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ABSTRACT

Regional comprehensive universities offer accessible and diverse undergraduate
educational programs, while grappling with funding cuts and affordability. The study’s
first research question underscores the enduring importance of factors such as student
characteristics, pre-college characteristics, and financial situations. The findings
highlight high school GPA's (HS GPA) pivotal role in academic performance. Higher HS
GPAs correlate with successful academic performance resulting in higher retaining
likelihoods; conversely, lower HS GPAs are associated with academic struggles and
increased departure likelihoods. HS curriculum variables also impact academic
performance, notably in extreme gradient boosting (XGBoost) models.

The second research question centers on the algorithms’ predictive power.
XGBoost and random forest models consistently outperform the other models in
predicting GPAs. Prioritizing area under the curve values for retention, both XGBoost
and random forest models are statistically comparable for developing predictive
algorithms, despite facing challenges with low specificity rates. Only slight
enhancements in predictions were detected in the upsample ensemble learning models.

Implications for practice underscore the importance of targeted interventions
through leveraging data science techniques and machine learning algorithms to identify
and allocate support resources for at-risk students. This research significantly contributes
to the discussion on student success in higher education by providing practical insights
and guiding evidence-based practices. As education evolves, integrating data science into
strategic planning becomes pivotal for shaping the trajectory of student success

Initiatives.
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Chapter I
INTRODUCTION

Each May, students walk across a stage to receive a diploma, marking the end of
their high school career and the beginning of their journey into early adulthood. Some of
these students enter the workforce or enlist in the armed forces, while others pursue a
postsecondary degree. Recent national data from Fall 2018 show an enrollment of nearly
three million first-time freshmen pursuing a postsecondary degree, with 45.4% enrolled
in a four-year public institution (National Center for Education Statistics [NCES], 2019).
As students embark on their postsecondary education, administrators and policymakers
monitor specific milestones to evaluate students' progress towards degree completion.
Milestones, such as grade point average (GPA) and retention status, are critical indicators
of academic performance examined by postsecondary institutions (Arnold, 1999;
Offenstein & Shulock, 2010; Tai, 2020).

Nationally, governmental agencies and other organizations release academic
performance metrics, including enrollment numbers and other relevant data, for public
access. These published facts allow agencies and the public to understand the “full and
complete... condition of postsecondary education” (NCES, n.d.c). A recent report by the
National Student Clearinghouse Research Center (NSCRC) (2019) revealed 73.5% of
Fall 2017 first-time, full-time freshmen (FTFTF) continued to the second year at their
initial postsecondary institution. This retention rate indicates slightly more than a quarter

of students do not remain at their first institution. For public institutions, the retention



rate for FTFTF was 79.1%. Although public institutions have a retention rate more than
5% higher than the national average, they still slightly trail behind private, not-for-profit
institutions (NSCRC, 2019).

With the availability of postsecondary data, journalists and news organizations
have scrutinized and reported on the issue of inadequate preparation for academic
performance. Despite changes in high school curriculum aimed at college preparation, a
2011 Washington Post article cited research from Johns Hopkins University and the
University of Arizona, which found 40% of students were unprepared for postsecondary
coursework and even for the modern-day workforce (de Vise, 2011). Furthermore, a U.S.
News & World Report article highlighted of the 1.8 million students who took the ACT in
2013, only 26% were deemed college-ready in four subjects. Additionally, 27% of
students were prepared in two or three subjects, and 16% were ready for one subject
(Bidwell, 2013). Overall, Bidwell (2013) reported 33% of students were unprepared for
postsecondary courses in at least one of the major core subject areas.

In attempting to establish a connection to the lack of preparedness stemming from
high school curriculum, The Chicago Tribune examined 120,000 high school juniors’
exam scores. The findings revealed a weak general curriculum and lack of advanced or
rigorous courses contributed to 75% of students being classified as unprepared for
postsecondary coursework in mathematics, social studies, or sciences, and 50% of
students for postsecondary coursework in English (Rado, 2017). Butrymowicz (2017)
and French (2016) revealed one out of five students who graduate from high school are
considered unprepared to succeed within their first year of studies. Elaborating further,

they indicated earning a high school diploma does not equate to being prepared or



successfully performing in a postsecondary setting (Butrymowicz, 2017; French, 2016).
From these published articles, it can be inferred the high school curriculum could be
affecting students’ first-year academic performance in postsecondary institutions.

With increased awareness of the lack of preparedness and poor postsecondary
academic performance, elected officials began to enact laws to strengthen the high school
curriculum through accountability metrics for students' readiness. In 2002, the No Child
Left Behind (NCLB) act made efforts to hold elementary and high schools accountable
for the educational progress of all students (Lee, n.d.). Largely focusing on closing
achievement gaps, annual testing became a significant component of accountability to
assist in identifying existing educational gaps, yet schools faced financial penalties when
making no progress (Lee, n.d.; U.S. Department of Education, n.d.). In 2015, the Every
Student Succeeds Act (ESSA) replaced NCLB, charging all American high schools to
teach a high standard to prepare students for postsecondary education and the modern-
day workforce (United States Department of Education, n.d.). In addition to shifting the
accountability systems back to the states’ governments, ESSA also removed financial
penalties for struggling schools (Understood Team, n.d.). Under ESSA, the law provided
each state the autonomy to develop and implement its accountability system. However,
ESSA still requires specific academic factors to be included. The factors focused on
curriculum, including the assessments of reading and mathematics scores and English
proficiency levels. Additionally, the law required states to develop a college readiness
metric (Understood Team, n.d.).

Within the State of Georgia, the Department of Education developed the

accountability system called the College and Career Ready Performance Index (CCRPI).



According to the Georgia Department of Education (GaDOE) (2021c¢), the accountability
system contains published information regarding the postsecondary and career readiness
of each school. With states having the autonomy of the accountability system, the
GaDOE has made continuous improvements to the readiness index over the years. The
CCRPI is a score from 0 to 100 derived from five components for each high school. The
components for high schools include content mastery, progress, closing gaps, readiness,
and graduation rates. Assessment tests over the four main subject areas in high school are
used to develop the content mastery score. Growth in proficiency levels provides the
progress score. The closing of the gaps in the scores measures any progress in meeting
the improvement targets. The graduation rates for each high school are included
(GaDOE, 2018Db).

For high schools, readiness comprises a mixture of data points, including a
college and career readiness score. The data points consist of literacy of 9" grade English
and Language Arts proficiencies; student attendance; the percentage of 12" graders
enrolled in dual enrollment, Advanced Placement, or International Baccalaureate courses;
the percentage of 12" graders completing advanced academic, CTAE, fine arts, or world
language pathways; and a derived college and career readiness score. Components of the
derived college and career readiness score incorporate the percentage of students who
enroll in public postsecondary institutions without the need for any remedial coursework,
admission test scores, completion of at least two or more advanced courses from high
school, completion of a pathway assessm