 1 - mean_prob) %>% 
 select(dv_next_fall, mean_prob, mean_prob_1, mean_pred_class) 
mean_train_us %>% 
 mutate(dv_next_fall = as.factor(dv_next_fall),  
        mean_pred_class = as.factor(mean_pred_class)) %>% 
 conf_mat(dv_next_fall,  mean_pred_class) %>% summary() 
mean_train_us %>% select(mean_prob, dv_next_fall) %>% 
 roc_auc(mean_prob, truth = dv_next_fall) 
## testing data set 
mean_test_us <- lr_test_preds_us %>% select(.pred_0,  dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_test_pred_us %>% rename(rand_for = .pred_0) %>%select(rand_for)) %>% 
 cbind(xgb_test_pred_us %>% rename(xgb = .pred_0) %>% select(xgb)) %>% 
 mutate(mean_prob = (log_reg + rand_for + xgb) / 3, 
        mean_pred_class = as.factor(case_when(mean_prob >= .5 ~ 0, TRUE ~ 1)),  
        mean_prob_1 = 1 - mean_prob) %>% 
 select(dv_next_fall, mean_prob, mean_prob_1, mean_pred_class) 
mean_test_us %>% 
 mutate(dv_next_fall = as.factor(dv_next_fall),  
        mean_pred_class = as.factor(mean_pred_class)) %>% 
 conf_mat(dv_next_fall, mean_pred_class) %>% summary() 
mean_test_us %>% select(mean_prob, dv_next_fall) %>% 
 roc_auc(mean_prob, truth = dv_next_fall) 
 
## roc values 
esl_mean_roc <- mean_train %>% roc_curve(truth = dv_next_fall, mean_prob) %>% 
 mutate(model = '1. None', type = 'Training') %>% 
 rbind(mean_test %>% roc_curve(truth = dv_next_fall, mean_prob) %>% 
        mutate(model = '1. None', type = 'Testing')) %>% 
 rbind(mean_train_ds %>% roc_curve(truth = dv_next_fall, mean_prob) %>% 
        mutate(model = '2. Downsample', type = 'Training')) %>% 
 rbind(mean_test_ds %>% roc_curve(truth = dv_next_fall, mean_prob) %>% 
        mutate(model = '2. Downsample', type = 'Testing')) %>% 
 rbind(mean_train_us %>% roc_curve(truth = dv_next_fall, mean_prob) %>% 
        mutate(model = '3. Upsample', type = 'Training')) %>% 
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 rbind(mean_test_us %>% roc_curve(truth = dv_next_fall, mean_prob) %>% 
        mutate(model = '3. Upsample', type = 'Testing')) %>% 
 rename(`Data Set` = type) %>% mutate(Algorithm = '7. Ensemble Learning Mean') 
 
## blended method 

## no modifications 
blend_train <- lr_train_preds %>% select(.pred_0,  dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_train_pred %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_train_pred %>% rename(xgb = .pred_0) %>% select(xgb)) 
org_stack <- stacks() %>% add_candidates(log_reg_cv_train) %>% 
 add_candidates(rf_cv_train) %>% add_candidates(xgb_cv_train) 
set.seed(7423) 
org_stack_fit <- org_stack %>% blend_predictions() %>% fit_members() 
blend_train_lr <- logistic_reg(penalty = (org_stack_fit$penalty)$penalty,  
                               mixture = (org_stack_fit$penalty)$mixture) %>% 
 set_engine('glm') %>% set_mode('classification') %>% 
 fit(dv_next_fall ~ .,  data = blend_train) 
blend_train %>% cbind(blend_train_lr %>% predict(blend_train, type = 'prob')) %>% 
 cbind(blend_train_lr %>% predict(blend_train, type = 'class')) %>% 
 conf_mat(dv_next_fall, .pred_class) %>% summary() 
## testing data set 
blend_test <- lr_test_preds %>% select(.pred_0, dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_test_pred %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_test_pred %>% rename(xgb = .pred_0) %>% select(xgb)) 
 
blend_test_lr <- logistic_reg(penalty = (org_stack_fit$penalty)$penalty,  
                              mixture = (org_stack_fit$penalty)$mixture) %>% 
 set_engine('glm') %>% set_mode('classification') %>% 
 fit(dv_next_fall ~ ., data = blend_test) 
blend_test %>% cbind(blend_test_lr %>% predict(blend_test, type = 'prob')) %>% 
 cbind(blend_test_lr %>% predict(blend_test,  type = 'class')) %>% 
 conf_mat(dv_next_fall, .pred_class) %>% summary() 
 
## downsample modifications--training data set 
blend_train_ds <- lr_train_preds_ds %>% select(.pred_0, dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_train_pred_ds %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_train_pred_ds %>% rename(xgb = .pred_0) %>% select(xgb)) 
org_stack_ds <- stacks() %>% add_candidates(log_reg_cv_train_ds) %>% 
 add_candidates(rf_cv_train_ds) %>% add_candidates(xgb_cv_train_ds) 
set.seed(7423) 
org_stack_fit_ds <- org_stack %>% blend_predictions() %>% fit_members() 
blend_train_lr_ds <- logistic_reg(penalty = (org_stack_fit_ds$penalty)$penalty,  
                                  mixture = (org_stack_fit_ds$penalty)$mixture) %>% 
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 set_engine('glm') %>% set_mode('classification') %>% 
 fit(dv_next_fall ~ .,  data = blend_train_ds) 
blend_train_ds %>% 
 cbind(blend_train_lr_ds %>% predict(blend_train_ds, type = 'prob')) %>% 
 cbind(blend_train_lr_ds %>% predict(blend_train_ds, type = 'class')) %>% 
 conf_mat(dv_next_fall, .pred_class) %>% summary() 
## testing data set 
blend_test_ds <- lr_test_preds_ds %>% select(.pred_0, dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_test_pred_ds %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_test_pred_ds %>% rename(xgb = .pred_0) %>% select(xgb)) 
blend_test_lr_ds <- logistic_reg(penalty = (org_stack_fit_ds$penalty)$penalty,  
                                 mixture = (org_stack_fit_ds$penalty)$mixture) %>% 
 set_engine('glm') %>% set_mode('classification') %>% 
 fit(dv_next_fall ~ .,  data = blend_test_ds) 
blend_test_ds %>% 
 cbind(blend_test_lr_ds %>% predict(blend_test_ds, type = 'prob')) %>% 
 cbind(blend_test_lr_ds %>% predict(blend_test_ds, type = 'class')) %>% 
 conf_mat(dv_next_fall,.pred_class) %>% summary() 
 
## upsample modifications--training data set 
blend_train_us <- lr_train_preds_us %>% select(.pred_0, dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_train_pred_us %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_train_pred_us %>% rename(xgb = .pred_0) %>% select(xgb)) 
org_stack_us <- stacks() %>% add_candidates(log_reg_cv_train_us) %>% 
 add_candidates(rf_cv_train_us) %>% add_candidates(xgb_cv_train_us) 
set.seed(7423) 
org_stack_fit_us <- org_stack %>% blend_predictions() %>% fit_members() 
blend_train_lr_us <- logistic_reg(penalty = (org_stack_fit_us$penalty)$penalty,  
                                  mixture = (org_stack_fit_us$penalty)$mixture) %>% 
 set_engine('glm') %>% set_mode('classification') %>% 
 fit(dv_next_fall ~ .,  data = blend_train_us) 
blend_train_us %>% 
 cbind(blend_train_lr_us %>% predict(blend_train_us,  type = 'prob')) %>% 
 cbind(blend_train_lr_us %>% predict(blend_train_us,  type = 'class')) %>% 
 conf_mat(dv_next_fall,  .pred_class) %>% summary() 
## testing data set 
blend_test_us <- lr_test_preds_us %>% select(.pred_0, dv_next_fall) %>% 
 rename(log_reg = .pred_0) %>% 
 cbind(rf_test_pred_us %>% rename(rand_for = .pred_0) %>% select(rand_for)) %>% 
 cbind(xgb_test_pred_us %>% rename(xgb = .pred_0) %>% select(xgb)) 
blend_test_lr_us <- logistic_reg(penalty = (org_stack_fit_us$penalty)$penalty,  
                                 mixture = (org_stack_fit_us$penalty)$mixture) %>% 
 set_engine('glm') %>% set_mode('classification') %>% 
 fit(dv_next_fall ~ ., data = blend_test_us) 
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blend_test_us %>% 
 cbind(blend_test_lr_us %>% predict(blend_test_us, type = 'prob')) %>% 
 cbind(blend_test_lr_us %>% predict(blend_test_us, type = 'class')) %>% 
 conf_mat(dv_next_fall, .pred_class) %>% summary() 
 
## roc values 
esl_blend_roc <- blend_train %>% 
 cbind(blend_train_lr %>% predict(blend_train,  type = 'prob')) %>%  
 roc_curve(truth = dv_next_fall, .pred_0) %>% 
 mutate(model = '1. None', type = 'Training') %>% 
 rbind(blend_test %>% cbind(blend_test_lr %>% predict(blend_test, type = 'prob')) %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '1. None',  type = 'Testing')) %>% 
 rbind(blend_train_ds %>% cbind(blend_train_lr_ds %>% 
               predict(blend_train_ds,  type = 'prob')) %>% 
        roc_curve(truth = dv_next_fall,.pred_0) %>% 
        mutate(model = '2. Downsample',  type = 'Training')) %>% 
 rbind(blend_test_ds %>% 
        cbind(blend_test_lr_ds %>% predict(blend_test_ds, type = 'prob')) %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '2. Downsample', type = 'Testing')) %>% 
 rbind(blend_train_us %>% 
        cbind(blend_train_lr_us %>% predict(blend_train_us, type = 'prob')) %>% 
        roc_curve(truth = dv_next_fall,.pred_0) %>% 
        mutate(model = '3. Upsample', type = 'Training')) %>% 
 rbind(blend_test_us %>% 
        cbind(blend_test_lr_us %>% predict(blend_test_us, type = 'prob')) %>% 
        roc_curve(truth = dv_next_fall,  .pred_0) %>% 
        mutate(model = '3. Upsample', type = 'Testing')) %>% 
 rename(`Data Set` = type) %>% mutate(Algorithm = '8. Ensemble Learning Blended')  
## training data set 
blend_train %>% cbind(blend_train_lr %>% predict(blend_train, type = 'prob')) %>% 
            roc_auc(truth = dv_next_fall, .pred_0) 
blend_train_ds %>% cbind(blend_train_lr_ds %>% predict(blend_train_ds,  
                type = 'prob')) %>% roc_auc(truth = dv_next_fall, .pred_0) 
blend_train_us %>% cbind(blend_train_lr_us %>% predict(blend_train_us,  
                type = 'prob')) %>% roc_auc(truth = dv_next_fall,.pred_0) 
## testing data set 
blend_test %>% cbind(blend_test_lr %>% predict(blend_test,  type = 'prob')) %>% 
      roc_auc(truth = dv_next_fall,  .pred_0) 
blend_test_ds %>% cbind(blend_test_lr_ds %>% predict(blend_test_ds,  
                type = 'prob')) %>% roc_auc(truth = dv_next_fall,  .pred_0) 
blend_test_us %>% cbind(blend_test_lr_us %>% predict(blend_test_us,  
                type = 'prob')) %>% roc_auc(truth = dv_next_fall,  .pred_0) 
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################################# 

##ROC AND AUC COMPARISONS## 

################################# 
 
## roc graphs 
combined_roc <- log_roc %>%  rbind(rf_roc) %>% rbind(xgb_roc) %>% 
  rbind(svml_roc) %>% rbind(svmp_roc) %>% rbind(svmr_roc) %>% 
  rbind(esl_mean_roc) %>% rbind(esl_blend_roc)  
 combined_roc%>% 
  ## remove comment tags to change between modifications 
  ## filter(model == '1. None') %>% 
  ## filter(model == '3. Downsample') %>% 
  filter(model == '3. Upsample') %>% 
  ggplot(aes(x = 1- specificity, y = sensitivity,  color = `Data Set`)) + 
  geom_abline(slope = 1, color = "gray50", lty = 2, alpha = 0.8) + 
  geom_path() + ##size = 1.5, alpha = 0.7) + 
  theme_classic() + theme(legend.position = 'top', text = element_text(size = 15)) + 
  facet_wrap(. ~ Algorithm,  ncol = 3) +  coord_fixed() 
  
 ## no modifications 
 auc_retain <- log_reg_cv_train[[3]] %>% as.data.frame() %>% 
  filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
  filter(var_type %like% '%estimate%') %>% 
  mutate(fold = 1:10,  model = '1. Logistic Regression') %>% 
  select(model, fold, train) %>% 
  left_join(log_reg_cv_test[[3]]  %>% as.data.frame() %>% 
             filter(.metric == 'roc_auc') %>% gather(var_type,  test) %>% 
             filter(var_type %like% '%estimate%') %>% 
             mutate(fold = 1:10,  model = '1. Logistic Regression')  %>% 
             select(model, fold, test)) %>% 
  rbind(svml_cv_train[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '2. SVM Linear') %>% 
         select(model, fold, train) %>% 
         left_join(svml_cv_test[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '2. SVM Linear')  %>% 
                    select(model, fold, test))) %>% 
  rbind(svmp_cv_train[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type,  train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10,  model = '3. SVM Polynomial') %>% 
         select(model, fold, train) %>% 
         left_join(svmp_cv_test[[3]]  %>% as.data.frame() %>% 



 

459 
 

                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '3. SVM Polynomial')  %>% 
                    select(model, fold, test))) %>% 
  rbind(svmr_cv_train[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '4. SVM Radial') %>% 
         select(model, fold, train) %>% 
         left_join(svmr_cv_test[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10,  model = '4. SVM Radial')  %>% 
                    select(model, fold, test))) %>% 
  rbind(rf_cv_train[[3]] %>% as.data.frame() %>% filter(.metric == 'roc_auc') %>% 
         gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '5. Random Forest') %>% 
         select(model, fold, train) %>% 
         left_join(rf_cv_test[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '5. Random Forest')  %>% 
                    select(model, fold, test))) %>% 
  rbind(xgb_cv_train[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '6. XGBoost') %>% 
         select(model, fold, train) %>% 
         left_join(xgb_cv_test[[3]]  %>%as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type,  test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '6. XGBoost')  %>% 
                    select(model, fold, test))) 
 ## auc distributions 
 auc_retain %>% gather(data_set, values, -model, -fold) %>% 
  mutate(values = as.numeric(values),  
         data_set = case_when(data_set == 'test' ~ '2. Testing', TRUE ~ '1. Training')) %>% 
  rename(`Data Set` = data_set) %>% 
  ggplot(aes(x = reorder(model, desc(model)), y = values, fill = `Data Set`)) + 
  geom_boxplot() + theme_classic() + 
  theme(legend.position = 'none',  text = element_text(size = 15),  
        axis.title = element_blank()) + coord_flip() + facet_wrap(. ~ `Data Set`) 
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## inferential statistics on algorithms no modifications 

 ## wilcox test between the training and testing dataset 
 wilcox.test(as.numeric((auc_retain %>%filter(model == '1. Logistic Regression'))$train),  
             as.numeric((auc_retain %>% filter(model == '1. Logistic Regression'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
 wilcox.test(as.numeric((auc_retain %>% filter(model == '2. SVM Linear'))$train),  
             as.numeric((auc_retain %>% filter(model == '2. SVM Linear'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
  wilcox.test(as.numeric((auc_retain %>% filter(model == '3. SVM Polynomial'))$train),  
             as.numeric((auc_retain %>% filter(model == '3. SVM Polynomial'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
  wilcox.test(as.numeric((auc_retain %>% filter(model == '4. SVM Radial'))$train),  
             as.numeric((auc_retain %>% filter(model == '4. SVM Radial'))$test),  
             paired = FALSE,  exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
  wilcox.test(as.numeric((auc_retain %>% filter(model == '5. Random Forest'))$train),  
             as.numeric((auc_retain %>% filter(model == '5. Random Forest'))$test),  
             paired = FALSE,  exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
  wilcox.test(as.numeric((auc_retain %>% filter(model == '6. XGBoost'))$train),  
             as.numeric((auc_retain %>% filter(model == '6. XGBoost'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
  
## friedmen test of the best model on no modifications 

## training data set 
 auc_retain %>% friedman_test(train ~ model|fold) 
 auc_retain %>% friedman_effsize(train ~ model|fold) 
 auc_retain %>%   mutate(train = as.numeric(train)) %>%   

wilcox_test(train ~ model, paired = TRUE, p.adjust.method = 'bonferroni') 
 ## testing data set 
 auc_retain %>% friedman_test(test ~ model|fold) 
 auc_retain %>% friedman_effsize(test ~ model|fold) 
 auc_retain %>%  mutate(test = as.numeric(test)) %>% 
 wilcox_test(test ~ model, paired = TRUE, p.adjust.method = 'bonferroni') 
## median auc values 
 auc_retain %>%  select(-fold) %>% 
  mutate(train = as.numeric(train), test = as.numeric(test)) %>% 
  group_by(model) %>% summarise(train = median(train),  
            test = median(test),.groups = 'drop') 
  
 ## downsample modifications 
 auc_retain_us <- log_reg_cv_train_ds[[3]] %>% as.data.frame() %>% 
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  filter(.metric == 'roc_auc') %>% gather(var_type,  train) %>% 
  filter(var_type %like% '%estimate%') %>% 
  mutate(fold = 1:10,  model = '1. Logistic Regression') %>% 
  select(model, fold, train) %>% 
  left_join(log_reg_cv_test_ds[[3]]  %>% as.data.frame() %>% 
             filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
             filter(var_type %like% '%estimate%') %>% 
             mutate(fold = 1:10, model = '1. Logistic Regression')  %>% 
             select(model, fold, test)) %>% 
  rbind(svml_cv_train_ds[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '2. SVM Linear') %>% 
         select(model, fold, train) %>% 
         left_join(svml_cv_test_ds[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '2. SVM Linear')  %>% 
                    select(model, fold, test))) %>% 
  rbind(svmp_cv_train_ds[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '3. SVM Polynomial') %>% 
         select(model, fold, train) %>% 
         left_join(svmp_cv_test_ds[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10,  model = '3. SVM Polynomial')  %>% 
                    select(model, fold, test))) %>% 
  rbind(svmr_cv_train_ds[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '4. SVM Radial') %>% 
         select(model, fold, train) %>% 
         left_join(svmr_cv_test_ds[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '4. SVM Radial')  %>% 
                    select(model, fold, test))) %>% 
  rbind(rf_cv_train_ds[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10,  model = '5. Random Forest') %>% 
         select(model, fold, train) %>% 
         left_join(rf_cv_test_ds[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
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                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '5. Random Forest')  %>% 
                    select(model, fold, test))) %>% 
  rbind(xgb_cv_train_ds[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '6. XGBoost') %>% 
         select(model, fold, train) %>% 
         left_join(xgb_cv_test_ds[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type,  test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10,  model = '6. XGBoost')  %>% 
                    select(model, fold, test))) 
  ## auc distributions 
 auc_retain_ds %>% gather(data_set, values, -model, -fold) %>% 
  mutate(values = as.numeric(values),  
         data_set = case_when(data_set == 'test' ~ '2. Testing',  TRUE ~ '1. Training')) %>% 
  rename(`Data Set` = data_set) %>% 
  ggplot(aes(x = reorder(model, desc(model)), y = values, fill = `Data Set`)) + 
  geom_boxplot() + theme_classic() + 
  theme(legend.position = 'none',  text = element_text(size = 15),  
        axis.title = element_blank()) + coord_flip() + facet_wrap(. ~ `Data Set`) 
  
## inferential statistics on algorithms on downsample modifications 

## wilcox test between the training and testing dataset 
 wilcox.test(as.numeric((auc_retain_ds %>% 
                          filter(model == '1. Logistic Regression'))$train),  
             as.numeric((auc_retain_ds %>%filter(model == '1. Logistic Regression'))$test),  
             paired = FALSE,  exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
 wilcox.test(as.numeric((auc_retain_ds %>% filter(model == '2. SVM Linear'))$train),  
             as.numeric((auc_retain_ds %>% filter(model == '2. SVM Linear'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
 wilcox.test(as.numeric((auc_retain_ds%>%filter(model== '3. SVM Polynomial'))$train),  
             as.numeric((auc_retain_ds %>% filter(model == '3. SVM Polynomial'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
 wilcox.test(as.numeric((auc_retain_ds %>% filter(model == '4. SVM Radial'))$train),  
             as.numeric((auc_retain_ds %>% filter(model == '4. SVM Radial'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
 wilcox.test(as.numeric((auc_retain_ds %>% filter(model == '5. Random Forest'))$train),  
             as.numeric((auc_retain_ds %>% filter(model == '5. Random Forest'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
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 wilcox.test(as.numeric((auc_retain_ds %>% filter(model == '6. XGBoost'))$train),  
             as.numeric((auc_retain_ds %>% filter(model == '6. XGBoost'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
  
## friedmen test of the best model on downsample modifications 

## training data set 
auc_retain_ds %>% friedman_test(train ~ model|fold) 
auc_retain_ds %>% friedman_effsize(train ~ model|fold) 
auc_retain_ds %>%  mutate(train = as.numeric(train)) %>% 
  wilcox_test(train ~ model, paired = TRUE, p.adjust.method = 'bonferroni') 
## testing data set 
auc_retain_ds %>% friedman_test(test ~ model|fold) 
auc_retain_ds %>% friedman_effsize(test ~ model|fold) 
auc_retain_ds %>%  mutate(test = as.numeric(test)) %>% 
  wilcox_test(test ~ model, paired = TRUE, p.adjust.method = 'bonferroni') 
## median auc values 
auc_retain_ds %>% select(-fold) %>% 
  mutate(train = as.numeric(train), test = as.numeric(test)) %>% 
  group_by(model) %>% summarise(train = median(train),  
            test = median(test),.groups = 'drop') 
  
 ## upsample modifications 
 auc_retain_us <- log_reg_cv_train_us[[3]] %>% as.data.frame() %>% 
  filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
  filter(var_type %like% '%estimate%') %>% 
  mutate(fold = 1:10, model = '1. Logistic Regression') %>% 
  select(model, fold, train) %>% 
  left_join(log_reg_cv_test_us[[3]]  %>% as.data.frame() %>% 
             filter(.metric == 'roc_auc') %>% gather(var_type,  test) %>% 
             filter(var_type %like% '%estimate%') %>% 
             mutate(fold = 1:10, model = '1. Logistic Regression')  %>% 
             select(model, fold, test)) %>% 
  rbind(svml_cv_train_us[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '2. SVM Linear') %>% 
         select(model, fold, train) %>% 
         left_join(svml_cv_test_us[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '2. SVM Linear')  %>% 
                    select(model, fold, test))) %>% 
  rbind(svmp_cv_train_us[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
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         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '3. SVM Polynomial') %>% 
         select(model, fold, train) %>% 
         left_join(svmp_cv_test_us[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '3. SVM Polynomial')  %>% 
                    select(model, fold, test))) %>% 
  rbind(svmr_cv_train_us[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type,  train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10,  model = '4. SVM Radial') %>% 
         select(model, fold, train) %>% 
         left_join(svmr_cv_test_us[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '4. SVM Radial')  %>% 
                    select(model, fold, test))) %>% 
  rbind(rf_cv_train_us[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '5. Random Forest') %>% 
         select(model, fold, train) %>% 
         left_join(rf_cv_test_us[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '5. Random Forest')  %>% 
                    select(model, fold, test))) %>% 
  rbind(xgb_cv_train_us[[3]] %>% as.data.frame() %>% 
         filter(.metric == 'roc_auc') %>% gather(var_type, train) %>% 
         filter(var_type %like% '%estimate%') %>% 
         mutate(fold = 1:10, model = '6. XGBoost') %>% 
         select(model, fold, train) %>% 
         left_join(xgb_cv_test_us[[3]]  %>% as.data.frame() %>% 
                    filter(.metric == 'roc_auc') %>% gather(var_type, test) %>% 
                    filter(var_type %like% '%estimate%') %>% 
                    mutate(fold = 1:10, model = '6. XGBoost')  %>% 
                    select(model, fold, test))) 
 ## auc distribution 
 auc_retain_us %>% gather(data_set, values, -model, -fold) %>% 
  mutate(values = as.numeric(values),  
         data_set = case_when(data_set == 'test' ~ '2. Testing',  TRUE ~ '1. Training')) %>% 
  rename(`Data Set` = data_set) %>% 
  ggplot(aes(x = reorder(model, desc(model)), y = values, fill = `Data Set`)) + 
  geom_boxplot() + theme_classic() + 
  theme(legend.position = 'none',  text = element_text(size = 15),  
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        axis.title = element_blank()) + coord_flip() + facet_wrap(. ~ `Data Set`) 
  
## inferential statistics on algorithms on upsample modifications 

## wilcox test between the training and testing dataset 
wilcox.test(as.numeric((auc_retain_us %>% 
                          filter(model == '1. Logistic Regression'))$train),  
             as.numeric((auc_retain_us %>%filter(model == '1. Logistic Regression'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
wilcox.test(as.numeric((auc_retain_us %>% filter(model == '2. SVM Linear'))$train),  
             as.numeric((auc_retain_us %>% filter(model == '2. SVM Linear'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
wilcox.test(as.numeric((auc_retain_us%>%filter(model== '3. SVM Polynomial'))$train),  
             as.numeric((auc_retain_us %>% filter(model == '3. SVM Polynomial'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
wilcox.test(as.numeric((auc_retain_us %>%filter(model == '4. SVM Radial'))$train),  
             as.numeric((auc_retain_us %>%filter(model == '4. SVM Radial'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
wilcox.test(as.numeric((auc_retain_us %>%filter(model == '5. Random Forest'))$train),  
             as.numeric((auc_retain_us %>% filter(model == '5. Random Forest'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
wilcox.test(as.numeric((auc_retain_us %>%filter(model == '6. XGBoost'))$train),  
             as.numeric((auc_retain_us %>% filter(model == '6. XGBoost'))$test),  
             paired = FALSE, exact = TRUE, correct = TRUE, conf.int = TRUE,  
             conf.level = 0.95) 
  
## friedmen test of the best model on upsample modifications 

## training data set 
auc_retain_us %>% friedman_test(train ~ model|fold) 
auc_retain_us %>% friedman_effsize(train ~ model|fold) 
auc_retain_us %>% mutate(train = as.numeric(train)) %>% 
  wilcox_test(train ~ model, paired = TRUE, p.adjust.method = 'bonferroni') 
## testing data set 
auc_retain_us %>% friedman_test(test ~ model|fold) 
auc_retain_us %>% friedman_effsize(test ~ model|fold) 
auc_retain_us %>%  mutate(test = as.numeric(test)) %>% 
  wilcox_test(test ~ model,  paired = TRUE, p.adjust.method = 'bonferroni') 
## median auc values 
auc_retain_us %>% select(-fold) %>% 
  mutate(train = as.numeric(train),  test = as.numeric(test)) %>% 
  group_by(model) %>%  summarise(train = median(train),  
            test = median(test), groups = 'drop') 
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APPENDIX E:  

Considerations and Assumptions Review R Code 
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######################################## 

## Considerations and Assumptions Review ## 

######################################## 

 
## libraries utilized 
library(tidyverse); library(tidymodels); library(themis); library(blorr) 
library(DAAG); library(lsr); library(regclass); library(car); library(DescTools); 
library(psych); library(vip); library(pdp); library(doParallel); library(xgboost) 
library(kernlab); library(stacks); library(rstatix) 
 
select <- dplyr::select 
 
## setting working directory         
setwd(' C:/Users/bdfitzgerald/Desktop/Dissertation/') 
 
## data clean up source files 
## USG Data 
source('./dissertation_scripts/01.0 USG Data Clean Up.R') 
## CCRPI Data 
source('./dissertation_scripts/02.0 CCRPI Data Clean Up.R') 
## EOC Data 
source('./dissertation_scripts/03.0 EOC Data Clean Up.R') 
## IPEDS Data 
source('./dissertation_scripts/04.0 IPEDS Data Clean Up.R') 
 
###################### 

## COMBING DATA   ## 

###################### 

 
## USG data to IPEDS expenditures 
dat <- recent_ga_public_hs %>%mutate(fy = as.integer(substr(cohort_term, 1, 4))) %>% 
 left_join(ipeds.clean %>% 
            rename(enrollment_institution_name = Institution.Name)) %>% 
 select(-fy, -UnitID) 
 
## ga public high schools data 
## EOC and CCRPI to the distinct high schools represented 
## in the four RCUs 
hs_curriculum <- dat %>% select(hs_code, hs_grad_year) %>% 
 filter(!duplicated(paste0(hs_grad_year, hs_code))) %>%  
 left_join(ga_hs) %>% 
 left_join(ccrpi %>% rename(state_school_id = school_code,  
                   hs_grad_year = school_year) %>%  
            mutate(content_mastery = content_mastery / 100,  
                   readiness = readiness / 100) %>% 
            select(hs_grad_year, content_mastery, readiness, state_school_id)) %>% 
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 left_join(eoc_prep %>% select(-school_dstrct_nm, -instn_name) %>% 
            mutate(year = as.integer(year)) %>% 
            rename(hs_grad_year = year, state_school_id = school_code_rv)) 
 
## removing unnecessary objects 
rm(ccrpi, eoc_prep, ga_hs, ipeds.clean, recent_ga_public_hs) 
 
## modifying USG data 
dat <- dat %>% 
 mutate(dv_next_fall = case_when(dv_next_fall == 1 ~ 0, TRUE ~ 1),  
        race_eth = case_when(ipeds_race_ethnicity_descr %in%  

     c('White',  'Black or African American',  
                                 'Hispanic or Latino') ~ ipeds_race_ethnicity_descr, TRUE ~ 'Other'),  
        unique_identifer = paste(uniqueid, cohort_term, enrollment_institution_name,  
                                 setid_consol, sep = '.')) %>% 
 select(-ipeds_race_ethnicity_descr, -uniqueid, -cohort_term,  
        -enrollment_institution_name, -setid_consol) 
 
########################## 

## DATA PARTITIONING ## 

########################## 

 
set.seed(51823) 
dat_split <- initial_split(data = dat, prop = .6) 
dat_train <- training(dat_split); ## dat_test <- testing(dat_split) 
 
##################################### 

## REVIEW OF MISSING DATA FOR  ##  

## HS CURRICULUM VARIABLES      ## 

##################################### 

 
## summary of the high school 
hs_curriculum %>% summary() 
 
## plot of missing data points  
## by high school year 
hs_curriculum %>% select(-hs_code,  -state_school_id) %>%  
 gather(var_name,  var_results, -hs_grad_year) %>% 
 filter(is.na(var_results)) %>% select(-var_results) %>% group_by_all() %>% 
 summarise(n.missing = n(), .groups = 'drop') %>% 
 mutate(hs_grad_year = as.character(hs_grad_year),  
      var_name = case_when(var_name == 'content_mastery' ~ 'CCRPI: Content Mastery', 
                          var_name == 'readiness' ~ 'CCRPI: Readiness',  
                          var_name == 'english' ~ 'EOC: English', 
                          var_name == 'math' ~ 'EOC: Mathematics',  
                          var_name == 'science' ~ 'EOC: Science', 
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                          var_name == 'social_studies' ~ 'EOC: Social Studies',  
                          TRUE ~ 'OTHER')) %>% 
 rename(Year = hs_grad_year) %>%  
 ggplot() + geom_bar(aes(x = var_name, y = n.missing, fill = Year), stat = 'identity',  
          position = 'dodge') + ylab('Number') + theme_classic() + 
 theme(plot.title = element_text(hjust = .5),  axis.title.x = element_blank(), 
       text = element_text(size = 13), legend.position = 'top')  
 
## baseline 
hs_curriculum %>% select(-hs_code, -hs_grad_year, -state_school_id,  
        -locale_code, -locale) %>%summary() 
## with zero 
hs_curriculum %>% select(-hs_code, -hs_grad_year, -state_school_id,  
        -locale_code, -locale) %>% mutate_if(is.numeric, ~ replace_na(., 0)) %>% 
 summary() 
## with mean 
hs_curriculum %>% select(-hs_code, -hs_grad_year, -state_school_id,  
        -locale_code, -locale) %>% 
 mutate_if(is.numeric, ~ replace_na(., mean(., na.rm = TRUE))) %>% 
 summary() 
## with median 
hs_curriculum %>% select(-hs_code, -state_school_id, -hs_grad_year, 
        -locale_code, -locale) %>% 
 mutate_if(is.numeric, ~ replace_na(., median(., na.rm = TRUE))) %>% 
 summary() 
 
## selecting the median imputation 
hs_curriculum <- hs_curriculum %>% 
 mutate_if(is.numeric, ~ replace_na(., median(., na.rm = TRUE))) %>% 
mutate(locale_group = case_when(locale_code %in% c('11', '12', '13') ~ 'City',  
                                 locale_code %in% c('21', '22', '23') ~ 'Suburb',  
                                 locale_code %in% c('31', '32', '33') ~ 'Town',  TRUE ~ 'Rural')) 
 
## joining hs curriculum data with the USG data 
dat_train_rv <- dat_train %>% left_join(hs_curriculum) %>% 
 select(-hs_code, -hs_grad_year, -state_school_id, -locale_code, -locale) 
 
rm(hs_curriculum) 
 

######################################## 

## INITIAL RECIPE TO EXPLORE DATA ## 

## TRAINING DATA SET ONLY                   ## 

######################################### 

 
retain_train <- recipe(formula = dv_next_fall ~ ., data = dat_train_rv) %>% 
 update_role(unique_identifer, new_role = 'id variable') 
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## data to explore 
retain_exp <- juice(prep(retain_train)) 
 
####################### 

## CONSIDERATIONS ## 

####################### 

 

################################### 

## MISSING DATA OBSERVATIONS ## 

################################### 

 
## bar chart of missing observations 
retain_exp %>% select(-unique_identifer) %>% 
 rename(`First-fall GPA` = dv_first_fall_gpa, `First-year GPA` = dv_first_yr_gpa, 
        Gender = gender_descr, `First Generation Status` = admit_first_gen_ind, 
        `HS GPA` = hs_gpa, `AP Hours` = adv_standing_ap_hrs, 
        `CLEP Hours` = adv_standing_clep_hrs, `IB Hours` = adv_standing_ib_hrs,        
        `Other Hours` = adv_standing_other_hrs, `CPC English` = cpc_english_code, 
        `CPC Foreign Language` = cpc_foreign_language_code, 
        `CPC Math` = cpc_math_code, `CPC Science` = cpc_science_code, 
        `CPC Social Sciences` = cpc_social_science_code, 
        `Major Groupings` = cip_categories, `EFC` = expected_family_contribution, 
        `GA HOPE Scholarship` = ga_hope, `Zell Miller Indicator` = zell_ind, 
        `PELL Grant` = pell, `Federal Sub. Loans` = fed_sub_loans, 
        `Federal Unsub. Loans` = fed_unsub_loans, `Other Loans` = oth_loans, 
        `Admissions Test Scores` = adm_test_score, `Academic Support` = acay_sup_exp, 
        `All Other` = all_other_exp, `Institutional Support` = inst_sup_exp, 
        `Instruction` = instr_exp, `Public Service` = public_serv_exp, 
        `Research` = rsch_exp, `Student Services Support` = stu_serv_exp, 
        `Race/Ethnicity` = race_eth, `CCRPI Content Mastery` = content_mastery, 
        `CCPRI Readiness` = readiness, `EOC English` = english, 
        `EOC Math` = math, `EOC Science` = science, 
        `EOC Socail Studies` = social_studies, `HS Locale` = locale_group, 
        Retained = dv_next_fall) %>% 
 gather(var_name, var_results) %>% filter(is.na(var_results)) %>% 
 select(-var_results) %>% group_by_all() %>% 
 summarise(hc = n(),  .groups = 'drop') %>% ggplot() + 
 geom_bar(aes(x = reorder(var_name,  desc(var_name)), y = hc), stat = 'identity') + 
 xlab('Data Variables') + ylab('Number Missing') + 
 theme_classic() + theme(text = element_text(size = 15)) + coord_flip() 
 
## recipe update 
retain_train <- retain_train  %>% 
step_mutate_at(c(adv_standing_ap_hrs:adv_standing_other_hrs, ga_hope,  
                  pell:oth_loans), fn = ~ replace_na(., 0)) %>% 
step_mutate_at(zell_ind, fn = ~ replace_na(., 'N')) %>% 
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step_unknown(c(cpc_english_code:cpc_social_science_code), new_level = 'U')  %>% 
step_mutate(hsgpa_mean = hs_gpa, hsgpa_median = hs_gpa, hsgpa_knn = hs_gpa,  
             ats_mean = adm_test_score, ats_median = adm_test_score,  

 ats_knn = adm_test_score, efc_mean = expected_family_contribution,  
 efc_median = expected_family_contribution,  efc_knn = 

expected_family_contribution) %>% 
 step_impute_mean(hsgpa_mean, ats_mean, efc_mean) %>% 
 step_impute_median(hsgpa_median, ats_median, efc_median) %>% 
 step_impute_knn(c(hsgpa_knn, ats_knn, efc_knn), neighbors = 10) 
 
## data to explore 
retain_exp <- juice(prep(retain_train)) 
 
## examining the imputation impact on HS GPA 
retain_exp %>% select(hs_gpa, hsgpa_mean, hsgpa_median, hsgpa_knn) %>% 
 summary()  
(retain_exp %>% select(hs_gpa, hsgpa_mean, hsgpa_median, hsgpa_knn) %>% 
  describe()) %>% select(skew, kurtosis) 
 
## examining the imputation impact on admission test scores 
retain_exp %>% select(adm_test_score, ats_mean, ats_median, ats_knn) %>% 
 summary()  
(retain_exp %>% select(adm_test_score, ats_mean, ats_median, ats_knn) %>% 
  describe()) %>%select(skew, kurtosis) 
 
## examining the imputation impact on expected family contributions 
retain_exp %>% select(expected_family_contribution, efc_mean, efc_median,  

efc_knn) %>%summary()  
(retain_exp %>% 
  select(expected_family_contribution, efc_mean, efc_median, efc_knn) %>% 
  describe()) %>% select(skew, kurtosis) 
 
## update recipe  
## removing exploratory missing data variables (original, mean, median) 
retain_train <- retain_train %>% 
step_rm(hs_gpa, hsgpa_mean,hsgpa_median, adm_test_score,ats_mean,  
         ats_median, expected_family_contribution, efc_mean, efc_median) 
## data to explore 
retain_exp <- juice(prep(retain_train)) 
 
####################### 

## OUTLIER REVIEW ## 

####################### 

 
## outliers by z-scores 
retain_train_zs <- retain_train %>% 



 

472 
 

 step_normalize(c(adv_standing_ap_hrs:adv_standing_other_hrs,  
                  ga_hope, pell:stu_serv_exp, content_mastery:social_studies,  
                  hsgpa_knn, ats_knn, efc_knn)) 
retain_exp_zs <- juice(prep(retain_train_zs)) 
 
## review of z-scores distributions      
retain_exp_zs %>% 
 select(c(adv_standing_ap_hrs:adv_standing_other_hrs, ga_hope, pell:stu_serv_exp,  
          content_mastery:social_studies, hsgpa_knn, ats_knn, efc_knn)) %>% 
 rename(`HS GPA` = hsgpa_knn, `AP Hours` = adv_standing_ap_hrs, 
        `CLEP Hours` = adv_standing_clep_hrs, `IB Hours` = adv_standing_ib_hrs,        
        `Other Hours` = adv_standing_other_hrs, `EFC` = efc_knn, 
        `GA HOPE Scholarship` = ga_hope, `PELL Grant` = pell, 
        `Federal Sub. Loans` = fed_sub_loans, `Federal Unsub. Loans` = fed_unsub_loans, 
        `Other Loans` = oth_loans, `Admissions Test Scores` = ats_knn, 
        `Academic Support` = acay_sup_exp, `All Other` = all_other_exp, 
        `Institutional Support` = inst_sup_exp, `Instruction` = instr_exp, 
        `Public Service` = public_serv_exp, `Research` = rsch_exp, 
        `Student Services Support` = stu_serv_exp, 
        `CCRPI Content Mastery` = content_mastery, 
        `CCPRI Readiness` = readiness, `EOC English` = english, 
        `EOC Math` = math, `EOC Science` = science, 
        `EOC Social Studies` = social_studies) %>% 
 gather(var_name, var_results) %>% ggplot(aes(x = var_results)) + 
 geom_density(aes(x = var_results), fill = 'blue', alpha = 0.25) + 
 geom_histogram(aes(y = ..density..), fill = 'NA', color = 'black') + 
 geom_vline(xintercept = -3,  color = 'red', linewidth = 0.5,  linetype = 'dashed') + 
 geom_vline(xintercept = 3,  color = 'red', linewidth = 0.5,  linetype = 'dashed') + 
 xlab('z-scores') + ggtitle('Examination of Z-Scores') + theme_classic() + 
 theme(plot.title = element_text(hjust = 0.5),  text = element_text(size = 15)) + 
 facet_wrap(var_name ~ ., scales = 'free',  ncol = 4) 
 
vars_outlier_test <- retain_exp %>% 
 select(c(adv_standing_ap_hrs:adv_standing_other_hrs, ga_hope, pell:stu_serv_exp,  
          content_mastery:social_studies, hsgpa_knn,ats_knn, efc_knn)) 
 
## grubb's test for univariate outliers 
grubbs.test(vars_outlier_test$adv_standing_ap_hrs, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$adv_standing_clep_hrs, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$adv_standing_ib_hrs,  type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$adv_standing_other_hrs, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$efc_knn, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$ga_hope, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$pell, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$fed_sub_loans, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$fed_unsub_loans, type = 11, opposite = TRUE) 
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grubbs.test(vars_outlier_test$oth_loans, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$acay_sup_exp, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$all_other_exp, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$inst_sup_exp, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$instr_exp, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$public_serv_exp, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$rsch_exp, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$stu_serv_exp, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$content_mastery, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$readiness, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$english, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$math, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$science, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$social_studies, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$hsgpa_knn, type = 11, opposite = TRUE) 
grubbs.test(vars_outlier_test$ats_knn, type = 11, opposite = TRUE) 
 
## multivariate outliers 
vars_outlier_test$mahalanobis <- mahalanobis(x = vars_outlier_test,  
                                             colMeans(vars_outlier_test),  cov(vars_outlier_test)) 
vars_outlier_test$p_value <- pchisq(vars_outlier_test$mahalanobis,  
                                    df = 24, lower.tail = FALSE) 
 
## distribution of p-values 
vars_outlier_test %>% select(p_value) %>% 
 mutate(p_value = round(p_value, 3)) %>% 
 ggplot(aes(x = p_value)) + geom_density(aes(x = p_value),  fill = 'blue', alpha = .25) + 
 geom_histogram(aes(y = ..density..),  fill = 'NA', color = 'black') + 
 theme_classic() + ylab('Density of p-values') + xlab('p-values for Mahalanobis Test') 
 
vars_outlier_test %>% 
 mutate(sig =  case_when(round(p_value, 3) <= 0.5 ~ 'Sig',  TRUE ~ 'Not Sig')) %>% 
 select(sig) %>% group_by_all() %>% summarise(hc = n(), .groups = 'drop') 
 

#################### 

## ASSUMPTIONS ## 

#################### 

 

#################################### 

## OBSERVATION INDEPENDENCE ## 

#################################### 

 
## observations that are more than one 
retain_exp %>%  select(unique_identifer) %>% group_by_all() %>%  
summarise(hc = n(), .groups = 'drop') %>% filter(hc > 1) 
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################# 

## LINEARITY ## 

################# 

 
## univarite linearity 
## recipe update for cor matrix 
retain_train_cor_max <- retain_train %>% 
 step_mutate(gender_descr = case_when(gender_descr == 'Male' ~ 1, TRUE ~ 0),  
             admit_first_gen_ind = case_when(admit_first_gen_ind == 'Y' ~ 1, TRUE ~ 0),  
             cpc_english_code = case_when(cpc_english_code == 'S' ~ 1,  
                                          cpc_english_code == 'R' ~ 2,  cpc_english_code == 'X' ~ 3,  
                                          cpc_english_code == 'N' ~ 4, TRUE ~ 5),  
             cpc_foreign_language_code = case_when(cpc_foreign_language_code == 'S' ~ 1,  
                                                   cpc_foreign_language_code == 'R' ~ 2,  
                                                   cpc_foreign_language_code == 'N' ~ 3,  TRUE ~ 4),  
             cpc_math_code = case_when(cpc_math_code == 'S' ~ 1,  
                                       cpc_math_code == 'R' ~ 2, cpc_math_code == 'X' ~ 3,  
                                       cpc_math_code == 'N' ~ 4,  TRUE ~ 5),  
             cpc_science_code = case_when(cpc_science_code == 'S' ~ 1,  
                                          cpc_science_code == 'R' ~ 2, cpc_science_code == 'N' ~ 3,  
                                          TRUE ~ 4),  
             cpc_social_science_code = case_when(cpc_social_science_code == 'S' ~ 1,  
                                                 cpc_social_science_code == 'R' ~ 2,  
                                                 cpc_social_science_code == 'N' ~ 3, TRUE ~ 4),  
             cip_categories = case_when(cip_categories == 'Social Sciences' ~ 1, 
                                        cip_categories == 'Fine Arts' ~ 2,  
                                        cip_categories == 'Human Services' ~ 3,  
                                        cip_categories == 'Business' ~ 4, cip_categories == 'STEM' ~ 5,  
                                        cip_categories == 'General/Interdisciplinary Studies' ~ 6,  
                                        cip_categories == 'Healthcare' ~ 7,  
                                        cip_categories == 'Education' ~ 8, TRUE ~ 9),  
             zell_ind = case_when(zell_ind == 'Y' ~ 1, TRUE ~ 0),  
             locale_group = case_when(locale_group == 'City' ~ 1,  
                                      locale_group == 'Suburb' ~ 2, locale_group == 'Town' ~ 3,  
                                      TRUE ~ 4),  
             race_eth = case_when(race_eth == 'White' ~ 1,  
                                  race_eth == 'Black or African American' ~ 2,  
                                  race_eth == 'Hispanic or Latino' ~ 3, TRUE ~ 4)) 
retain_exp_cor <- juice(prep(retain_train_cor_max)) 
 
## correlational analysis 
as.data.frame((retain_exp_cor %>% 
                select(-unique_identifer) %>% 
                corr.test(use = 'pairwise', method = 'pearson',  
                          adjust = 'holm', alpha = .05))$r) %>%  
 select( ## dv_next_fall,  
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## dv_first_fall_gpa,  
dv_first_yr_gpa ) %>% 

 cbind(as.data.frame((retain_exp_cor %>% 
                       select(-unique_identifer) %>% 
                       corr.test(use = 'pairwise', method = 'pearson',  
                                 adjust = 'holm', alpha = .05))$p) %>% 
        mutate(dv_next_fall_p = round(dv_next_fall, 3),  
               dv_first_fall_gpa_p = round(dv_first_fall_gpa, 3),  
               dv_first_yr_gpa_p = round(dv_first_yr_gpa, 3)) %>% 
        select(## dv_next_fall_p,  

      ## dv_first_fall_gpa_p,  
     dv_first_yr_gpa_p)) %>% 

 filter(## dv_next_fall_p <= .05,  
          ## dv_first_fall_gpa_p <= .05,  
         dv_first_yr_gpa_p <= .05) %>% 
 arrange(## abs(dv_next_fall),  
              ## abs(dv_first_fall_gpa),  
       abs(dv_first_yr_gpa))  
 
## correlational heat map 
cor.plot(retain_exp_cor %>%  
          select(dv_next_fall, dv_first_fall_gpa, dv_first_yr_gpa, 
                 gender_descr, race_eth, admit_first_gen_ind, 
                 locale_group, hsgpa_knn, ats_knn, adv_standing_ap_hrs, 
                 adv_standing_clep_hrs, adv_standing_ib_hrs, adv_standing_other_hrs, 
                 cpc_english_code, cpc_foreign_language_code, cpc_math_code, 
                 cpc_science_code, cpc_social_science_code, content_mastery, 
                 readiness, english, math, science, social_studies, efc_knn, 
                 ga_hope, zell_ind, pell, fed_sub_loans, fed_unsub_loans, 
                 oth_loans, cip_categories, acay_sup_exp, all_other_exp, 
                 inst_sup_exp, instr_exp, public_serv_exp, rsch_exp, 
                 stu_serv_exp) %>% 
          rename(Retain = dv_next_fall, `Fall GPA` = dv_first_fall_gpa, 
                 `Year GPA` = dv_first_yr_gpa, Gender = gender_descr, 
                 `Race Eth` = race_eth, `First Gen` = admit_first_gen_ind, 
                 `HS Locale` = locale_group, `HS GPA` = hsgpa_knn, 
                 `Test Scores` = ats_knn, `AP Hours` = adv_standing_ap_hrs, 
                 `CLEP Hours` = adv_standing_clep_hrs, `IB Hours` = adv_standing_ib_hrs, 
                 `Other Hours` = adv_standing_other_hrs, `CPC English` = cpc_english_code, 
                 `CPC Fore. Lang.` = cpc_foreign_language_code, 
                 `CPC Math` = cpc_math_code, `CPC Science` = cpc_science_code, 
                 `CPC Social Sci` = cpc_social_science_code, 
                 `Content Mastery` = content_mastery, `Readiness` = readiness, 
                 `English PL` = english, `Math PL` = math, 
                 `Science PL` = science, `Social Studies PL` = social_studies, 
                 `Exp. Fam. Contrib.` = efc_knn, `GA HOPE` = ga_hope, 
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                 `Zell Miller` = zell_ind, `PELL Grant` = pell, 
                 `Fed Sub Loans` = fed_sub_loans, `Fed Unsub Loans` = fed_unsub_loans, 
                 `Other Loans` = oth_loans, `Major Groupings` = cip_categories, 
                 `Academic Sup` = acay_sup_exp, `All Other` = all_other_exp, 
                 `Inst. Sup` = inst_sup_exp, `Instruction` = instr_exp, 
                 `Public Service` = public_serv_exp, `Research` = rsch_exp, 
                 `Student Serv` = stu_serv_exp),  
         xlas = 2, stars = TRUE, show.legend = FALSE) 
 
## vif for multicollinearity 
retain_vif <- setCor(dv_next_fall ~ gender_descr + admit_first_gen_ind +  
                      adv_standing_ap_hrs + adv_standing_clep_hrs + adv_standing_ib_hrs +  
                      adv_standing_other_hrs + cpc_english_code +  
                      cpc_foreign_language_code + 
                      cpc_math_code + cpc_science_code + cpc_social_science_code +  
                      cip_categories + ga_hope + zell_ind + pell + fed_sub_loans + 
                      fed_unsub_loans + oth_loans + acay_sup_exp + all_other_exp +  
                      inst_sup_exp + instr_exp + public_serv_exp + rsch_exp +  
                      stu_serv_exp + race_eth + content_mastery + readiness + english + math +  
                      science + social_studies + locale_group + hsgpa_knn + ats_knn + efc_knn,  
                     data = retain_exp_cor, us = 'pairwise',plot = FALSE) 
fall_gpa <- setCor(dv_first_fall_gpa ~ gender_descr + admit_first_gen_ind +  
                    adv_standing_ap_hrs + adv_standing_clep_hrs + adv_standing_ib_hrs +  
                    adv_standing_other_hrs + cpc_english_code + cpc_foreign_language_code + 
                    cpc_math_code + cpc_science_code + cpc_social_science_code +  
                    cip_categories + ga_hope + zell_ind + pell + fed_sub_loans + 
                    fed_unsub_loans + oth_loans + acay_sup_exp + all_other_exp +  
                    inst_sup_exp + instr_exp + public_serv_exp + rsch_exp +  
                    stu_serv_exp + race_eth + content_mastery + readiness + english + math +  
                    science + social_studies + locale_group + hsgpa_knn + ats_knn + efc_knn,  
                   data = retain_exp_cor, us = 'pairwise', plot = FALSE) 
year_gpa <- setCor(dv_first_yr_gpa ~ gender_descr + admit_first_gen_ind +  
                    adv_standing_ap_hrs + adv_standing_clep_hrs + adv_standing_ib_hrs +  
                    adv_standing_other_hrs + cpc_english_code + cpc_foreign_language_code + 
                    cpc_math_code + cpc_science_code + cpc_social_science_code +  
                    cip_categories + ga_hope + zell_ind + pell + fed_sub_loans + 
                    fed_unsub_loans + oth_loans + acay_sup_exp + all_other_exp +  
                    inst_sup_exp + instr_exp + public_serv_exp + rsch_exp +  
                    stu_serv_exp + race_eth + content_mastery + readiness + english + math +  
                    science + social_studies + locale_group + hsgpa_knn + ats_knn + efc_knn,  
                   data = retain_exp_cor, us = 'pairwise', plot = FALSE) 
 
###################################### 

## ELIMINATION OR REDUCTION OF ## 

## MULTICOLLINEARITY                       ## 

###################################### 
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## recipe update 
retain_train_cor_max2 <- retain_train %>% 
 step_mutate(gender_descr = case_when(gender_descr == 'Male' ~ 1, TRUE ~ 0),  
             admit_first_gen_ind = case_when(admit_first_gen_ind == 'Y' ~ 1,  TRUE ~ 0),  
             college_prep = case_when(cpc_english_code == 'S' ~ 1,  
                                      cpc_english_code == 'X' ~ 1, TRUE ~ 0) + 
              case_when(cpc_foreign_language_code == 'S' ~ 1,  
                        cpc_foreign_language_code == 'X' ~ 1, TRUE ~ 0) + 
              case_when(cpc_math_code == 'S' ~ 1,  cpc_math_code == 'X' ~ 1, TRUE ~ 0)  + 
              case_when(cpc_science_code == 'S' ~ 1,  cpc_science_code == 'X' ~ 1,  
                        TRUE ~ 0) + 
              case_when(cpc_social_science_code == 'S' ~ 1,  
                        cpc_social_science_code == 'X' ~ 1,  TRUE ~ 0), 
             acay_inst_sup_exp = (acay_sup_exp + inst_sup_exp),  
             public_rsch_exp = (public_serv_exp + rsch_exp), 
             cm_ready = (readiness + content_mastery) / 2,              
             english_cm = english - cm_ready,  
             math_cm = math - cm_ready,  
             science_cm = science - cm_ready,  
             social_studies_cm = social_studies - cm_ready, 
             cip_categories = case_when(cip_categories == 'Social Sciences' ~ 1, 
                                        cip_categories == 'Fine Arts' ~ 2,  
                                        cip_categories == 'Human Services' ~ 3,  
                                        cip_categories == 'Business' ~ 4,  
                                        cip_categories == 'STEM' ~ 5,  
                                        cip_categories == 'General/Interdisciplinary Studies' ~ 6,  
                                        cip_categories == 'Healthcare' ~ 7,  
                                        cip_categories == 'Education' ~ 8,  
                                        TRUE ~ 9),  
             zell_ind = case_when(zell_ind == 'Y' ~ 1, TRUE ~ 0),  
             locale_group = case_when(locale_group == 'City' ~ 1,  
                                      locale_group == 'Suburb' ~ 2, locale_group == 'Town' ~ 3,  
                                      TRUE ~ 4),  
             race_eth = case_when(race_eth == 'White' ~ 1,  
                                  race_eth == 'Black or African American' ~ 2,  
                                  race_eth == 'Hispanic or Latino' ~ 3, TRUE ~ 4)) %>% 
 step_rm(cpc_english_code, cpc_foreign_language_code,  cpc_math_code,  
         cpc_science_code, cpc_social_science_code,  acay_sup_exp, inst_sup_exp,  
         public_serv_exp, rsch_exp,  english, math,  science,social_studies,  
         readiness,  content_mastery) 
retain_exp_cor2 <- juice(prep(retain_train_cor_max2)) 
 
## examining the results of the correlation after  
## fixing the multicollinearity violations 
cor.plot(retain_exp_cor2 %>%  
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          select(dv_next_fall, dv_first_fall_gpa, dv_first_yr_gpa, 
                 gender_descr, race_eth, admit_first_gen_ind, locale_group, 
                 hsgpa_knn, ats_knn, adv_standing_ap_hrs, adv_standing_clep_hrs, 
                 adv_standing_ib_hrs, adv_standing_other_hrs, college_prep, 
                 cm_ready, english_cm, math_cm, science_cm, social_studies_cm, 
                 efc_knn, ga_hope, zell_ind, pell, fed_sub_loans, fed_unsub_loans, 
                 oth_loans, cip_categories, acay_inst_sup_exp, all_other_exp, instr_exp,  

     stu_serv_exp, public_rsch_exp) %>% 
          rename(Retain = dv_next_fall, `Fall GPA` = dv_first_fall_gpa, 
                 `Year GPA` = dv_first_yr_gpa, Gender = gender_descr, 
                 `Race Eth` = race_eth, `First Gen` = admit_first_gen_ind, 
                 `HS Locale` = locale_group, `HS GPA` = hsgpa_knn, 
                 `Test Scores` = ats_knn, `AP Hours` = adv_standing_ap_hrs, 
                 `CLEP Hours` = adv_standing_clep_hrs, 
                 `IB Hours` = adv_standing_ib_hrs, `Other Hours` = adv_standing_other_hrs, 
                 `College Prep` = college_prep, `Content Mastery/Readiness` = cm_ready, 
                 `English CM` = english_cm,`Math CM` = math_cm, 
                 `Science CM` = science_cm, `Social Studies CM` = social_studies_cm, 
                 `Exp. Fam. Contrib.` = efc_knn, `GA HOPE` = ga_hope, 
                 `Zell Miller` = zell_ind, `PELL Grant` = pell, 
                 `Fed Sub Loans` = fed_sub_loans, `Fed Unsub Loans` = fed_unsub_loans, 
                 `Other Loans` = oth_loans, `Major Groupings` = cip_categories, 
                 `Acad. Inst. Sup.` = acay_inst_sup_exp, `All Other` = all_other_exp, 
                 Instruction = instr_exp, `Student Serv` = stu_serv_exp, 
                 `Public Rsch` = public_rsch_exp),  
         xlas = 2, stars = TRUE, show.legend = FALSE) 
 
## vif after fixing multicollinearity 
retain_2 <- setCor(dv_next_fall ~ gender_descr + admit_first_gen_ind +  
           adv_standing_ap_hrs + adv_standing_clep_hrs +  

        adv_standing_ib_hrs + adv_standing_other_hrs +  
                    cip_categories + ga_hope + zell_ind + pell + fed_sub_loans +  
                    fed_unsub_loans + oth_loans + all_other_exp + instr_exp + stu_serv_exp +  
                    race_eth + cm_ready + locale_group + hsgpa_knn + ats_knn +  efc_knn +  

        college_prep + acay_inst_sup_exp + public_rsch_exp + english_cm +  
                    math_cm + science_cm + social_studies_cm,  
                   data = retain_exp_cor2, us = 'pairwise', plot = FALSE) 
fall_gpa_2 <- setCor(dv_first_fall_gpa ~ gender_descr + admit_first_gen_ind +  
                      adv_standing_ap_hrs +  adv_standing_clep_hrs + adv_standing_ib_hrs +  

          adv_standing_other_hrs +  cip_categories + ga_hope + zell_ind + pell +  
          fed_sub_loans +  fed_unsub_loans + oth_loans + all_other_exp +  
          instr_exp + stu_serv_exp + race_eth + cm_ready + locale_group +  
          hsgpa_knn + ats_knn + efc_knn + college_prep + acay_inst_sup_exp +  
          public_rsch_exp + english_cm + math_cm + science_cm +  
          social_studies_cm, data = retain_exp_cor2, us = 'pairwise', plot = FALSE) 

year_gpa_2 <- setCor(dv_first_yr_gpa ~ gender_descr + admit_first_gen_ind +  
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                      adv_standing_ap_hrs +  adv_standing_clep_hrs + adv_standing_ib_hrs +  
          adv_standing_other_hrs +  cip_categories + ga_hope + zell_ind + pell +  
          fed_sub_loans +  fed_unsub_loans + oth_loans + all_other_exp +  
          instr_exp + stu_serv_exp + race_eth + cm_ready + locale_group +  
          hsgpa_knn + ats_knn + efc_knn + college_prep + acay_inst_sup_exp +  
          public_rsch_exp + english_cm + math_cm + science_cm +  

                      social_studies_cm, data = retain_exp_cor2, us = 'pairwise', plot = FALSE) 
 
################## 

## NORMALITY ## 

################## 

 
## univarity normality 
retain_exp_cor2 %>%  
 select(hsgpa_knn, ats_knn, adv_standing_ap_hrs, adv_standing_clep_hrs, 
        adv_standing_ib_hrs, adv_standing_other_hrs, college_prep, 
        cm_ready, english_cm, math_cm, science_cm, social_studies_cm, 
        efc_knn, ga_hope, pell, fed_sub_loans, fed_unsub_loans, oth_loans,  
        acay_inst_sup_exp, all_other_exp, instr_exp, stu_serv_exp, 
        public_rsch_exp) %>% 
 rename(`HS GPA` = hsgpa_knn, `Admissions Test Scores` = ats_knn, 
        `AP Hours` = adv_standing_ap_hrs, `CLEP Hours` = adv_standing_clep_hrs, 
        `IB Hours` = adv_standing_ib_hrs, `Other Hours` = adv_standing_other_hrs, 
        `College Prep. Curricul` = college_prep,  
        `CM & Ready Mean` = cm_ready, `English (CMR)` = english_cm, 
        `Math (CMR)` = math_cm, `Science (CMR)` = science_cm, 
        `Social Studies (CMR)` = social_studies_cm, `EFC` = efc_knn, 
        `GA HOPE Scholarship` = ga_hope, `PELL Grant` = pell, 
        `Federal Sub. Loans` = fed_sub_loans, `Federal Unsub. Loans` = fed_unsub_loans, 
        `Other Loans` = oth_loans, `Acad. & Inst. Sup.` = acay_inst_sup_exp, 
        `All Other` = all_other_exp, Instruction = instr_exp, 
        `Student Serv. Sup` = stu_serv_exp,  
        `Public Serv. & Rsch.` = public_rsch_exp) %>% 
 gather(var_name, var_results) %>% 
 ggplot(aes(sample = var_results)) + stat_qq() + stat_qq_line(color = 'blue') + 
 facet_wrap(var_name ~ ., scales = 'free', ncol = 4) + 
 theme_classic() + theme(text = element_text(size = 15)) 
 
## normality shapiro wilks 
## sample of the first 5,000 observations 
shapiro.test(retain_exp_cor2$adv_standing_ap_hrs[0:5000]) 
shapiro.test(retain_exp_cor2$adv_standing_clep_hrs[0:5000]) 
shapiro.test(retain_exp_cor2$adv_standing_ib_hrs[0:5000]) 
shapiro.test(retain_exp_cor2$adv_standing_other_hrs[0:5000]) 
shapiro.test(retain_exp_cor2$ga_hope[0:5000]) 
shapiro.test(retain_exp_cor2$pell[0:5000]) 
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shapiro.test(retain_exp_cor2$college_prep[0:5000]) 
shapiro.test(retain_exp_cor2$fed_sub_loans[0:5000]) 
shapiro.test(retain_exp_cor2$fed_unsub_loans[0:5000]) 
shapiro.test(retain_exp_cor2$oth_loans[0:5000]) 
shapiro.test(retain_exp_cor2$acay_inst_sup_exp[0:5000]) 
shapiro.test(retain_exp_cor2$all_other_exp[0:5000]) 
shapiro.test(retain_exp_cor2$instr_exp[0:5000]) 
shapiro.test(retain_exp_cor2$public_rsch_exp[0:5000]) 
shapiro.test(retain_exp_cor2$stu_serv_exp[0:5000]) 
shapiro.test(retain_exp_cor2$cm_ready[0:5000]) 
shapiro.test(retain_exp_cor2$english_cm[0:5000]) 
shapiro.test(retain_exp_cor2$math_cm[0:5000]) 
shapiro.test(retain_exp_cor2$science_cm[0:5000]) 
shapiro.test(retain_exp_cor2$social_studies_cm[0:5000]) 
shapiro.test(retain_exp_cor2$hsgpa_knn[0:5000]) 
shapiro.test(retain_exp_cor2$ats_knn[0:5000]) 
shapiro.test(retain_exp_cor2$efc_knn[0:5000]) 
 
## normality jarque bera 
jarque.bera.test(retain_exp_cor2$adv_standing_ap_hrs) 
jarque.bera.test(retain_exp_cor2$adv_standing_clep_hrs) 
jarque.bera.test(retain_exp_cor2$adv_standing_ib_hrs) 
jarque.bera.test(retain_exp_cor2$adv_standing_other_hrs) 
jarque.bera.test(retain_exp_cor2$college_prep) 
jarque.bera.test(retain_exp_cor2$ga_hope) 
jarque.bera.test(retain_exp_cor2$pell) 
jarque.bera.test(retain_exp_cor2$fed_sub_loans) 
jarque.bera.test(retain_exp_cor2$fed_unsub_loans) 
jarque.bera.test(retain_exp_cor2$oth_loans) 
jarque.bera.test(retain_exp_cor2$acay_inst_sup_exp) 
jarque.bera.test(retain_exp_cor2$all_other_exp) 
jarque.bera.test(retain_exp_cor2$instr_exp) 
jarque.bera.test(retain_exp_cor2$public_rsch_exp) 
jarque.bera.test(retain_exp_cor2$stu_serv_exp) 
jarque.bera.test(retain_exp_cor2$cm_ready) 
jarque.bera.test(retain_exp_cor2$english_cm) 
jarque.bera.test(retain_exp_cor2$math_cm) 
jarque.bera.test(retain_exp_cor2$science_cm) 
jarque.bera.test(retain_exp_cor2$social_studies_cm) 
jarque.bera.test(retain_exp_cor2$hsgpa_knn) 
jarque.bera.test(retain_exp_cor2$ats_knn) 
jarque.bera.test(retain_exp_cor2$efc_knn) 
 
## multivaraite normality  
## mardia's test 
multivar_norm <- mult.norm(retain_exp_cor2 %>%  
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                            select(hsgpa_knn, ats_knn, adv_standing_ap_hrs,  
           adv_standing_clep_hrs, adv_standing_ib_hrs,  
           adv_standing_other_hrs, college_prep, 

                                   cm_ready, english_cm, math_cm, science_cm, 
                                   social_studies_cm, 
                                   efc_knn, ga_hope, pell, fed_sub_loans, fed_unsub_loans, 
                                   oth_loans,  
                                   acay_inst_sup_exp, all_other_exp, instr_exp, stu_serv_exp, 
                                   public_rsch_exp)) 
multivar_norm$mult.test 
 
## negative skewed factors 
(retain_exp_cor2 %>%  
  select(hsgpa_knn,  ats_knn, college_prep,  
         adv_standing_ap_hrs:adv_standing_other_hrs, 
         cm_ready, english_cm:social_studies_cm, efc_knn,  
         ga_hope, pell:oth_loans, acay_inst_sup_exp, all_other_exp:stu_serv_exp,  
         public_rsch_exp) %>% 
  describe()) %>% select(min, skew, kurtosis) %>% filter(skew < 0) 
 
## data transformation to fix normality violations 
## updating recipe for exploration 
retain_xform <- retain_train_cor_max2 %>% 
 step_normalize(hsgpa_knn, ats_knn, adv_standing_ap_hrs, adv_standing_clep_hrs, 
                adv_standing_ib_hrs, adv_standing_other_hrs, cm_ready, english_cm,  

    math_cm, science_cm, social_studies_cm, efc_knn, ga_hope, pell, 
                fed_sub_loans, fed_unsub_loans, oth_loans, acay_inst_sup_exp, 
                all_other_exp, instr_exp, public_rsch_exp, stu_serv_exp) %>% 
 ## step_inverse(hsgpa_knn, cm_ready, college_prep, social_studies_cm,  
 ##             ga_hope, public_rsch_exp) %>% 
 ## testing out different transformation methods 
 step_YeoJohnson( 
  #step_log( 
  #step_BoxCox( 
  hsgpa_knn, ats_knn, adv_standing_ap_hrs, adv_standing_clep_hrs,  
  adv_standing_ib_hrs, adv_standing_other_hrs, cm_ready, 
  english_cm, math_cm, science_cm, social_studies_cm, efc_knn, 
  ga_hope, pell, fed_sub_loans, fed_unsub_loans, oth_loans, 
  acay_inst_sup_exp, all_other_exp, instr_exp, public_rsch_exp, stu_serv_exp) 
retain_exp_xf <- juice(prep(retain_xform)) 
 
## evaluating the changes in skewness values 
(retain_exp_xf %>% 
  select(hsgpa_knn, ats_knn, adv_standing_ap_hrs, adv_standing_clep_hrs, 
         adv_standing_ib_hrs, adv_standing_other_hrs, cm_ready, english_cm, 
         math_cm, science_cm, social_studies_cm, efc_knn, ga_hope, pell, fed_sub_loans, 
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         fed_unsub_loans, oth_loans, acay_inst_sup_exp, all_other_exp, 
         instr_exp, public_rsch_exp, stu_serv_exp) %>% describe()) 
 
## revised recipe 
retain_xform_rv <- retain_train_cor_max2 %>% 
step_YeoJohnson(hsgpa_knn, ats_knn, college_prep, adv_standing_ap_hrs,  
                 adv_standing_clep_hrs, adv_standing_ib_hrs, adv_standing_other_hrs, 
                 cm_ready, english_cm, math_cm, science_cm, 
                 social_studies_cm, efc_knn, ga_hope, pell, fed_sub_loans, 
                 fed_unsub_loans, oth_loans, acay_inst_sup_exp, all_other_exp, 
                 instr_exp, stu_serv_exp, public_rsch_exp) %>% 
 step_normalize(hsgpa_knn, ats_knn,college_prep, adv_standing_ap_hrs,  
                adv_standing_clep_hrs, adv_standing_ib_hrs, adv_standing_other_hrs, 
                cm_ready, english_cm, math_cm, science_cm, social_studies_cm, efc_knn,  

    ga_hope, pell, fed_sub_loans, fed_unsub_loans, oth_loans, acay_inst_sup_exp, 
                all_other_exp, instr_exp, stu_serv_exp, public_rsch_exp) 
retain_xf_dat <- juice(prep(retain_xform_rv)) 
 
(retain_xf_dat %>% 
  select(hsgpa_knn, ats_knn, adv_standing_ap_hrs, adv_standing_clep_hrs, 
         adv_standing_ib_hrs, adv_standing_other_hrs, cm_ready, english_cm, 
         math_cm, science_cm, social_studies_cm, efc_knn, ga_hope, pell, fed_sub_loans, 
         fed_unsub_loans, oth_loans, acay_inst_sup_exp, all_other_exp, 
         instr_exp, public_rsch_exp,  stu_serv_exp) %>%  
  describe()) %>%select(skew, kurtosis) 
 
## reassessing normality  
## normality shapiro wilks--sample of the first 5,000 observations 
shapiro.test(retain_xf_dat$hsgpa_knn[0:5000]) 
shapiro.test(retain_xf_dat$ats_knn[0:5000]) 
shapiro.test(retain_xf_dat$adv_standing_ap_hrs[0:5000]) 
shapiro.test(retain_xf_dat$adv_standing_clep_hrs[0:5000]) 
shapiro.test(retain_xf_dat$adv_standing_ib_hrs[0:5000]) 
shapiro.test(retain_xf_dat$adv_standing_other_hrs[0:5000]) 
shapiro.test(retain_xf_dat$cm_ready[0:5000]) 
shapiro.test(retain_xf_dat$college_prep[0:5000]) 
shapiro.test(retain_xf_dat$english_cm[0:5000]) 
shapiro.test(retain_xf_dat$math_cm[0:5000]) 
shapiro.test(retain_xf_dat$science_cm[0:5000]) 
shapiro.test(retain_xf_dat$social_studies_cm[0:5000]) 
shapiro.test(retain_xf_dat$efc_knn[0:5000]) 
shapiro.test(retain_xf_dat$ga_hope[0:5000]) 
shapiro.test(retain_xf_dat$pell[0:5000]) 
shapiro.test(retain_xf_dat$fed_sub_loans[0:5000]) 
shapiro.test(retain_xf_dat$fed_unsub_loans[0:5000]) 
shapiro.test(retain_xf_dat$oth_loans[0:5000]) 
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shapiro.test(retain_xf_dat$acay_inst_sup_exp[0:5000]) 
shapiro.test(retain_xf_dat$all_other_exp[0:5000]) 
shapiro.test(retain_xf_dat$instr_exp[0:5000]) 
shapiro.test(retain_xf_dat$public_rsch_exp[0:5000]) 
shapiro.test(retain_xf_dat$stu_serv_exp[0:5000]) 
 
## normality jarque bera 
jarque.bera.test(retain_xf_dat$hsgpa_knn) 
jarque.bera.test(retain_xf_dat$ats_knn) 
jarque.bera.test(retain_xf_dat$adv_standing_ap_hrs) 
jarque.bera.test(retain_xf_dat$adv_standing_clep_hrs) 
jarque.bera.test(retain_xf_dat$adv_standing_ib_hrs) 
jarque.bera.test(retain_xf_dat$adv_standing_other_hrs) 
jarque.bera.test(retain_xf_dat$cm_ready) 
jarque.bera.test(retain_xf_dat$college_prep) 
jarque.bera.test(retain_xf_dat$english_cm) 
jarque.bera.test(retain_xf_dat$math_cm) 
jarque.bera.test(retain_xf_dat$science_cm) 
jarque.bera.test(retain_xf_dat$social_studies_cm) 
jarque.bera.test(retain_xf_dat$efc_knn) 
jarque.bera.test(retain_xf_dat$ga_hope) 
jarque.bera.test(retain_xf_dat$pell) 
jarque.bera.test(retain_xf_dat$fed_sub_loans) 
jarque.bera.test(retain_xf_dat$fed_unsub_loans) 
jarque.bera.test(retain_xf_dat$oth_loans) 
jarque.bera.test(retain_xf_dat$acay_inst_sup_exp) 
jarque.bera.test(retain_xf_dat$all_other_exp) 
jarque.bera.test(retain_xf_dat$instr_exp) 
jarque.bera.test(retain_xf_dat$public_rsch_exp) 
jarque.bera.test(retain_xf_dat$stu_serv_exp) 
 

################################### 

## HOMOGENEITY OF VARIANCE ## 

################################### 

 
## levene test center mean 
leveneTest(retain_xf_dat$gender_descr ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$race_eth ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$admit_first_gen_ind ~ as.factor(retain_xf_dat$dv_next_fall), 
center = mean) 
leveneTest(retain_xf_dat$locale_group ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$hsgpa_knn ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
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leveneTest(retain_xf_dat$ats_knn ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$adv_standing_ap_hrs ~ as.factor(retain_xf_dat$dv_next_fall), 
center = mean) 
leveneTest(retain_xf_dat$adv_standing_clep_hrs ~ as.factor(retain_xf_dat$dv_next_fall), 
center = mean) 
leveneTest(retain_xf_dat$adv_standing_ib_hrs ~ as.factor(retain_xf_dat$dv_next_fall), 
center = mean) 
leveneTest(retain_xf_dat$adv_standing_other_hrs ~ 
as.factor(retain_xf_dat$dv_next_fall), center = mean) 
leveneTest(retain_xf_dat$college_prep ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$cm_ready ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$english_cm ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$math_cm ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$science_cm ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$social_studies_cm ~ as.factor(retain_xf_dat$dv_next_fall), 
center = mean) 
leveneTest(retain_xf_dat$efc_knn ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$ga_hope ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$zell_ind ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$pell ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$fed_sub_loans ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$fed_unsub_loans ~ as.factor(retain_xf_dat$dv_next_fall), 
center = mean) 
leveneTest(retain_xf_dat$oth_loans ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$cip_categories ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$acay_inst_sup_exp ~ as.factor(retain_xf_dat$dv_next_fall), 
center = mean) 
leveneTest(retain_xf_dat$all_other_exp ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
leveneTest(retain_xf_dat$instr_exp ~ as.factor(retain_xf_dat$dv_next_fall), center = 
mean) 
leveneTest(retain_xf_dat$public_rsch_exp ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
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leveneTest(retain_xf_dat$stu_serv_exp ~ as.factor(retain_xf_dat$dv_next_fall),  
center = mean) 
 
## bartlett test 
bartlett.test(retain_xf_dat$gender_descr ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$race_eth ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$admit_first_gen_ind ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$locale_group ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$hsgpa_knn ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$ats_knn ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$adv_standing_ap_hrs ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$adv_standing_clep_hrs ~ 
as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$adv_standing_ib_hrs ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$adv_standing_other_hrs ~ 
as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$college_prep ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$cm_ready ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$english_cm ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$math_cm ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$science_cm ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$social_studies_cm ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$efc_knn ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$ga_hope ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$zell_ind ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$pell ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$fed_sub_loans ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$fed_unsub_loans ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$oth_loans ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$cip_categories ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$acay_inst_sup_exp ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$all_other_exp ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$instr_exp ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$public_rsch_exp ~ as.factor(retain_xf_dat$dv_next_fall)) 
bartlett.test(retain_xf_dat$stu_serv_exp ~ as.factor(retain_xf_dat$dv_next_fall)) 
 
## homogeneity graphs 
retain_xf_dat %>% 
 select(dv_next_fall, gender_descr, race_eth, admit_first_gen_ind, zell_ind, 
        locale_group, cip_categories) %>% 
 mutate(dv_next_fall = case_when(dv_next_fall == 1 ~ 'Not Retained',  
                                 TRUE ~ 'Retained'),  
        gender_descr = case_when(gender_descr == 1 ~ 'Male', TRUE ~ 'Female'),  
        admit_first_gen_ind = case_when(admit_first_gen_ind == 1 ~ 'Yes', TRUE ~ 'No'),  
        zell_ind =  case_when(zell_ind == 1 ~ 'Yes', TRUE ~ 'No'), 
        race_eth = case_when(race_eth == 1 ~ 'White', race_eth == 2 ~ 'Black or AA',  
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                             race_eth == 3 ~ 'Hispanic', TRUE ~ 'Other'),  
        locale_group = case_when(locale_group == 1 ~ 'City', locale_group == 2 ~ 'Suburb',  
                                 locale_group == 3 ~ 'Town', TRUE ~ 'Rural'),  
        cip_categories = case_when(cip_categories == 1 ~ 'Social Sciences',  
                                   cip_categories == 2 ~ 'Fine Arts',  
                                   cip_categories == 3 ~ 'Human Services',  
                                   cip_categories == 4 ~ 'Business',  
                                   cip_categories == 5 ~ 'STEM',  
                                   cip_categories == 6 ~ 'Interdisc. Studies',  
                                   cip_categories == 7 ~ 'Healthcare',  
                                   cip_categories == 8 ~ 'Education', TRUE ~ 'Humanities')) %>% 
 rename(`Retain Status` = dv_next_fall, Gender = gender_descr,  
        `First Gen Status` = admit_first_gen_ind, `Race Ethnicity` = race_eth,  
        `Zell Miller Ind.` = zell_ind, `HS Locale` = locale_group,  
        `Major Grouping` = cip_categories) %>% 
 gather(var_type, var_results, -`Retain Status`) %>% group_by_all() %>% 
 summarise(hc = n(),.groups = 'drop') %>%  
 ggplot() + geom_bar(aes(x = as.character(var_results), y = hc, fill = `Retain Status`),  
          stat = 'identity', position = 'dodge') + theme_classic() + 
 theme(plot.title = element_text(hjust = .5), axis.title = element_blank(), 
       text = element_text(size = 13), legend.position = 'top') + 
 facet_wrap(var_type ~ ., scales = 'free') + coord_flip() 
 
retain_xf_dat %>% 
 select(dv_next_fall, adv_standing_ap_hrs:adv_standing_other_hrs,  
        ga_hope:stu_serv_exp, -zell_ind, hsgpa_knn:social_studies_cm) %>% 
 mutate(dv_next_fall = case_when(dv_next_fall == 1 ~ 'Not Retained',  
                                 TRUE ~ 'Retained')) %>% 
 gather(var_type, var_results, dv_next_fall) %>% 
 mutate(var_type = case_when(var_type == 'hsgpa_knn' ~ 'HS GPA', 
                             var_type == 'adv_standing_ap_hrs' ~ 'AP Hours', 
                             var_type == 'adv_standing_clep_hrs' ~ 'CLEP Hours', 
                             var_type == 'adv_standing_ib_hrs' ~ 'IB Hours', 
                             var_type == 'adv_standing_other_hrs' ~ 'Other Hours', 
                             var_type == 'efc_knn' ~ 'EFC', 
                             var_type == 'ga_hope' ~ 'GA HOPE', 
                             var_type == 'pell' ~ 'PELL Grant', 
                             var_type == 'fed_sub_loans' ~ 'Fed. Sub. Loans', 
                             var_type == 'fed_unsub_loans' ~ 'Fed. Unsub. Loans', 
                             var_type == 'oth_loans' ~ 'Other Loans', 
                             var_type == 'ats_knn' ~ 'Adm. Test Scores', 
                             var_type == 'all_other_exp' ~ 'All Other', 
                             var_type == 'instr_exp' ~ 'Instruction', 
                             var_type == 'stu_serv_exp' ~ 'Student Services', 
                             var_type == 'cm_ready' ~ 'CM & Ready Mean', 
                             var_type == 'college_prep' ~ 'College Prep. Curric.', 
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                             var_type == 'acay_inst_sup_exp' ~ 'Acad. & Inst. Support', 
                             var_type == 'public_rsch_exp' ~ 'Public Ser & Rsch', 
                             var_type == 'english_cm' ~ 'English (CMR)', 
                             var_type == 'math_cm' ~ 'Math (CMR)', 
                             var_type == 'science_cm' ~ 'Science (CMR)', 
                             var_type == 'social_studies_cm' ~ 'Social Studies (CMR)', 
                             TRUE ~ var_type)) %>% 
 ggplot() + geom_boxplot(aes(x = dv_next_fall, y = var_results)) + theme_classic() + 
 theme(plot.title = element_text(hjust = .5), axis.title = element_blank(), 
       text = element_text(size = 13), legend.position = 'top') + 
 facet_wrap(var_type ~ ., scales = 'free') + coord_flip() 
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APPENDIX F:  

Pearson Correlation Matrix Before Data Manipulation 
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Table 31  

Pearson Correlation Matrix Before Data Manipulation 

 
Variable 1 2 3 4 5 

1 First-fall GPA 1.000 ***         
2 First-year GPA .927 *** 1.000 ***       
3 One-year Retention Status -.386 *** -.441 *** 1.000 ***     
4 Gender -.149 *** -.163 *** .080 *** 1.000 ***   
5 First Generation Status -.032 *** -.039 *** .024  -.033 *** 1.000 *** 
6 AP Hours .219 *** .215 *** -.007  .075 *** -.043 *** 
7 CLEP Hours .033 *** .033 *** .000  .002  -.006  
8 IB Hours .039 *** .040 *** -.011  -.005  -.004  
9 Other Hours .006  .007  -.008  -.012  .022 * 

10 CPC English .016  .010  .004  -.031 *** -.009  
11 CPC Foreign Language .014  .009  .008  -.037 *** -.002  
12 CPC Math .015  .010  .004  -.031 *** -.007  
13 CPC Science .013  .007  .006  -.029 *** -.011  
14 CPC Social Sciences .020 * .014  .006  -.039 *** -.004  
15 Major Grouping .002  .008  .000  -.047 *** .019 * 
16 GA HOPE Scholarship .430 *** .452 *** -.183 *** -.111 *** -.010  
17 Zell Miller Indicator .281 *** .285 *** -.045 *** .001  -.044 *** 
18 PELL Grant -.097 *** -.109 *** .037 ** -.082 *** .262 *** 
19 Federal Sub. Loans -.135 *** -.148 *** .045 *** -.080 *** .071 *** 
20 Federal Unsub. Loans -.101 *** -.101 *** .027  -.037 *** -.045 *** 
21 Other Loans -.066 *** -.061 *** .008  .003  -.012  
22 Academic Support .061 *** .027 ** -.015  .057 *** -.023 ** 
23 All Other .035 *** .089 *** -.036 * .025 ** .003  
24 Institutional Support -.046 *** -.021 * .054 *** -.075 *** .058 *** 
25 Instruction -.102 *** -.105 *** .057 *** -.080 *** .032 *** 
26 Public Service .122 *** .106 *** -.052 *** .097 *** -.031 *** 
27 Research -.065 *** -.042 *** -.019  -.014  -.027 ** 
28 Student Services -.061 *** -.084 *** .054 *** -.094 *** .028 ** 
29 Race/Ethnicity -.019 * -.022 * -.009  -.018 * .159 *** 
30 CCRPI Content Mastery .114 *** .120 *** -.040 ** .073 *** -.159 *** 
31 CCPRI Readiness .096 *** .102 *** -.035 * .066 *** -.149 *** 
32 EOC English .100 *** .110 *** -.033 * .074 *** -.158 *** 
33 EOC Mathematics .109 *** .114 *** -.031  .075 *** -.144 *** 
34 EOC Science .102 *** .108 *** -.037 ** .069 *** -.138 *** 
35 EOC Social Studies .113 *** .114 *** -.034 * .070 *** -.158 *** 
36 Graduating HS Locale -.001  -.001  .023  -.014  .036 *** 
37 HS GPA .488 *** .507 *** -.165 *** -.152 *** .007  
38 Admissions Test Scores .257 *** .254 *** -.031 *** .156 *** -.107 *** 
39 EFC .055 *** .070 *** -.043 *** .048 *** -.119 *** 

Note.  *** p < .001.  ** p < .01.  * p < .05.  df = 13,078.  CPC = college preparatory 
curriculum.  Federal Sub. Loans = federal subsidized loans.  Federal Unsub.  Loans = 
federal unsubsidized loans.  CCRPI = college and career ready performance index.  EOC 
= end-of-course.  HS = high school.  GPA = grade point average.  EFC = expected family 
contributions. 
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Table 31 (continued) 
 
Pearson Correlation Matrix Before Data Manipulation  

 
Variable 6 7 8 9 10 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours 1.000 ***         

7 CLEP Hours .048 *** 1.000 ***       

8 IB Hours .000  .010  1.000 ***     

9 Other Hours .004  -.002  -.003  1.000 ***   

10 CPC English -.010  .004  -.006  .002  1.000 *** 

11 CPC Foreign Language -.008  .008  -.006  .003  .959 *** 

12 CPC Math -.013  .003  -.006  .002  .986 *** 

13 CPC Science -.014  .002  -.006  .001  .971 *** 

14 CPC Social Sciences -.007  .003  -.006  .002  .966 *** 

15 Major Grouping -.013  -.001  -.014  .002  .017  

16 GA HOPE Scholarship .181 *** .020 * .038 *** .015  .038 *** 

17 Zell Miller Indicator .356 *** .028 ** .027 ** .013  .046 *** 

18 PELL Grant -.121 *** -.014  .005  .006  -.010  

19 Federal Sub. Loans -.131 *** -.023 ** -.016  .012  -.016  

20 Federal Unsub. Loans -.094 *** -.017  -.031 *** -.001  .005  

21 Other Loans -.038 *** -.009  -.005  -.001  .004  

22 Academic Support .050 *** .005  -.002  .005  -.008  

23 All Other .080 *** .010  .030 *** .020 * -.143 *** 

24 Institutional Support -.072 *** -.008  -.002  .013  -.178 *** 

25 Instruction -.158 *** -.024 ** -.037 *** -.004  .128 *** 

26 Public Service .181 *** .027 ** .043 *** .007  -.164 *** 

27 Research -.081 *** -.017 * -.032 *** -.001  .224 *** 

28 Student Services -.133 *** -.010  -.037 *** -.022 * .040 *** 

29 Race/Ethnicity .014  .013  .049 *** .009  -.028 ** 

30 CCRPI Content Mastery .210 *** .019 * -.039 *** .000  -.055 *** 

31 CCPRI Readiness .178 *** .017  -.025 ** -.003  -.029 *** 

32 EOC English .209 *** .028 ** -.028 ** -.001  -.067 *** 

33 EOC Mathematics .204 *** .027 ** -.041 *** -.006  -.052 *** 

34 EOC Science .204 *** .024 ** -.037 *** .000  -.049 *** 

35 EOC Social Studies .213 *** .019 * -.039 *** -.001  -.052 *** 

36 Graduating HS Locale -.072 *** -.005  -.051 *** .004  .032 *** 

37 HS GPA .249 *** .027 ** .036 *** .013  .073 *** 

38 Admissions Test Scores .523 *** .055 *** .062 *** .006  .023 ** 

39 EFC .088 *** .008   -.004   -.008   -.007   

Note.  *** p < .001.  ** p < .01.  * p < .05.  df = 13,078.  CPC = college preparatory 
curriculum.  Federal Sub. Loans = federal subsidized loans.  Federal Unsub.  Loans = 
federal unsubsidized loans.  CCRPI = college and career ready performance index.  EOC 
= end-of-course.  HS = high school.  GPA = grade point average.  EFC = expected family 
contributions. 
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Table 31 (continued) 
 
Pearson Correlation Matrix Before Data Manipulation 

 
Variable 11 12 13 14 15 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours           

7 CLEP Hours           

8 IB Hours           

9 Other Hours           

10 CPC English           

11 CPC Foreign Language 1.000 ***         

12 CPC Math .959 *** 1.000 ***       

13 CPC Science .952 *** .969 *** 1.000 ***     

14 CPC Social Sciences .976 *** .964 *** .956 *** 1.000 ***   

15 Major Grouping .018 * .016  .014  .019 * 1.000 *** 

16 GA HOPE Scholarship .035 *** .036 *** .037 *** .039 *** .049 *** 

17 Zell Miller Indicator .044 *** .043 *** .039 *** .042 *** .014  

18 PELL Grant .000  -.009  -.005  -.006  -.013  

19 Federal Sub. Loans -.012  -.017  -.014  -.015  -.004  

20 Federal Unsub. Loans .004  .004  .005  .002  -.005  

21 Other Loans .005  .004  .002  -.001  .005  

22 Academic Support -.006  -.011  -.008  -.005  -.042 *** 

23 All Other -.115 *** -.141 *** -.139 *** -.122 *** -.023 ** 

24 Institutional Support -.129 *** -.174 *** -.176 *** -.142 *** -.027 ** 

25 Instruction .108 *** .126 *** .122 *** .112 *** .002  

26 Public Service -.136 *** -.162 *** -.157 *** -.141 *** -.023 ** 

27 Research .172 *** .220 *** .219 *** .185 *** .041 *** 

28 Student Services .037 *** .041 *** .037 *** .036 *** .051 *** 

29 Race/Ethnicity -.017 * -.028 ** -.027 ** -.023 ** -.032 *** 

30 CCRPI Content Mastery -.055 *** -.054 *** -.059 *** -.047 *** -.015  

31 CCPRI Readiness -.033 *** -.028 ** -.035 *** -.023 ** .003  

32 EOC English -.065 *** -.066 *** -.071 *** -.057 *** -.020 * 

33 EOC Mathematics -.050 *** -.052 *** -.054 *** -.043 *** -.010  

34 EOC Science -.051 *** -.048 *** -.054 *** -.042 *** -.011  

35 EOC Social Studies -.054 *** -.051 *** -.056 *** -.045 *** -.020 * 

36 Graduating HS Locale .027 ** .033 *** .030 *** .028 ** .047 *** 

37 HS GPA .073 *** .071 *** .071 *** .074 *** .081 *** 

38 Admissions Test Scores .018 * .019 * .018 * .021 * -.016  

39 EFC -.010   -.007   -.010   -.008   -.009   

Note.  *** p < .001.  ** p < .01.  * p < .05.  df = 13,078.  CPC = college preparatory 
curriculum.  Federal Sub. Loans = federal subsidized loans.  Federal Unsub.  Loans = 
federal unsubsidized loans.  CCRPI = college and career ready performance index.  EOC 
= end-of-course.  HS = high school.  GPA = grade point average.  EFC = expected family 
contributions. 
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Table 31 (continued) 
 
Pearson Correlation Matrix Before Data Manipulation  

 
Variable 16 17 18 19 20 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours           

7 CLEP Hours           

8 IB Hours           

9 Other Hours           

10 CPC English           

11 CPC Foreign Language           

12 CPC Math           

13 CPC Science           

14 CPC Social Sciences           

15 Major Grouping           

16 GA HOPE Scholarship 1.000 ***         

17 Zell Miller Indicator .270 *** 1.000 ***       

18 PELL Grant -.077 *** -.101 *** 1.000 ***     

19 Federal Sub. Loans -.133 *** -.121 *** .391 *** 1.000 ***   

20 Federal Unsub. Loans -.096 *** -.085 *** .007  .281 *** 1.000 *** 

21 Other Loans -.093 *** -.027 ** -.064 *** .065 *** .095 *** 

22 Academic Support .021 * .018 * -.084 *** -.055 *** -.040 *** 

23 All Other .074 *** .031 *** -.034 *** -.062 *** -.059 *** 

24 Institutional Support -.072 *** -.052 *** .112 *** .065 *** .048 *** 

25 Instruction -.118 *** -.072 *** .108 *** .104 *** .116 *** 

26 Public Service .113 *** .075 *** -.129 *** -.118 *** -.135 *** 

27 Research -.002  -.011  -.006  .021 * .067 *** 

28 Student Services -.090 *** -.062 *** .131 *** .115 *** .100 *** 

29 Race/Ethnicity -.063 *** -.063 *** .239 *** .113 *** -.011  

30 CCRPI Content Mastery .007  .033 *** -.318 *** -.251 *** -.098 *** 

31 CCPRI Readiness .007  .027 ** -.280 *** -.218 *** -.082 *** 

32 EOC English -.013  .022 * -.302 *** -.235 *** -.089 *** 

33 EOC Mathematics .005  .031 *** -.298 *** -.248 *** -.097 *** 

34 EOC Science .003  .022 * -.275 *** -.220 *** -.086 *** 

35 EOC Social Studies -.001  .025 ** -.310 *** -.244 *** -.098 *** 

36 Graduating HS Locale .098 *** .059 *** -.024 ** .001  .013  

37 HS GPA .708 *** .445 *** -.089 *** -.154 *** -.135 *** 

38 Admissions Test Scores .274 *** .475 *** -.241 *** -.228 *** -.138 *** 

39 EFC .050 *** .035 *** -.364 *** -.313 *** -.027 ** 

Note.  *** p < .001.  ** p < .01.  * p < .05.  df = 13,078.  CPC = college preparatory 
curriculum.  Federal Sub. Loans = federal subsidized loans.  Federal Unsub.  Loans = 
federal unsubsidized loans.  CCRPI = college and career ready performance index.  EOC 
= end-of-course.  HS = high school.  GPA = grade point average.  EFC = expected family 
contributions. 
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Table 31 (continued) 
 
Pearson Correlation Matrix Before Data Manipulation 

 
Variable 21 22 23 24 25 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours           

7 CLEP Hours           

8 IB Hours           

9 Other Hours           

10 CPC English           

11 CPC Foreign Language           

12 CPC Math           

13 CPC Science           

14 CPC Social Sciences           

15 Major Grouping           

16 GA HOPE Scholarship           

17 Zell Miller Indicator           

18 PELL Grant           

19 Federal Sub. Loans           

20 Federal Unsub. Loans           

21 Other Loans 1.000 ***         

22 Academic Support -.024 ** 1.000 ***       

23 All Other .020 * -.296 *** 1.000 ***     

24 Institutional Support -.016  -.142 *** .256 *** 1.000 ***   

25 Instruction -.010  .167 *** -.534 *** .420 *** 1.000 *** 

26 Public Service -.003  .214 *** .315 *** -.326 *** -.869 *** 

27 Research .030 *** .023 ** -.182 *** -.336 *** .450 *** 

28 Student Services -.012  -.498 *** -.414 *** .240 *** .341 *** 

29 Race/Ethnicity -.018 * -.003  .025 ** .043 *** -.039 *** 

30 CCRPI Content Mastery .002  .131 *** .149 *** -.113 *** -.235 *** 

31 CCPRI Readiness .003  .061 *** .115 *** -.105 *** -.175 *** 

32 EOC English .004  .129 *** .192 *** -.069 *** -.219 *** 

33 EOC Mathematics .000  .105 *** .122 *** -.104 *** -.211 *** 

34 EOC Science .004  .113 *** .125 *** -.112 *** -.220 *** 

35 EOC Social Studies -.006  .153 *** .104 *** -.148 *** -.228 *** 

36 Graduating HS Locale .011  -.060 *** -.030 *** .006  .068 *** 

37 HS GPA -.068 *** .003  .076 *** -.101 *** -.134 *** 

38 Admissions Test Scores -.022 * .088 *** .096 *** -.223 *** -.283 *** 

39 EFC -.012   .042 *** .044 *** -.054 *** -.076 *** 

Note.  *** p < .001.  ** p < .01.  * p < .05.  df = 13,078.  CPC = college preparatory 
curriculum.  Federal Sub. Loans = federal subsidized loans.  Federal Unsub.  Loans = 
federal unsubsidized loans.  CCRPI = college and career ready performance index.  EOC 
= end-of-course.  HS = high school.  GPA = grade point average.  EFC = expected family 
contributions. 
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Table 31 (continued) 
 
Pearson Correlation Matrix Before Data Manipulation 

Variable 26 27 28 29 30 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours           

7 CLEP Hours           

8 IB Hours           

9 Other Hours           

10 CPC English           

11 CPC Foreign Language           

12 CPC Math           

13 CPC Science           

14 CPC Social Sciences           

15 Major Grouping           

16 GA HOPE Scholarship           

17 Zell Miller Indicator           

18 PELL Grant           

19 Federal Sub. Loans           

20 Federal Unsub. Loans           

21 Other Loans           

22 Academic Support           

23 All Other           

24 Institutional Support           

25 Instruction           

26 Public Service 1.000 ***         

27 Research -.617 *** 1.000 ***       

28 Student Services -.464 *** -.014  1.000 ***     

29 Race/Ethnicity .058 *** -.097 *** -.018 * 1.000 ***   

30 CCRPI Content Mastery .277 *** -.082 *** -.268 *** -.104 *** 1.000 *** 

31 CCPRI Readiness .183 *** -.016  -.177 *** -.105 *** .869 *** 

32 EOC English .258 *** -.074 *** -.290 *** -.088 *** .953 *** 

33 EOC Mathematics .247 *** -.079 *** -.219 *** -.112 *** .938 *** 

34 EOC Science .258 *** -.079 *** -.226 *** -.084 *** .934 *** 

35 EOC Social Studies .282 *** -.081 *** -.270 *** -.089 *** .942 *** 

36 Graduating HS Locale -.104 *** .079 *** .088 *** -.128 *** -.143 *** 

37 HS GPA .119 *** .014  -.093 *** -.067 *** -.056 *** 

38 Admissions Test Scores .298 *** -.049 *** -.208 *** -.107 *** .297 *** 

39 EFC .088 *** -.004   -.097 *** -.139 *** .210 *** 

Note.  *** p < .001.  ** p < .01.  * p < .05.  df = 13,078.  CPC = college preparatory 
curriculum.  Federal Sub. Loans = federal subsidized loans.  Federal Unsub.  Loans = 
federal unsubsidized loans.  CCRPI = college and career ready performance index.  EOC 
= end-of-course.  HS = high school.  GPA = grade point average.  EFC = expected family 
contributions. 
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Table 31 (continued) 
 
Pearson Correlation Matrix Before Data Manipulation 

Variable 31 32 33 34 35 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours           

7 CLEP Hours           

8 IB Hours           

9 Other Hours           

10 CPC English           

11 CPC Foreign Language           

12 CPC Math           

13 CPC Science           

14 CPC Social Sciences           

15 Major Grouping           

16 GA HOPE Scholarship           

17 Zell Miller Indicator           

18 PELL Grant           

19 Federal Sub. Loans           

20 Federal Unsub. Loans           

21 Other Loans           

22 Academic Support           

23 All Other           

24 Institutional Support           

25 Instruction           

26 Public Service           

27 Research           

28 Student Services           

29 Race/Ethnicity           

30 CCRPI Content Mastery           

31 CCPRI Readiness 1.000 ***         

32 EOC English .871 *** 1.000 ***       

33 EOC Mathematics .840 *** .917 *** 1.000 ***     

34 EOC Science .812 *** .900 *** .891 *** 1.000 ***   

35 EOC Social Studies .809 *** .894 *** .871 *** .862 *** 1.000 *** 

36 Graduating HS Locale -.070 *** -.164 *** -.142 *** -.172 *** -.165 *** 

37 HS GPA -.034 *** -.089 *** -.053 *** -.058 *** -.074 *** 

38 Admissions Test Scores .247 *** .287 *** .291 *** .278 *** .287 *** 

39 EFC .184 *** .207 *** .210 *** .188 *** .199 *** 

Note.  *** p < .001.  ** p < .01.  * p < .05.  df = 13,078.  CPC = college preparatory 
curriculum.  Federal Sub. Loans = federal subsidized loans.  Federal Unsub.  Loans = 
federal unsubsidized loans.  CCRPI = college and career ready performance index.  EOC 
= end-of-course.  HS = high school.  GPA = grade point average.  EFC = expected family 
contributions. 
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Table 31 (continued) 
 
Pearson Correlation Matrix Before Data Manipulation 

Variable 36 37 38 39 

1 First-fall GPA         

2 First-year GPA         

3 One-year Retention Status         

4 Gender         

5 First Generation Status         

6 AP Hours         

7 CLEP Hours         

8 IB Hours         

9 Other Hours         

10 CPC English         

11 CPC Foreign Language         

12 CPC Math         

13 CPC Science         

14 CPC Social Sciences         

15 Major Grouping         

16 GA HOPE Scholarship         

17 Zell Miller Indicator         

18 PELL Grant         

19 Federal Sub. Loans         

20 Federal Unsub. Loans         

21 Other Loans         

22 Academic Support         

23 All Other         

24 Institutional Support         

25 Instruction         

26 Public Service         

27 Research         

28 Student Services         

29 Race/Ethnicity         

30 CCRPI Content Mastery         

31 CCPRI Readiness         

32 EOC English         

33 EOC Mathematics         

34 EOC Science         

35 EOC Social Studies         

36 Graduating HS Locale 1.000 ***       

37 HS GPA .153 *** 1.000 ***     

38 Admissions Test Scores -.035 *** .382 *** 1.000 ***   

39 EFC -.014   .034 *** .150 *** 1.000 *** 

Note.  *** p < .001.  ** p < .01.  * p < .05.  df = 13,078.  CPC = college preparatory 
curriculum.  Federal Sub. Loans = federal subsidized loans.  Federal Unsub.  Loans = 
federal unsubsidized loans.  CCRPI = college and career ready performance index.  EOC 
= end-of-course.  HS = high school.  GPA = grade point average.  EFC = expected family 
contributions.  
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APPENDIX G:  

VIF Analysis for Multicollinearity Before Data Manipulation 
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Table 32  

VIF Analysis for Multicollinearity Before Data Manipulation 

  VIF 

  First-fall GPA First-year GPA One-year Retention 

Student Characteristics    
   Gender 1.107 1.107 1.107 
   Race/Ethnicity 1.128 1.128 1.128 
   First Generation Status 1.108 1.108 1.108 
   HS Locale Group 1.127 1.127 1.127 
Pre-college Characteristics    
   HS GPA 2.682 2.682 2.682 
   Admissions Test Scores 2.031 2.031 2.031 
   AP Hours 1.453 1.453 1.453 
   CLEP Hours 1.007 1.007 1.007 
   IB Hours 1.021 1.021 1.021 
   Other Hours 1.003 1.003 1.003 
   CPC English 44.737 44.737 44.737 
   CPC Foreign Language 24.689 24.689 24.689 
   CPC Math 41.182 41.182 41.182 
   CPC Science 20.702 20.702 20.702 
   CPC Social Sciences 28.274 28.274 28.274 
   CCRPI Content Mastery 33.242 33.242 33.242 
   CCRPI Readiness 4.846 4.846 4.846 
   EOC English 13.956 13.956 13.956 
   EOC Mathematics 9.207 9.207 9.207 
   EOC Science 8.408 8.408 8.408 
   EOC Social Studies 9.648 9.648 9.648 
Financial Situations    
   EFC 1.222 1.222 1.222 
   GA HOPE Scholarship 2.052 2.052 2.052 
   Zell Miller Indicator 1.506 1.506 1.506 
   PELL Grant 1.500 1.500 1.500 
   Fed Sub. Loans 1.403 1.403 1.403 
   Fed Unsub. Loans 1.141 1.141 1.141 
   Other Loans 1.033 1.033 1.033 
Major Grouping 1.020 1.020 1.020 
Institutional Expenditures    
   Academic Support 4.027 4.027 4.027 
   All Other 19.205 19.205 19.205 
   Institutional Support 20.543 20.543 20.543 

   Instruction 65.942 65.942 65.942 
   Public Service 28.914 28.914 28.914 
   Research 7.993 7.993 7.993 
   Student Support 5.203 5.203 5.203 

Note. CPC = college preparatory curriculum. Federal Sub. Loans = federal subsidized 
loans.  Federal Unsub. Loans = federal unsubsidized loans.  CCRPI = college and career 
ready performance index. EOC = end-of-course. HS = high school. GPA = grade point 
average. EFC = expected family contributions.  
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APPENDIX H:  

Pearson Correlation Matrix after Data Manipulation 
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Table 33  

Pearson Correlation Matrix after Data Manipulation 

    1 2 3 4 5 

1 First-fall GPA 1.000 ***         

2 First-year GPA .927 *** 1.000 ***       

3 One-year Retention Status -.386 *** -.441 *** 1.000 ***     

4 Gender -.149 *** -.163 *** .080 *** 1.000 ***   

5 First Generation Status -.032 *** -.039 *** .024  -.033 *** 1.000 *** 

6 AP Hours .219 *** .215 *** -.007  .075 *** -.043 *** 

7 CLEP Hours .033 *** .033 *** .000  .002  -.006  

8 IB Hours .039 *** .040 *** -.011  -.005  -.004  

9 Other Hours .006  .007  -.008  -.012  .022 * 

10 Major Grouping .002  .008  .000  -.047 *** .019 * 

11 GA HOPE Scholarship .430 *** .452 *** -.183 *** -.111 *** -.010  

12 Zell Miller Indicator .281 *** .285 *** -.045 *** .001  -.044 *** 

13 PELL Grant -.097 *** -.109 *** .037 ** -.082 *** .262 *** 

14 Federal Sub. Loans -.135 *** -.148 *** .045 *** -.080 *** .071 *** 

15 Federal Unsub. Loans -.101 *** -.101 *** .027  -.037 *** -.045 *** 

16 Other Loans -.066 *** -.061 *** .008  .003  -.012  

17 All Other .035 *** .089 *** -.036 ** .025 ** .003  

18 Instruction -.102 *** -.105 *** .057 *** -.080 *** .032 *** 

19 Student Services -.061 *** -.084 *** .054 *** -.094 *** .028 ** 

20 Race/Ethnicity -.019 * -.022 * -.009  -.018 * .159 *** 

21 Graduating HS Locale -.001  -.001  .023  -.014  .036 *** 

22 HS GPA .488 *** .507 *** -.165 *** -.152 *** .007  

23 Admissions Test Scores .257 *** .254 *** -.031 *** .156 *** -.107 *** 

24 EFC .055 *** .070 *** -.043 *** .048 *** -.119 *** 

25 College Prep. Curriculum -.005  .000  -.006  .016  .011  

26 Acad. & Inst. Support -.005  -.002  .039 *** -.033 *** .038 *** 

27 Public Service & Research .029 *** .044 *** -.071 *** .070 *** -.062 *** 

28 CM & Readiness Mean .111 *** .117 *** -.040 *** .073 *** -.160 *** 

29 English (CMR) .047 *** .062 *** -.011  .053 *** -.106 *** 

30 Math (CMR) .083 *** .085 *** -.014  .062 *** -.093 *** 

31 Science (CMR) .052 *** .057 *** -.020 * .040 *** -.057 *** 

32 Social Studies (CMR) .074 *** .067 *** -.012   .038 *** -.095 *** 

Note. *** p < .001. *** p < .001. ** p < .01. * p < .05. CMR Readiness Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. 
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Table 33 (continued) 
 
Pearson Correlation Matrix After Data Manipulation 

    6 7 8 9 10 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours 1.000 ***         

7 CLEP Hours .048 *** 1.000 ***       

8 IB Hours .000  .010  1.000 ***     

9 Other Hours .004  -.002  -.003  1.000 ***   

10 Major Grouping -.013  -.001  -.014  .002  1.000 *** 

11 GA HOPE Scholarship .181 *** .020 * .038 *** .015  .049 *** 

12 Zell Miller Indicator .356 *** .028 ** .027 ** .013  .014  

13 PELL Grant -.121 *** -.014  .005  .006  -.013  

14 Federal Sub. Loans -.131 *** -.023 ** -.016  .012  -.004  

15 Federal Unsub. Loans -.094 *** -.017  -.031 *** -.001  -.005  

16 Other Loans -.038 *** -.009  -.005  -.001  .005  

17 All Other .080 *** .010  .030 *** .020 * -.023 ** 

18 Instruction -.158 *** -.024 ** -.037 *** -.004  .002  

19 Student Services -.133 *** -.010  -.037 *** -.022 * .051 *** 

20 Race/Ethnicity .014  .013  .049 *** .009  -.032 *** 

21 Graduating HS Locale -.072 *** -.005  -.051 *** .004  .047 *** 

22 HS GPA .249 *** .027 ** .036 *** .013  .081 *** 

23 Admissions Test Scores .523 *** .055 *** .062 *** .006  -.016  

24 EFC .088 *** .008  -.004  -.008  -.009  

25 College Prep. Curriculum .022 * -.005  .009  -.002  -.011  

26 Acad. & Inst. Support -.035 *** -.004  -.003  .014  -.049 *** 

27 Public Service & Research .063 *** .003  -.001  .005  .031 *** 

28 CM & Readiness Mean .205 *** .019 * -.036 *** -.001  -.009  

29 English (CMR) .156 *** .039 *** -.004  .000  -.036 *** 

30 Math (CMR) .161 *** .033 *** -.040 *** -.011  -.010  

31 Science (CMR) .132 *** .024 ** -.027 ** .001  -.011  

32 Social Studies (CMR) .149 *** .011   -.031 *** .000   -.031 *** 

Note. *** p < .001. *** p < .001. ** p < .01. * p < .05. CMR Readiness Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. 
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Table 33 (continued) 
 
Pearson Correlation Matrix After Data Manipulation 

 
    11 12 13 14 15 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours           

7 CLEP Hours           

8 IB Hours           

9 Other Hours           

10 Major Grouping           

11 GA HOPE Scholarship 1.000 ***         

12 Zell Miller Indicator .270 *** 1.000 ***       

13 PELL Grant -.077 *** -.101 *** 1.000 ***     

14 Federal Sub. Loans -.133 *** -.121 *** .391 *** 1.000 ***   

15 Federal Unsub. Loans -.096 *** -.085 *** .007  .281 *** 1.000 *** 

16 Other Loans -.093 *** -.027 ** -.064 *** .065 *** .095 *** 

17 All Other .074 *** .031 *** -.034 *** -.062 *** -.059 *** 

18 Instruction -.118 *** -.072 *** .108 *** .104 *** .116 *** 

19 Student Services -.090 *** -.062 *** .131 *** .115 *** .100 *** 

20 Race/Ethnicity -.063 *** -.063 *** .239 *** .113 *** -.011  

21 Graduating HS Locale .098 *** .059 *** -.024 ** .001  .013  

22 HS GPA .708 *** .445 *** -.089 *** -.154 *** -.135 *** 

23 Admissions Test Scores .274 *** .475 *** -.241 *** -.228 *** -.138 *** 

24 EFC .050 *** .035 *** -.364 *** -.313 *** -.027 ** 

25 College Prep. Curriculum -.028 ** -.040 *** .014  .019 * -.006  

26 Acad. & Inst. Support -.052 *** -.036 *** .050 *** .025 ** .019 * 

27 Public Service & Research .099 *** .055 *** -.124 *** -.080 *** -.038 *** 

28 CM & Readiness Mean .007  .032 *** -.314 *** -.247 *** -.096 *** 

29 English (CMR) -.049 *** -.004  -.189 *** -.142 *** -.049 *** 

30 Math (CMR) .000  .023 ** -.214 *** -.198 *** -.079 *** 

31 Science (CMR) -.004  -.002  -.120 *** -.102 *** -.042 *** 

32 Social Studies (CMR) -.014   .005   -.188 *** -.149 *** -.065 *** 

Note. *** p < .001. *** p < .001. ** p < .01. * p < .05. CMR Readiness Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. 
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Table 33 (continued) 
 
Pearson Correlation Matrix After Data Manipulation 

 
    16 17 18 19 20 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours           

7 CLEP Hours           

8 IB Hours           

9 Other Hours           

10 Major Grouping           

11 GA HOPE Scholarship           

12 Zell Miller Indicator           

13 PELL Grant           

14 Federal Sub. Loans           

15 Federal Unsub. Loans           

16 Other Loans 1.000 ***         

17 All Other .020 * 1.000 ***       

18 Instruction -.010  -.534 *** 1.000 ***     

19 Student Services -.012  -.414 *** .341 *** 1.000 ***   

20 Race/Ethnicity -.018 * .025 ** -.039 *** -.018 * 1.000 *** 

21 Graduating HS Locale .011  -.030 *** .068 *** .088 *** -.128 *** 

22 HS GPA -.068 *** .076 *** -.134 *** -.093 *** -.067 *** 

23 Admissions Test Scores -.022 * .096 *** -.283 *** -.208 *** -.107 *** 

24 EFC -.012  .044 *** -.076 *** -.097 *** -.139 *** 

25 College Prep. Curriculum -.005  .163 *** -.142 *** -.046 *** .038 *** 

26 Acad. & Inst. Support -.028 ** .053 *** .474 *** -.081 *** .036 *** 

27 Public Service & Research .034 *** .057 *** -.222 *** -.439 *** -.070 *** 

28 CM & Readiness Mean .002  .142 *** -.221 *** -.244 *** -.107 *** 

29 English (CMR) .005  .236 *** -.149 *** -.296 *** -.023 ** 

30 Math (CMR) -.003  .071 *** -.153 *** -.140 *** -.096 *** 

31 Science (CMR) .005  .057 *** -.145 *** -.122 *** -.020 * 

32 Social Studies (CMR) -.017   .001   -.156 *** -.214 *** -.025 ** 

Note. *** p < .001. *** p < .001. ** p < .01. * p < .05. CMR Readiness Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. 
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Table 33 (continued) 
 
Pearson Correlation Matrix After Data Manipulation  
 

    21 22 23 24 25 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours           

7 CLEP Hours           

8 IB Hours           

9 Other Hours           

10 Major Grouping           

11 GA HOPE Scholarship           

12 Zell Miller Indicator           

13 PELL Grant           

14 Federal Sub. Loans           

15 Federal Unsub. Loans           

16 Other Loans           

17 All Other           

18 Instruction           

19 Student Services           

20 Race/Ethnicity           

21 Graduating HS Locale 1.000 ***         

22 HS GPA .153 *** 1.000 ***       

23 Admissions Test Scores -.035 *** .382 *** 1.000 ***     

24 EFC -.014  .034 *** .150 *** 1.000 ***   

25 College Prep. Curriculum -.032 *** -.058 *** -.017  .007  1.000 *** 

26 Acad. & Inst. Support -.030 *** -.089 *** -.147 *** -.023 ** .196 *** 

27 Public Service & Research .005  .125 *** .209 *** .074 *** -.159 *** 

28 CM & Readiness Mean -.121 *** -.050 *** .288 *** .208 *** .052 *** 

29 English (CMR) -.201 *** -.140 *** .199 *** .146 *** .088 *** 

30 Math (CMR) -.140 *** -.046 *** .233 *** .170 *** .054 *** 

31 Science (CMR) -.193 *** -.052 *** .167 *** .094 *** .033 *** 

32 Social Studies (CMR) -.178 *** -.086 *** .179 *** .110 *** .044 *** 

Note. *** p < .001. *** p < .001. ** p < .01. * p < .05. CMR Readiness Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. 
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Table 33 (continued) 
 
Pearson Correlation Matrix After Data Manipulation 

 
    26 27 28 29 30 

1 First-fall GPA           

2 First-year GPA           

3 One-year Retention Status           

4 Gender           

5 First Generation Status           

6 AP Hours           

7 CLEP Hours           

8 IB Hours           

9 Other Hours           

10 Major Grouping           

11 GA HOPE Scholarship           

12 Zell Miller Indicator           

13 PELL Grant           

14 Federal Sub. Loans           

15 Federal Unsub. Loans           

16 Other Loans           

17 All Other           

18 Instruction           

19 Student Services           

20 Race/Ethnicity           

21 Graduating HS Locale           

22 HS GPA           

23 Admissions Test Scores           

24 EFC           

25 College Prep. Curriculum           

26 Acad. & Inst. Support 1.000 ***         

27 Public Service & Research -.510 *** 1.000 ***       

28 CM & Readiness Mean -.037 *** .152 *** 1.000 ***     

29 English (CMR) .112 *** .078 *** .577 *** 1.000 ***   

30 Math (CMR) -.015  .063 *** .648 *** .536 *** 1.000 *** 

31 Science (CMR) -.015  .063 *** .481 *** .424 *** .471 *** 

32 Social Studies (CMR) -.033 *** .101 *** .452 *** .348 *** .344 *** 

Note. *** p < .001. *** p < .001. ** p < .01. * p < .05. CMR Readiness Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. 
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Table 33 (continued) 
 
Pearson Correlation Matrix After Data Manipulation 

 
    31 32 

1 First-fall GPA     

2 First-year GPA     

3 One-year Retention Status     

4 Gender     

5 First Generation Status     

6 AP Hours     

7 CLEP Hours     

8 IB Hours     

9 Other Hours     

10 Major Grouping     

11 GA HOPE Scholarship     

12 Zell Miller Indicator     

13 PELL Grant     

14 Federal Sub. Loans     

15 Federal Unsub. Loans     

16 Other Loans     

17 All Other     

18 Instruction     

19 Student Services     

20 Race/Ethnicity     

21 Graduating HS Locale     

22 HS GPA     

23 Admissions Test Scores     

24 EFC     

25 College Prep. Curriculum     

26 Acad. & Inst. Support     

27 Public Service & Research     

28 CM & Readiness Mean     

29 English (CMR)     

30 Math (CMR)     

31 Science (CMR) 1.000 ***   

32 Social Studies (CMR) .285 *** 1.000 *** 

Note. *** p < .001. *** p < .001. ** p < .01. * p < .05. CMR Readiness Mean = mean 
value of the CCRPI content mastery and readiness scores. Federal Sub. Loans = federal 
subsidized loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. 
GPA = grade point average. CMR = mean value of the CCRPI content mastery and 
readiness scores. EFC = expected family contribution. 
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APPENDIX I:  

VIF Analysis for Multicollinearity After Data Manipulation 
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Table 34  

VIF Analysis for Multicollinearity After Data Manipulation 

  VIF 

  First-fall GPA First-year GPA One-year Retention 

Student Characteristics    
   Gender 1.104 1.104 1.104 
   Race/Ethnicity 1.127 1.127 1.127 
   First Generation Status 1.107 1.107 1.107 
   HS Locale Group 1.126 1.126 1.126 
Pre-college Characteristics    
   HS GPA 2.675 2.675 2.675 
   Admissions Test Scores 2.028 2.028 2.028 
   AP Hours 1.451 1.451 1.451 
   CLEP Hours 1.006 1.006 1.006 
   IB Hours 1.020 1.020 1.020 
   Other Hours 1.002 1.002 1.002 
   College Prep Curriculum 1.144 1.144 1.144 
   CM & Readiness Mean 2.397 2.397 2.397 
   English (CMR) 1.902 1.902 1.902 
   Math (CMR) 1.971 1.971 1.971 
   Science (CMR) 1.451 1.451 1.451 
   Social Studies (CMR) 1.377 1.377 1.377 
Financial Situations    
   EFC 1.221 1.221 1.221 
   GA HOPE Scholarship 2.050 2.050 2.050 
   Zell Miller Indicator 1.504 1.504 1.504 
   PELL Grant 1.497 1.497 1.497 
   Federal Sub. Loans 1.403 1.403 1.403 
   Federal Unsub. Loans 1.141 1.141 1.141 
   Other Loans 1.031 1.031 1.031 
Major Grouping 1.019 1.019 1.019 
Institutional Expenditures    
   Acad. & Inst. Support 3.008 3.008 3.008 
   All Other 1.885 1.885 1.885 
   Instruction 2.962 2.962 2.962 
   Public Service & Research 2.336 2.336 2.336 
   Student Services Support 2.223 2.223 2.223 

Note. CMR Readiness Mean = mean value of the CCRPI content mastery and readiness 
scores. Federal Sub. Loans = federal subsidized loans. Federal Unsub. Loans = federal 
unsubsidized loans. HS = high school. GPA = grade point average. CMR = mean value of 
the CCRPI content mastery and readiness scores. EFC = expected family contribution. 
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APPENDIX J:  

Levene’s Test and Bartlett’s Test for Homogeneity of Variance 
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Table 35  

Levene’s Test and Bartlett’s Test for Homogeneity of Variance 

  Levene's Test    Bartlett's Test  

  F df p    K2 df p  

Student Characteristics                 
   Gender 73.71 1, 13,076 < .001 ***   0.79 1 .375  
   Race/Ethnicity 0.01 1, 13,076 .909    0.04 1 .850  
   First Generation Status 29.33 1, 13,076 < .001 ***   16.69 1 < .001 *** 
   HS Locale Group 28.52 1, 13,076 < .001 ***   6.69 1 .010 * 
Pre-college Characteristics                
   HS GPA 10.68 1, 13,076 .001 **   10.93 1 < .001 *** 
   Admissions Test Scores 5.01 1, 13,076 .025 ***   14.78 1 < .001 *** 
   AP Hours 201.99 1, 13,076 < .001 ***   48.59 1 < .001 *** 
   CLEP Hours 0.01 1, 13,076 .921    443.22 1 < .001 *** 
   IB Hours 6.34 1, 13,076 .012 ***   56.79 1 < .001 *** 
   Other Hours 3.61 1, 13,076 .573    980.30 1 < .001 *** 
   College Prep Curriculum 1.33 1, 13,076 .249    1.50 1 .220  
   CM & Ready Mean 0.18 1, 13,076 .671   0.95 1 .331  
   English (CMR) 1.73 1, 13,076 .188    1.55 1 .214  
   Math (CMR) 2.27 1, 13,076 .132    1.99 1 .159  
   Science (CMR) 0.22 1, 13,076 .639    0.56 1 .454  
   Social (CMR) 0.36 1, 13,076 .551    0.53 1 .465  
Financial Situations                 
   EFC 13.77 1, 13,076 < .001 ***   0.89 1 .346  
   GA HOPE Scholarship 962.56 1, 13,076 < .001 ***   161.56 1 < .001 *** 
   Zell Miller 110.29 1, 13,076 < .001 ***   94.94 1 < .001 *** 
   PELL Grant 52.96 1, 13,076 < .001 ***   0.85 1 .358  
   Fed Sub. Loans 64.94 1, 13,076 < .001 ***   1.02 1 .312  
   Fed Unsub. Loans 7.14 1, 13,076 .008 **   0.05 1 .823  
   Other Loans 3.50 1, 13,076 .061    6.97 1 .008 ** 
Major Groupings 6.43 1, 13,076 .011 *   5.91 1 .015 * 
Institutional Expenditures                
   Acad. & Inst. Support 3.82 1, 13,076 .051    5.51 1 .019 * 
   All Other 31.29 1, 13,076 < .001 ***   38.88 1 < .001 *** 
   Instruction 16.03 1, 13,076 < .001 ***   9.42 1 .002 ** 

   Public Serv & Research 26.13 1, 13,076 < .001 ***   14.17 1 < .001 *** 

   Student Service Support 0.87 1, 13,076 .351    6.20 1 .013 * 

Note. *** p < .001. ** p < .01. * p < .05. CM & Ready Mean = mean value of the 
CCRPI content mastery and readiness scores. Federal Sub. Loans = federal subsidized 
loans. Federal Unsub. Loans = federal unsubsidized loans. HS = high school. GPA = 
grade point average. CMR = mean value of the CCRPI content mastery and readiness 
scores. Acad. & Inst. Sup. = academic and institutional support expenditures. EFC = 
expected family contribution. Public Serv. & Rsch. = public service and research 
expenditures. Student Serv. Sup. = student services support expenditures. 


	bdfitzgerald_fair_use_page
	Fitzgerald, Barrie - Signature Page.
	bdfitzgerald_final_dissertation_04122024
	INTRODUCTION
	Statement of Problem
	Purpose of the Study
	Research Questions
	Research Methodology
	Significant of the Study
	Theoretical Framework of the Study
	Limitations of the Study
	Definitions of Terms
	Organization of the Study

	LITERATURE REVIEW
	Regional Comprehensive Universities
	Development of Attrition Theories
	Characteristics Impacting Academic Performance
	Student characteristics.
	Precollege characteristics.
	Financial situations.

	Data Science
	Summary

	METHODOLOGY
	Research Design
	Participants
	Instrumentation
	Data Analysis
	Statistical Considerations and Assumptions
	Summary

	RESULTS
	Population Characteristics
	Data Splitting and Imbalance
	Preliminary Considerations and Assumptions
	First Research Question
	Second Research Question
	Summary

	SUMMARY, DISCUSSION, AND CONCLUSIONS
	Overview of the Study
	Related Literature
	Methodology
	Participants
	Variables Studied
	Procedures
	Summary of Findings
	Discussions of Findings
	Limitations of the Study
	Implications for Future Research
	Recommendations for Practice
	Conclusions

	REFERENCES
	APPENDIX A:
	Institutional Review Board Protocol Exemption Report
	APPENDIX B:
	Data Sharing Agreement
	APPENDIX C:
	Data Clean Up R Code Source Files
	APPENDIX D:
	R Code for Analysis
	APPENDIX E:
	Considerations and Assumptions Review R Code
	APPENDIX F:
	Pearson Correlation Matrix Before Data Manipulation
	APPENDIX G:
	VIF Analysis for Multicollinearity Before Data Manipulation
	APPENDIX H:
	Pearson Correlation Matrix after Data Manipulation
	APPENDIX I:
	VIF Analysis for Multicollinearity After Data Manipulation
	APPENDIX J:
	Levene’s Test and Bartlett’s Test for Homogeneity of Variance


