

GOING MOBILE
Developing Apps for

your library using Basic
HTML Programming

ALA Editions • special reports

scott lA counte

American Library Association
Chicago  2012

© 2012 by the American Library Association. Any claim of copyright is subject to applicable
limitations and exceptions, such as rights of fair use and library copying pursuant to Sections
107 and 108 of the U.S. Copyright Act. No copyright is claimed in content that is in the public
domain, such as works of the U.S. government.

Printed in the United States of America

16 15 14 13 12   5 4 3 2 1

While extensive effort has gone into ensuring the reliability of the information in this book, the
publisher makes no warranty, express or implied, with respect to the material contained herein.

ISBN: 978–0-8389–1129-7 (paper); 978-0-8389-9318-7 (PDF); 978-0-8389-9319-4 (ePub);
978-0-8389-9320-0 (Mobipocket); 978-0-8389-9321-7 (Kindle). For more information on digital
formats, visit the ALA Store at alastore.ala.org and select eEditions.

Library of Congress Cataloging-in-Publication Data
 La Counte, Scott, 1978–
  Going mobile : developing apps for your library using basic HTML programming /
Scott La Counte.
  p. cm.
  Includes bibliographical references.
  ISBN 978-0-8389-1129-7 (alk. paper)
  1. Mobile communication systems—Library applications. 2. Library Web sites—Design.
 3. Smartphones—Programming. 4. Application software—Development. 5. Mobile
 computing. I. Title.
  Z680.5.L32 2012
  025.04'2—dc23							 2011027672

Series cover design by Casey Bayer.
Series text design in Palatino Linotype and Avenir by Karen Sheets de Gracia.
Composition by Dianne M. Rooney.

 This paper meets the requirements of ANSI/NISO Z39.48-1992
(Permanence of Paper).

Scott La Counte is a librarian at Anaheim (Calif.) Public Library. He is the author of the book
Quiet, Please: Dispatches from a Public Librarian (Da Capo Press, 2008), which began as a series
for McSweeney’s Internet Tendencies. He teaches writing online for the Gotham Writers’ Work-
shops. His iPhone app, LibFind, gives the addresses and phone numbers of public libraries
across the United States.

iii

CONTENTS

Introduction v

1	 Before You Begin   1

2	 Developing a Mobile Web Application   7

3	 Using CSS   13

4	 JavaScript and Mobile Website Design   19

5	 PhoneGap   25

6	 Building Your First Native App   29

7	 Beyond the Basics   41

8	 Other Ways to Go Mobile   45

Index  51

ALA Editions purchases fund advocacy,
awareness, and accreditation programs

for library professionals worldwide.

v

T here are more than one hundred thousand mobile apps for the iPhone, and
Android is quickly catching up to that number. Universities have apps, sports
teams have apps, authors have apps—everyone seems to be in the app market,

and for obvious reasons. Unlike the previous generation, which didn’t mind waiting to
get their information when they got home, today’s generation wants their information
on the go. In many respects they could be called Generation Mobile, because for the first
time, there is a group of people who can have everything they could ever want in the
palm of their hand.

What’s alarming, however, is of the hundreds of thousands of mobile apps available
for phones, the amount of apps that librarians have built for libraries can be counted on
one hand! The District of Columbia Public Library has an app to help you find books
in its catalog. By the time this book is published, a few other libraries will likely have
joined in, but the number isn’t anywhere near where it should be.

What does this mean? That there’s an entire generation that’s being overlooked.
Businesses have successfully found a new generation of clients simply by promot-

ing services to them in ways that speak to a new type of user: the mobile user. They have
proved that successful apps work and should not be overlooked.

For as long as computers and the Internet have been around, libraries have been on
the cutting edge of implementing them; perhaps for the first time, libraries are lagging,
and it’s time to catch up.

Mobile app development has become a pretty lucrative business; it’s a fair statement
to say that it is the twenty-first century’s equivalent of a gold rush—upstart companies
are making millions. In 2010, a developer for the Android phone reported that he was
making $10,000 a month on an app that helped people find where they had left their car.
He’s not alone.

It’s not in libraries’ best interest to go into app development with the intention of
making money, but still, there is a huge market for mobile development.

Mobile websites allow patrons to avail themselves of library services no matter
where they are. The sites can be set up to allow patrons to reserve books, to surf the card
catalog, and more. Mobile websites, however, are a much different interface from the
sites that you’re used to seeing on the Internet.

There are a lot of reasons libraries have, by and large, stayed away from phone apps.
One of the biggest reasons, however, is that the skills needed to successfully build them

INTRODUCTION

vi 	 IN T RO D UC T ION

have historically been greater than what most libraries can afford; an app programmer
can cost several hundred dollars an hour. Building a phone app using the phone’s native
programming language can be hard work and can take hundreds of hours.

Fortunately, new open-source software has made it easy for people with more lim-
ited programming skills to take advantage of apps. Using the technologies available, it’s
possible for any library to create an app at a low cost and to offer patrons a way to access
the wealth of knowledge and entertainment stored in every library facility.

The point of this book is to show you what an app is, how to build one, and how to
successfully market your app to library patrons. In the forthcoming chapters, you will
learn not just how to build an app with relatively no programming skills but also the
best practices for marketing the book to your target audience, as well as both free and
paid services that are available to make going mobile even simpler and seamless.

There are many challenges ahead for any library attempting to enter this new form
of development—and the challenges are among the biggest roadblocks for many librar-
ies interested in extending their library services into the mobile market. I address some
of the problems and challenges in this book, but the main point is to offer cost-effective
solutions to library staff who are interested in experimenting with building an app for
the library.

  1

1
BEFORE YOU

BEGIN

Mobile App: A Definition

It’s difficult to write about mobile devices because that phrase can mean so many things.
When I say “mobile app,” does that refer to an app that runs on any phone? Or on a
specific phone? Just to be clear, there are two types of cell phones:

Feature phone: A feature phone is what the average person carries in his or her
pocket. Although many feature phones are becoming more sophisticated, for
the most part, feature phones are the more popular basic phones that you can
buy. They make calls, they offer texting, and most can take pictures and have
very limited web browsing. More than 80 percent of Americans have a feature
phone.

Smartphone: Smartphones are best described as computers in the palm of your
hand. Several times more powerful than feature phones, smartphones not
only can surf the Internet but also can surf at relatively fast, third-generation
(3G) speeds. The iPhone, Android, BlackBerry, and Windows Mobile are all
examples of this kind of phone.

Many of the ideas in this book are universal; they can be tried on pretty much any phone
in existence. The majority of ideas, however, are maximized for use with smartphones.

What is the point of developing apps that fewer than 20 percent of the population
can access? Smartphones are the future of cellular technology. Smartphone prices have
dropped significantly in recent years. When the iPhone was released in 2007, it cost
$599; less than five years later, it cost as little as $99. The same is true of BlackBerries and
nearly all other smartphones. As costs continue to drop, the smartphone is becoming
more and more affordable to the average consumer.

Mobile development has become one of the biggest growth sectors of web develop-
ment. People still use computers to surf the Internet, but the amount of time they spend
on a computer will decrease as other devices become more prevalent.

The advent of XHTML-MP (XHTML for the Mobile Phone) and WCSS (Wireless
CSS) converted two of the most powerful tools in web design into forms that are suit-
able for those who need to build mobile websites. At the same time, WYSIWYG (what

2 	 b e f o r e y o u b e g i n

you see is what you get) editors currently provide templates for mobile websites, which
makes it possible for just about anyone to design simple websites.

Perhaps the biggest reason libraries need to embrace this growing technology is
because the youth of the world use it to speak to one another. The average teen, if given
the option, would probably prefer to text a librarian than to visit the reference desk.

What Is a Mobile App?

Another question that should be answered before proceeding any further is, What do I
mean by “mobile app”? Mobile apps generally refer to two different things:

Mobile website: A mobile website is mobile phone friendly and developed taking
into consideration the limitations of cellular devices. If you invested the right
amount of time in your library’s website, it probably looks pretty good on a
ten- to twenty-inch screen (the size of the average desktop or laptop screen).
But if you try to access the website from a mobile phone, it probably will look
pretty lousy—if it even loads at all. Having a mobile-friendly website would
simply mean that the library has a separate web address (e.g., m.library.com—
the m standing for mobile) to point mobile phones to. This can be done easily
by inserting code that redirects the device on the basis of its resolution. For
example, if the site detects a device resolution of 1280 × 1024, then it’s obvi-
ously a desktop, laptop, or tablet computer, and so would be directed to the
main page; if the resolution is 320 × 480 or less, then it’s some sort of mobile
device, and so would be directed to a mobile page.

Native app: A native app is one for which the library has gone the extra step to
create an app that is available for purchase in mobile app stores (e.g., iTunes,
Android Market)

At the very least, every library should have a mobile-friendly website; it’s a relatively
easy process that I’ll talk about in forthcoming chapters.

Developing a Mobile App

Libraries that want to take the extra initiative and do something more innovative should
devote some time to developing a plan for the delivery of native apps to their users. To
develop a native app, you have to understand how to develop a mobile website app—
so by understanding one, you are actually learning to do two things. By the end of this
book, you might realize that you don’t want to have a native app, but you will at least
know how to develop one, and in doing so, you will be able to develop a mobile app.

The problem with developing a native app isn’t the skill level (which is actually
about the same as for developing a mobile-friendly website); the problem is the number
of phones that are on the market. If you want to develop a native app for all users, then

3  BEFORE YOU BEGIN

you have to develop one for every phone: iPhone, BlackBerry, Android, Palm, Windows
Mobile—and those are just the major ones! In short, developing a native app requires
a substantial time investment, and each library needs to consider that when deciding
whether to invest in a native app.

The good news is that most phone makers supply app developers with plenty of
free tools and resources to make development a little easier. The bad news is that actu-
ally getting the app into the marketplace requires a bit of money; each phone requires
that developers pay a fee, and some apps are compatible only with Mac operating sys-
tems, such as those for the iPhone. These costs, though, help prevent people who are not
serious about app development from flooding the markets with apps. Box 1 illustrates
the system requirements and fees for each of the five major phones.

The information in box 1 can be a little overwhelming, and chances are that you will
not be able to get a library app on every phone. What you need to consider, however, is
that if you get a native app on just two phones (e.g., iPhone and Android), then it will
be compatible with most smartphone users. In the summer of 2011, more than half of

BOX 1  n S ystem Requirements and Fees

Android
Fee: $25 unlimited
System requirements: The Android software development kit (SDK) is free. It requires

▪▪ Windows XP (32-bit) or Vista (32- or 64-bit)

▪▪ Mac OS X version 10.5.8 or later (x86 only)

▪▪ Linux (tested on Linux Ubuntu Hardy Heron)

BlackBerry
Fee: $200 for 10 app submissions
System requirements: The BlackBerry SDK is free. It requires

▪▪ Windows 2000 SPI or later, or Windows XP

▪▪ 32-bit Windows Vista (BlackBerry JDE v4.2.1 and higher)

▪▪ Java SE JDK v6.0

iPhone
Fee: $99 per year
System requirements: The iPhone SDK is free. It requires Mac OS X or later to run the
program.

Palm
Fee: $99 per year
System requirements: The Palm SDK is free. It runs on Mac, Linux, and Windows.

Windows Mobile
Fee: $99 per year
System requirements: Windows XP or later with Visual Studio 2008 and Microsoft .NET
Compact Framework v2 SP2.

4 	 b e f o r e y o u b e g i n

smartphone users are expected to have iPhones; Android is catching up quickly, with
more than 30 percent of the market. That means that if ten people walk into a store to
buy a smartphone, eight or nine will walk out with either an iPhone or a phone with the
Android operating system.

The Essence of the Mobile Web

Mobile websites should look and interact much differently than traditional websites.
Mobile websites involve different design concerns than regular websites that you view
on a computer. In some ways, designing mobile websites is like designing sites in the
past, when the download speed of a page was of primary concern. Although today
most mobile connections are quite fast, some mobile phone users pay by the minute
for Internet connectivity; thus, it’s in their best interest to access sites that download in
short order.

All of this plays into simplicity, a major component of all good mobile websites.
Regular websites offer a host of options to visitors, as well as graphics, images, naviga-
tion menus, Flash elements, and JavaScript elements that add functionality and style to
the page. But where mobile websites are concerned, the aesthetic elements have to work
hand in hand with practical concerns. On a small screen, there’s no room for overblown
design elements, multiple navigation menus, or a great deal of text. Unlike regular web-
sites, mobile sites also require that you accommodate the technology that users have to
view them.

The language of the Web is HTML, or HyperText Markup Language. For older
mobile browsers, the language is WML, or Wireless Markup Language. Today smart-
phones and mobile browsers generally make use of XHTML-MP. The differences
between HTML and XHTML-MP aren’t too radical, and anyone with HTML experience
should be able to figure out XHTML-MP with little difficulty. There are other require-
ments that mobile websites have to accommodate to make sure that their elements dis-
play correctly on all of the many mobile browsers on the market. Some of the features
they require are the following:

▪▪ very simplified navigation
▪▪ layouts specified using Cascading Style Sheets (CSS), not tables
▪▪ compact, efficiently written content
▪▪ a color scheme that is consistent across all browsers
▪▪ reduction in bandwidth-heavy elements, such as pictures, videos, and

audio
▪▪ navigation options such as “back” and “next” on every page

Most mobile websites are built around a utilitarian aesthetic. They aren’t the places
to show off your design department’s abilities or to debut new and untested features.
When people surf the mobile-friendly Internet, they’re generally looking to find the
information they want as quickly as possible, and that information is usually not for
pure entertainment. Efficiency is always the first order of business with mobile sites.

5  BEFORE YOU BEGIN

For example, for library sites, most users will primarily look to browse the catalog
and reserve items from the stacks, to call the library, and to get directions to different
branches. This means that the mobile site should be integrated with the library’s data-
base to allow customers to log in and access their account.

Another concern in developing mobile websites is space. A smartphone, useful as
it is, has a small-format screen. This means that you must maximize the space available
and not create a mobile site that is useful only to those users who have relatively large
mobile screens.

It’s also important to see the actual phones and know what they look like. Box 2
provides the range of dimensions for most smartphones; the average phone has a screen
dimension of 320 × 480 (about the same as a playing card); ideally, that is the resolution
that you should aim to develop your mobile website for.

Box 2  n  Dimensions in Pixels

▪▪ iPhone: 320 × 480

▪▪ Blackberry: 160 × 160 to 480 × 360

▪▪ Android SDK: 320 × 240 (because different phones use the Android plat-
form, here the dimension is the standard resolution in the developer kit)

▪▪ Generic Windows Mobile: 240 × 320 (standard resolution, but varies
from phone to phone)

▪▪ Nokia: 95 × 95 and higher (varies from phone to phone, but 240 × 320 is
standard)

▪▪ Palm Pre: 320 × 480

Surveying Users

Before you continue with developing an app, it’s a good idea to understand who your
patrons are and what kinds of mobile services they want. For example, what percent-
age of patrons have smartphones? What kinds of smartphones do they have (many
people don’t know which kind of phone they have, so it’s a good idea to ask to see their
phone)? If they don’t have smartphones, do they use the Web on their feature phones?
Most web analytics sites (e.g., Google Analytics, StatCounter) will indicate users’ resolu-
tion, which lets you figure out whether they are using a phone to view the site. But this
doesn’t always help because these sites let you know only whether users are accessing
the site via their phone, not what kind of phone (e.g., iPhone, BlackBerry, Droid).

A lot of this book focuses on the iPhone, because when people talk about wanting to
learn how to make apps, they are usually referring to making them for the iPhone—the
holy grail of app development. Depending on your patrons, however, you might want
to consider starting on another device. There is no point developing an iPhone app if
most of your smartphone-carrying patrons have BlackBerries.

If you decide to continue with developing an app, then you have to ask, What do
your patrons want? Access to the library’s catalog? Photos from events? A calendar of
events? GPS tracking to find the nearest library or book? To know when the next library

6 	 b e f o r e y o u b e g i n

computer is available? Instant messaging with a librarian? It’s important to consider
that what librarians find important is not necessarily what patrons find important.

Training Staff

The library might face resistance early on from staff. Many people don’t like change,
so to avoid resistance, it’s useful to get everyone on staff involved as early as possible.
Another good idea is that when you survey your patrons, you can also survey your staff
to find out who already understands the technology and wants to jump on board and
who will need a little bit more help. Also, it helps to show, not tell. Basically, that means
that it’s better to show a scene than to simply talk about what is happening. So, if you
simply tell staff what the library wants to do, many might not see the necessity of an
app, but if you show them the app and what it can do for the library, they’re more likely
to get excited.

How do you show? The best way is to carry out a survey on an iPod Touch or
Android tablet. SurveyMonkey and other popular online surveys are great tools for col-
lecting data, but actually placing a device in the hand of a librarian unfamiliar with such
devices will help him or her become more comfortable with using the interface. These
devices also are small, so they’re easy to store. And for surveying patrons, you can buy
an iPod lock (e.g., the Targus Defcon Notebook/iPod Lock Combo costs $39.99) or lock
an iPod to an unattended desk for patrons to fill out the survey.

The iPod and Android tablets also use the same kind of interface as the iPhone, and
there are plenty of survey apps that you can purchase for them; best of all they are rela-
tively cheap (less than $200). The Samsung Galaxy and Dell Streak tablet have received
a lot of media attention, but there are many other tablets available—there are many
Android tablets available on eBay for less than $150.

You can use Survey on the Spot (free for iPhone) or Askdroid and ODK Collect (free
for Android) to create a survey and then have librarians use the app to ask patrons a
series of questions. Or use Tally Counter (free for iPhone) or CodeArk Tally Counter
(free for Android) to count the number of people using smartphones. More powerful
(and detailed) tally counts are also available for a cost: Tallymander ($3.99 for iPhone)
and Advanced Tally Counter Pro ($0.99 for Android) let users count several different
stats at once (e.g., types of questions patrons ask at the reference desk).

The results of the surveys, in most cases, won’t be as powerful or specific as those
you would get from sites like SurveyMonkey, but that doesn’t matter; what matters is
your letting people who don’t regularly use the device know what it is. Even though
people might resist change, almost everyone loves to play with gadgets!

Many times libraries implement technological innovations that don’t take off because
the library staff members don’t promote them to patrons. But in surveying staff and
patrons on an iPhone or tablet, even though you might not convert anyone to a smart-
phone user, you will at least give people a better understanding of their importance.

  7

2
DEVELOPING A MOBILE

WEB APPLICATION

O nce you know who your users are, it’s time to start developing. This chapter
and the following ones provide a crash course in mobile development. We’ll
review the essence of HTML, CSS, and JavaScript programming, and we’ll

learn the very basics of what it takes to develop a mobile website.

Setting Up the Domain

Mobile websites are housed in a separate part of your server from your main site. In
most cases, the site name will simply have “mobile” added on at the beginning of the
domain. For example, the mobile version of the URL YourLibrary.com would be Mobile.
YourLibrary.com. The “Mobile” directory holds all the files required to display your
mobile site. This type of organization also makes things easier on your information tech-
nology staff, because the “Mobile” directory is a convenient way to deal with a site.

Once your domain is set up and ready to go, the hard work begins.

Understanding the Process

Most of the process of designing a mobile website involves simplifying and reformat-
ting the information and features that appear on your main website. This means that, to
build a mobile website, you first need to prepare the text and images for the site so that
they fit the site’s format.

Mobile Web versus Standard Web

Everything on your mobile website will be slightly different from how it appears on your
regular website. This is inevitable. Although there are some features that your users will
expect from your website, some of what you offer on your main site is impractical for
mobile users. It’s important to remember that you’re trying to replicate the functionality
and content of your regular website as much as possible on your mobile site. You’re not
simply duplicating your main website and putting it in your mobile directory.

8 	 D EVELOPING A M OBILE W EB A PPLIC A T ION

<p align=“center”>Call Us:

555-555-1212

Add Us to Your Phone Book!

</p>

Your mobile website, therefore, should largely be its own entity—it will have some
features from your main site, but you’ll abandon others. You can start building your
mobile site by streamlining your regular website.

Navigation

Most websites feature navigation menus with many options on the side or top of the
page. For mobile sites, you’ll need to reduce the number of navigation elements down
to those that are the most practical and necessary for the patrons visiting your site.
You will also want to add a “Back” and “Forward” button on every page. Some mobile
browsers don’t have these buttons built in, so it’s easy for surfers to end up at a dead end
on the site, which can be extremely frustrating.

The first thing that should appear on your mobile home page is the name of your
library and your location. Your telephone number should also be one of the first pieces
of information that your visitors see. Many visitors to your mobile website will simply
opt to call and ask their questions directly to a librarian. You can make this easy for
them by inserting a link that allows visitors to dial your phone number directly from the
page. To insert the link, which should appear at the very top of the page, there is a fairly
simple code that will display your phone number and allow visitors to dial the library
just by clicking on the link:

By clicking on Call Us, patrons can dial the number listed. Notice that the unfor-
matted phone number appears at the end of the line that starts “wtai” in both cases. In
the second link, “Add Us to Your Phone Book!” the tag “City_Library” determines how
your number will be added to the user’s phone book. Providing the ability to both dial
your phone number right from the mobile home page and to add your number to the
visitor’s phone book with just a click is a huge convenience for your patrons—and it
definitely has a wow factor.

Navigation buttons on a mobile website need to be very simple. In most cases, users
prefer to move through your site using navigation menus. Entering text is difficult on
some phones and, therefore, users tend to avoid doing so whenever possible. Also, your
navigation choices should be intuitive, and ideally, it should take a minimal amount of
clicks for patrons to find the page they’re looking for.

Keep the shapes of your navigation buttons as simple as possible and use fonts that
are bold and readable. Some mobile screens have very low-quality graphics, so make
efforts to accommodate users of those devices when you’re designing your site. For
example, text links are preferable to graphics links.

The home pages of some mobile websites are little more than a small section of infor-
mation with links provided underneath the main content. For examples of the effective

9  D EVELOPING A M OBILE W EB A PPLIC A T ION

<p>You can browse our card catalog by clicking below</p>

<h1>Browse Card Catalog</h1>

to

use of this design, take a look at the mobile websites of some of the larger retailers—
many of them follow this design.

For libraries, it also makes sense to organize navigation menus following the con-
ventions for organizing books. For example, if patrons can browse the card catalog on
the site, then a patron trying to find an Oscar Wilde novel might follow the navigation
series “W_Wi-Wo_Wilde, Oscar” to find to the desired records. Each element of this
navigation could be a different button—“W,” “Wi-Wo,” “Wilde, Oscar”—which would
allow users to easily reach their destination without typing anything into the interface.

You can also use header tags to make your content easy to navigate. Headers are
preferable to long text blocks on mobile websites. For instance, convert options such as

Content

The content for mobile websites needs to be much different from that of standard web-
sites. For example, the content on mobile websites should be much briefer than on stan-
dard sites. Think about it like this: a mobile website page is to a normal website page
what a card catalog record is to the book it represents. Your mobile pages have to be
designed for people who are surfing for different reasons but whom you can cater to in
the same fashion.

Most of the users of a library’s mobile site will seek out very specific information.
It doesn’t matter what they’re doing at the time that they’re browsing. They might be
rushing from class to the library, or they might be sitting in a coffee shop in no particular
rush. Both kinds of users, however, want to be able to find what they’re looking for in a
reasonable amount of time. This means that content on a mobile site can be drastically
cut back in comparison to that of a regular website.

The home page of a regular website often contains news, notices of updated pages,
and much more. Some contain an “About Us” statement or other public relations infor-
mation. None of this is really necessary on a mobile website. Regular websites are
designed to be something of an experience in and of themselves, but mobile sites wow
users with their functionality.

So, in designing your mobile site, reduce your content to the bare minimum. You
can even probably eliminate altogether most of the material about your organization
that appears on the home page of your regular website.

Formatting Content

Even though small screen sizes are always a concern with mobile websites, there are
several larger screen resolutions in use among smartphones. Some of them are more

10 	 D EVELOPING A M OBILE W EB A PPLIC A T ION

common than others. At the smallest end, 128 × 160 is fairly common. This screen size
applies for most of the cheaper phones on the market. At the high end, 320 × 480 is
fairly common among newer-model smartphones and other more sophisticated mobile
devices. These screens are of different shapes, which makes it difficult to predict the
look of a given mobile website on any particular phone. Designers have ways of get-
ting around this, though, and many companies offer several websites—one for standard
computers, one for smartphones, and one for feature phones.

Designs for mobile websites should incorporate many linear elements. Keep your
lines simple and your design functional. People using mobile devices with very small
screens will have a hard time viewing a page that is crowded with large elements. If
you position elements on your page on the basis of how they look on a specific device,
you may be disappointed to find that the page looks much different when viewed on a
different device. The more basic and linear the page design, the easier it will be for more
of your visitors to use.

Remember that there is little flexibility in horizontal movement on mobile websites.
You should orient your content so that users naturally move from the top to the bottom
of the page.

Interactivity

People using mobile devices generally aren’t using a mouse. Instead of a mouse, how-
ever, smartphones have many different features that users can activate by tapping on
the screen, and some of them have drag-and-drop functionality.

One of the conventions of web design is to avoid including elements that only users
who have the most advanced equipment can access. In design parlance, this is some-
times called accessibility. To make your site accessible to everyone, you should mini-
mize the elements that depend on the user having touch-screen functionality.

For example, on navigation menus, most users will navigate with “Up” and “Down”
buttons to move from one option to the next. This means that some of the elements com-
mon to regular websites—drop-down menus, links in discrete areas of a site—are not
always suitable for mobile websites. They can be downright frustrating to users whose
devices don’t allow for easy interaction with those particular elements.

Arrange navigation elements logically from the standpoint of someone using “Up”
and “Down” buttons to move around the site. Doing so doesn’t diminish the functional-
ity of the site at all for users with more advanced devices, but it makes life much easier
for those who have older phones.

If a lot of your users don’t have or aren’t likely to have newer mobile devices or
smartphones, you might want to consider offering your mobile site in WML. Any
mobile device can render pages written in this language. Not all older devices will be
able to render the XHTML-MP elements that you may intend. One difference between
mobile devices and personal computers, however, is that mobile devices tend to have
shorter lifetimes and that people tend to upgrade them much more frequently than they
do their computers.

11  D EVELOPING A M OBILE W EB A PPLIC A T ION

Images

Mobile devices, and especially the newer generation of smartphones, can accommodate
images on their screens. All mobile devices have two characteristics, however, that make
them inherently bad venues for large images and animations:

1.	 They have to accommodate very short download times.
2.	 The screen size makes viewing large images difficult.

As much as possible, eliminate images from your site. Then, you have to compress any
images that remain, such as logos or banners. Both JPEG and GIF formats are excellent
for mobile devices. As much as possible, however, your site should be text based to
optimize download times.

Bringing It All Together

Most WYSIWYG HTML editors today can accommodate mobile pages, and they usu-
ally include several different templates. Use one of these templates to lay out your site.
You don’t have to move beyond basic layout at this point, but concentrate on arranging
things in logical order and, if you have a test server, test the site on different mobile
devices.

It’s vital at this point to make sure that your graphics display as intended and that
your navigation menus are sensible and easy to move through on a mobile device. To
add style to mobile websites, it’s best to use CSS, which reduces the size of each page
and allows you to change design elements across the whole site by altering only one file.

World Conference on Soft Computing

The World Conference of Soft Computing (WSC3) conventions on HTML design are
very important when designing mobile sites as well. Check all of your code against the
conventions to make sure it’s valid. You can use online validators or the ones built into
most of the commercially available WYSIWYG editors. Because of the tremendous vari-
ability in how a page displays from one phone to the next, it’s important that your site
operates as predictably as possible, and that means making sure that your code is valid.

  13

3
 USING

CSS

T his chapter is a crash course in Cascading Style Sheets, or CSS; if you already
know how to use CSS, then this chapter will be a refresher. For a comprehensive
view of CSS, I recommend that you check out CSS: The Missing Manual, by David

McFarland (published in 2006 by O’Reilly Media). What’s important for you to know is
that, although CSS is certainly useful and beneficial in developing a mobile website, it is
not essential. If you don’t use it, you can still develop a fully functional mobile website.
So here are the basics.

The CSS tool was created to solve a specific problem with HTML, and it has since
proved among the most useful of all Internet innovations. In HTML, every piece of text
can have its properties specified individually. For example, you can specify that a cer-
tain line of text is red, underlined, and 12 points. If you want to, you can specify these
properties separately for each letter on a page. This method, however, vastly increases
the page’s size and, more important, creates a lot of extra work for the designers, who
have to specify each instance of how a link should look, how paragraph text should be
displayed, and so forth. CSS eliminates this hassle.

A Cascading Style Sheet is really just a text file. It is usually separate from the main
HTML code and, on the page, there is a call for that style sheet written into it that deter-
mines which style sheet will be used and, thus, how the page will look. Using CSS with
mobile devices requires the inclusion of some tweaks to the codes language. This led
to the development of Wireless CSS (or WCSS), which is tailored to mobile sites. If you
understand CSS fairly well, you should have no trouble understanding WCSS.

To understand how CSS works, think of your website as consisting of two main
parts. The first part is the content of the site, which is specified in the XHTML-MP docu-
ment that you created on the basis of your HTML site. The second part of the site is the
WCSS component, which determines how your site actually looks when it’s displayed
in a browser. With WCSS, you can also add some functionality and text effects.

How Powerful Is WCSS?

WCSS is enormously powerful. Basically, one text file controls the entire look of your
site, including every element on the page.

14 	 USING CSS

h1 {color: green}

p {color: 000000}

p

{

font-size: 8pt;

color: black;

}

#special

{

color: orange;

}

The syntax of CSS and WCSS are easy to understand. A selector identifies every
element on your page that can be tagged with HTML (e.g., H1, P, A). These selectors
have properties, such as color, size, ornamentation, and so forth, and all of those prop-
erties have values, such as red, 12 point, or underline. These properties are entered in a
very simple format. For example, if you want every H1-level heading on your site to be
green, the WCSS code is as follows:

You can also use the number code (i.e., hexadecimal code) to specify color. For example,
for all your paragraph text to be black, you would use the following code:

You can use any HTML tag as a selector. To specify multiple properties for any
given selector, separate them with a semicolon. In most cases, designers also place each
property on a separate line, with the closing curly bracket on a line of its own. For
example, for all paragraph text to be 8-point black, and specified as such in the style
sheet, you would properly express it in the following way:

This formatting of the text file does nothing to change how the WCSS renders your
page. It does, however, make it easier for other designers to pick up your work and to
see how you have set up everything—where mobile web pages are concerned, adhering
to standards is vital.

Expanding the Flexibility

ID selectors allow you to be more specific about the look of your page. An ID selector
refers to a single instance of an item. So, for example, if you want one specific text ele-
ment to render differently than all others, you could specify it in the CSS by using the
following line (for the purposes of example, we’ll name this class “special”):

15  USING CSS

.policy

{

color: red;

}

Class tags allow you to specify this for an entire class of recurring elements on your
page. For example, you could make all of the text that specifies library policy its own
class and set it off in red as follows:

The power in this is that you could change any property of every instance of the
specified class, or type of text, with no more than a few keystrokes. This has some cre-
ative uses as well. For instance, for the Fourth of July, you can change your mobile site’s
color scheme to red, white, and blue; during Halloween, you can make it orange and
black. You can make special style sheets and keep them on hand for various occasions,
or you can revamp your website by changing just one file.

Using CSS Intelligently

CSS is primarily useful because it reduces the amount of work it takes to develop and
maintain a site by reducing the complexity of making changes across your entire web-
site. To use CSS effectively, you need to keep your style sheets properly formatted and
your classes and IDs limited to elements that merit those distinctions. For example,
the more you separate common elements of your site into separate IDs and classes, the
harder it will be to make large-scale changes. As much as possible, keep your site con-
sistent with respect to the look of the headers and other elements; doing so will make it
easier to make broad changes.

You can also use CSS to format links. This is a good way to reduce your site’s depen-
dency on graphics, because you can get rid of JavaScript rollover images and other
resource-consuming elements that add little in the way of functionality. Simplifying
your site with CSS can reduce page-load times; keep a consistent look throughout the
pages; and make it easier to put new ideas into place when you want to change the site
around a bit, whether those changes are permanent or temporary.

Browser Sizes, CSS, and Positioning

You can use CSS to determine how all the elements on a web page are positioned in rela-
tion to one another, in relation to the corners of the screen, and in other ways. Because
of this, CSS more easily accommodates the needs of diverse visitors than HTML does.

CSS versus Tables

One of the easiest ways to position elements on a page in HTML is to use tables. The use
of tables dates back to when the language was first designed, and older pages tended

16 	 USING CSS

h1

{

position:absolute;

left:25px;

top:50px;

}

to use tables heavily. However, the use of tables has several disadvantages for mobile
websites.

Tables add information to the HTML page, as their dimensions and other proper-
ties have to be defined in the document. For mobile sites, reducing the size of files is
paramount, and CSS allows for this by keeping that information in an external file, not
in the document itself.

Tables are also clumsier with respect to laying out objects. When the specified dimen-
sions of objects are too large to be accommodated by a specific screen, tables tend to crowd
objects together or to bleed them off the side of the page. When objects are too small, tables
waste valuable page space. In this regard, CSS offers superior positioning options.

Absolute Positioning

Absolute positioning means specifying that elements of the page appear in specific
areas of the screen, regardless of the screen size. Absolute positioning can be used to
accommodate all users because the page elements display correctly on even the small-
est of screens. A well-designed page will always look good on larger screens, but there
will be more unused space on the display. The CSS for setting an element’s position in
absolute terms is written as follows:

This code tells the browser to display anything labeled <h1> at 25 pixels from the left
of the screen and 50 pixels from the top. That way, no matter the user’s screen size, the
mobile device will display content tagged “h1” in that position.

Relative Positioning

Relative positioning allows you to specify a container and position the page elements
within that container. This type of positioning is sometimes used on sites to better con-
trol for smaller resolutions. For example, if you have a borderless background, you can
frame your page within the confines of an 800 × 600 monitor resolution and position all
the elements on your page within that container.

Floating

Most web designers use floating to position elements, as this simply places elements
preferentially to the right or the left of the screen. If there isn’t room to accommodate

17  USING CSS

<link rel=“stylesheet” type=“text/css” href=“your_style_sheet_here.css” media=“all”>

the elements on the screen, then they can appear in a logical order that flows from top to
bottom. This accommodates the linear design requirements of mobile websites, which
makes this method very convenient.

Making Your First CSS Document

All you need to make a CSS document is a text editor. The selectors, their properties,
and their property values are expressed as detailed above, and there is little complexity
to deal with.

Embedded style sheets appear at the top of the document, within the header. To
change any given page that uses such a style sheet, you must change each style sheet
individually.

Linked style sheets are stored in a separate file, which offers the most convenience
when you need to make massive changes to a site. Your style sheet is called for in the
header of your document. The tag looks like this:

If you’re creating a style sheet manually, simply give it a name and save it in a direc-
tory on your website. In the header of your web page, paste in the previous tag. This will
link the page to the style sheet, and the style sheet will then determine the look of the
page. If you want to change the look of the page, simply specify a different style sheet
in the link.

Keeping It Simple

Remember that mobile devices have considerably less display area than computers.
When you start putting together the layout of your site, keep it very simple.

A popular page design for libraries makes use of three elements that allow users to
make the most of the mobile presence:

1.	 A banner with a phone number
2.	 Text links to other pages
3.	 A search field

For most libraries, these three elements make for an excellent home page. There are
few elements to arrange and, as long as the elements are designed with forethought
and correctly positioned, they should display effectively in every mobile web browser.
Because there is so little on the page, it will also load quickly. You can even eliminate the
graphic for the library logo altogether and replace it with a simple text link. This makes
the site more accommodating for those who have older-generation mobile devices.

Remember that the more your navigation relies on simple text links, the less space
you will lose to graphics. Of course, you can use CSS to make elegant text links, including

18 	 USING CSS

ones that provide rollover effects and other visually interesting elements—this is yet
another reason to employ the CSS tool whenever possible.

If you want to add graphical menus and other functionality to your mobile site,
you’ll need to learn a bit about JavaScript, which is a ubiquitous web language. However,
it is also complex and takes a qualified programmer to write it. Understanding how
JavaScript works and what it offers, however, is the last step in determining how to put
together your page.

  19

4
JAVASCRIPT AND MOBILE

WEBSITE DESIGN

T his chapter is meant to give you an overview of what JavaScript is and how it
functions—not to teach you everything you need to know; Danny Goodman’s
JavaScript Bible (published by Wiley in 2010) is the most comprehensive book

you’ll find on the subject. As with CSS, JavaScript isn’t required for developing a mobile
app, and it is less essential to designing a good app.

JavaScript is a client-side scripting language that allows users’ computers to execute
specific functions. In a less technical sense, JavaScript tells a device to perform various
tasks. For example, some search pages automatically place your cursor in the search
field for you. The cursor doesn’t go there on its own; the site often uses JavaScript to
place the cursor there.

JavaScript does not actually contribute a great deal to the layout of your page. There
are no websites, mobile or otherwise, that are built on JavaScript alone. It is, however,
an important element for adding functionality to your site, and to some extent, it can
add some visual appeal.

Getting JavaScript

JavaScript is extremely popular with both designers and programmers of regular web-
sites. The reason for this is the power that it allows designers to wield over the function-
ality of their pages. This is especially important for libraries, because using tools such
as these can cut costs considerably. For example, JavaScript allows coders to use a much
better known and more frequently used code and not take the time to learn a phones-
native language to do essentially the same thing.

You can download libraries of various JavaScript resources and include them in
your site, which is often easy to do and doesn’t take any real programming knowledge.
Usually, you only need to add a small script into the web page.

For mobile sites, though, JavaScript brings up some significant compatibility issues.
Moreover, by adding code directly to your page, you increase its size. For users with
browsers that lack JavaScript compatibility, that amounts to downloading extra data
that offer no benefit at all.

20 	 J A V A SCRIP T A N D M OBILE W EBSI T E D ESIGN

<script type=“text/javascript”>

document.write(‘Your message here!’); </script>

</noscript>

</body>

</html>

<html>

<head>

</head>

<body>

<script type=“text/javascript”>

document.write(‘ Your message here!’);

</script>

<noscript>

The Basics of Including JavaScript

Although you can add more advanced features with JavaScript, its support among
mobile devices is spotty at best, and you should test it thoroughly before deploying the
site to patrons.

JavaScript is a scripting language that works on any computer. It is included in
the HTML of a page and allows browsers to perform a variety of functions. The code
appears in the following format:

In the context of a full page, the script would be expressed in the following way:

Your browser either does not support JavaScript, or you have JavaScript turned off.

This script would tell the browser to write “Your message here!” on the page in the posi-
tion determined by the script’s location in the HTML. You can specify the font and other
attributes of the text, just as you can for any other element on an HTML page. JavaScript
can get very complex, though, and some large scripts constitute large parts of the con-
tent of some web pages.

In the event that the visitor’s browser doesn’t support JavaScript, the site visitor
would receive the message “Your browser either does not support JavaScript, or you
have JavaScript turned off.”

Some scripts are contained in the header of the HTML document and are called
at the point in the body where their output is desired by a second code. These scripts
can perform functions such as displaying dynamic information, providing messages
based on user actions, or date and time. They can also be used to process some types of
information and to perform simple functions. JavaScript can be custom coded, but even

21  J A V A SCRIP T A N D M OBILE W EBSI T E D ESIGN

professional designers tend to make heavy use of the free libraries available on the Web,
as those resources address the most common JavaScript issues.

JavaScript also is used in some cases to provide better accessibility to web page con-
tent, such as allowing users to make the page’s text bigger.

JavaScript and Forms

JavaScript is used heavily for the handling of forms. For libraries, these might be forms
that allow users to do a quick search of the site or of the card catalog or to update their
library account information. There’s no reason that you can’t provide these functions
on a mobile site; to perform them, however, the user has to provide you with specific
information. This can be more resource intensive than it sounds.

If a user submits a form with missing information to the server, the server has to
process the form, figure out what’s missing, and send it back to the user with the miss-
ing elements indicated. For mobile users, this can use up their airtime as they wait for
all this to happen. JavaScript can inspect a form as it’s filled out and, if there’s something
wrong, point that out to the user before they send it. This saves them time and saves
your server’s resources.

The drawback of using JavaScript is that many mobile web browsers do not sup-
port it at all. Therefore, adding JavaScript to your pages benefits only some of your
patrons and may make the site work more poorly for the rest of them. So, designing
with JavaScript is all about using it intelligently.

Where to Use JavaScript

If accessibility is an issue for your library, then you should have a version of your mobile
website that does not employ JavaScript at all. Older phones often cannot execute Java
Script, which will make some of your site’s features unavailable to some users. It’s prob-
ably the case, though, that most users are using newer-generation phones.

On newer-generation phones, there are several ways you can enhance their experi-
ence on your site. For example, you can add code to your site that will detect the size of
users’ screen and change the style sheet used to render the site accordingly. This means
that you can have a developed, ornate version of your site for the smartphone crowd
and a simpler version for those using older phones. Combined with CSS, JavaScript can
greatly increase accessibility in this way.

The way this works is fairly complex, but the overall concept is easy to understand.
Whenever a mobile device visits your website, you can query as to what kind of device
it is. When the information is sent back to the server, the server looks up the device on a
list of mobile devices and matches it to the right phone on the basis of the dimensions of
the screen. The phone information returned includes the screen dimensions, which the
server then uses to send users the right web page for those dimensions.

JavaScript is often used to make pop-up windows—the useful kind, not the kind that
was the source of much irritation in the past—animated menus, and other features that

22 	 J A V A SCRIP T A N D M OBILE W EBSI T E D ESIGN

add visual interest to the page. On mobile sites, these things are best avoided, mostly
because users navigate mobile websites differently than they do regular websites.

If you have different versions of your website for different devices, then you can
offer some JavaScript functionality for those devices that can run it. This can make sure
that devices that cannot process JavaScript do not receive versions of your page that are
unusable.

Mobile devices are increasingly making use of nearly full-fledged browsers rather
than specific apps for surfing the Web. This means that support for JavaScript among
mobile browsers is increasing, and it will likely become a more common element in
mobile web design.

Setting up a JavaScript element to detect smartphones can be useful, but it might
not always work out as you plan. Some mobile browsers don’t identify themselves cor-
rectly or are set up to identify themselves as a different type of browser, such as Internet
Explorer. In addition, not everyone with mobile devices that support JavaScript will
have the right feature turned on. In some cases, users block JavaScript altogether to
enable faster page-load times and to keep their browsers more secure. These are all con-
siderations when designing with JavaScript.

JavaScript Missteps

One of the most popular uses of JavaScript is to create menus. In some cases, menus
can be confusing to users. Users on mobile devices tend to navigate with buttons, not
a mouse, so that’s another reason to avoid going overboard with menus. For mobile
devices, you should avoid rollover mouse effects (e.g., a button lights up or shifts posi-
tion when you roll the cursor over it). On mobile devices, such menus require too much
code and too many resources.

It’s also important to make sure that your JavaScript applications are compatible
with mobile devices. For example, not all mobile devices might have a substitute for
the mouse, which means that the device might ignore altogether any events that are
linked to the mouse, which may cause problems with the page. There are variations
on JavaScript cursor actions designed to accommodate smartphones, but they are not
universal. For example, the current generation of smartphones does not reliably support
the drag-and-drop functionality that you can add to web pages with JavaScript.

There is expanding support for more mobile browsers, however. Free JavaScript
libraries have more and more features with every revision that can provide added
functionality to smartphone browsers. Some of the newest innovations include the
following:

▪▪ increasing support for touch screens
▪▪ support for scroll bars being placed within browsers
▪▪ support for more sophisticated animation

Because there is so much variation among mobile devices, however, there is still great
inconsistency in JavaScript compatibility.

23  J A V A SCRIP T A N D M OBILE W EBSI T E D ESIGN

JavaScript Applications

JavaScript is oftentimes used to create browser-based applications, such as measure-
ment converters and simple games. However, these applications can become very com-
plex, especially on very developed websites that offer a great deal of user functionality.

On mobile websites, applications can be a problem because of compatibility issues.
Although they’re great for incorporating into your main website, the mobile versions of
most major websites eliminate JavaScript applications altogether. The potential benefits
of using complex JavaScript applications are simply not reliably delivered even by the
most advanced smartphones, although compatibility is sure to increase with time.

Is It Viable?

Presently, mobile devices do not universally support JavaScript. This means that, in
terms of accessibility, a library would have to offer a JavaScript-free version of any page
it currently publishes on its website to enable the widest variety of users to access it.
Functions that are completely dependent on JavaScript will not be available to those
whose phones cannot support it. Some phones do support JavaScript, but it may not
function as intended, particularly for user-action-triggered events, such as mouse-overs
and hovers. This may make JavaScript unsuitable for some libraries and for the majority
of their patrons.

However, you can use JavaScript in limited deployments and offer your visitors
increased functionality and more convenience, especially in handling forms and other
basic needs.

You can quite easily and inexpensively test JavaScript’s suitability on your website.
Because of the many free JavaScript libraries available and because anyone who can edit
HTML can install the scripts on a page quite easily, you can check to see whether adding
a feature based on JavaScript provides a better experience for your clients. Make sure
you test it yourself on various devices: smartphones use different browsers, so check the
functionality of your page on all smartphones.

Again, the most important element of mobile web design is simplicity. However
advanced and developed your main site is, you’ll have to strip it down to the essentials
to make it useful for those who prefer to access it on the go. In some ways, your mobile
site mirrors what you have on your main site, but it is better thought of as a separate
entity altogether. It might contain a great deal of the same content as your main site, but
it will be directed toward providing the fastest, most efficient, and most no-nonsense
user experience possible. However, as mobile web use rapidly increases, there will be a
significantly increased demand among library users to have library resources available
on mobile devices.

Where Can Libraries Use JavaScript?

If you are trying to decide whether you should learn JavaScript, you first need to ask
how the library can use it. Two common uses for JavaScript is in developing forms and

24 	 J A V A SCRIP T A N D M OBILE W EBSI T E D ESIGN

providing a chat-based reference service. It also is nice to have a place for patrons to add
and send comments, or to create a library application page where patrons can apply for
a library card from their phone, or to find out when the next computer is available, or to
create a mobile-friendly catalog. But whether it’s worth the time to learn the language is
up to you. For chat-based services especially, there are relatively cheap non-JavaScript
options as well, so it might be in your interest to use one of those services and save your-
self the trouble of learning the language. If you don’t already know Java programming,
then you will probably be better off designing an app without it and looking into adding
in JavaScript to the app later.

  25

5
PHONEGAP

I decided that I was going to develop an iPhone app several months ago. It was the lat-
est way to make money, so I figured, Why don’t I jump on the bandwagon? I checked
out some books on iPhone development and watched a few YouTube videos. After

about ten hours of research, the furthest I was able to get was to download the iPhone
SDK. I’ve had my share of programming courses in college, and I was developing web-
sites before most people even had computers with modems. I say this so you under-
stand just how complicated programming apps can be.

I’m not an expert in programming language; I understand the theories behind it,
but I know little about how to actually write code. When mobile development was just
getting started, I was out of luck. However, a relatively new program called PhoneGap
is helping bridge the divide for people with no or limited programming skills.

PhoneGap got started in 2009 at the iPhoneDevCamp. The program allows devel-
opers to create a page like they would for the mobile web—with HTML, CSS, and
JavaScript—and quickly convert it to a language that’s supported as a native app.
Although PhoneGap is simple enough for anyone to use, companies like Wine.com
have successfully built powerful apps with its framework.

The best thing about PhoneGap is that it’s free and open source. But regardless of
whether you will develop a mobile app, PhoneGap is a valuable resource if only because
it has simulators to let you see what a website looks like on a particular phone without
actually having the phone.

PhoneGap Features

So, exactly what does PhoneGap do? In short, the PhoneGap software helps you turn
a website into a mobile app. In theory, instead of learning several different mobile pro-
gramming languages, you only need to know HTML. In practice, it’s best to also know
CSS and JavaScript, but knowing HTML will get you started.

PhoneGap also lets you take advantage of the features of individual cell phones
(e.g., geolocation, accelerometer). Table 5.1 shows a list of all supported features of
PhoneGap.

26 	 P H ONEG A P

What follows is a brief explanation of the PhoneGap features and examples of how
they work in practice:

Geolocation: Geolocation is a feature in every newer-generation smartphone that
enables the phone to use its internal GPS to determine its real-time location.
What does that mean for an app? It could, for instance, let library patrons find
out where the library is located in relation to their own position and help them
get directions.

Vibration: Vibration lets you take advantage of the internal vibration setting
available on phones. For example, developers could create an app that notifies
users of alerts through vibration.

Accelerometer: An accelerometer is a feature first made popular by the iPhone
but now available in nearly all phones. This feature rotates the screen when
the phone is turned on its side.

Camera: All camera phones are built differently, and using the camera feature will
likely result in some glitches.

A complete list of PhoneGap’s features can be found online (http://wiki.phonegap
.com/Roadmap/); the site is updated often and includes extra documents and discus-
sions where developers can find support.

Viewing Your Website on PhoneGap

Now it’s time to see how your library’s website looks on a mobile device. If you have a
mobile phone, then this is easy; but just because your website looks great on Android
doesn’t mean that it will look equally great on an iPhone or a BlackBerry.

iPhone Android BlackBerry Symbian Palm

Geolocation X X X X X

Vibration X X X X X

Accelerometer X X OS 4.7 X X

Sound X X X X X

Contact support X X X X

Camera X X X X

Multitouch X X

Copy and paste X

Table 5.1  Supported Features of PhoneGap

27  P H ONEG A P

Figures 5.1 and 5.2 show two websites from the New York Times; figure 5.1 shows
how the site looks on the iPod and iPhone as a regular site (not a mobile one); it’s nearly
impossible to read without zooming in, which isn’t always practical for every user. Figure
5.2 is the New York Times mobile site, which is much easier to read on a smaller screen.

Figure 5.1 Figure 5.2

You want to know what your mobile site looks like on every phone imaginable.
PhoneGap makes this easy; it has cell phone skins for testing websites on nine different
phones (iPhone, Android G1, Blackberry Storm, Blackberry Bold, Palm Pre, Nokia N97,
Samsung Epix, Sony Ericsson Satio, Sony Ericsson Rachael).

To test a website, run the PhoneGap Simulator (www.phonegap.com/tools/). When
the Debug Panel (shown in figure 5.3) appears, type in the website address in the address
bar and then click the right-arrow button.

Figure 5.3

28 	 P H ONEG A P

Redirecting to a Mobile Site

If you decide to have a mobile version of your site, then you will have to decide how to
get phone users to it. There are two ways. First, simply have two addresses that you give
out: a computer address and a mobile address. You can tell your patrons to add “m” to
the address when accessing the site from a phone (e.g., m.library.com).

The second way is a little more difficult. It requires that you add code into your page
that tells the page to search for the user’s browser. If they are using a mobile browser,
then they will be redirected to the mobile-friendly site. You need to understand PHP
programming to implement such a task. You can also buy the code for $50 (http://detect
mobilebrowsers.mobi/).

Implementing PhoneGap

I won’t go into detail here about how to get the apps onto every phone—it varies widely
depending on the phone and there are often monthly updates. But you can readily find
any information you need on each phone’s website or check out the information pro-
vided at PhoneGap:

▪▪ iPhone: http://www.phonegap.com/start#ios
▪▪ Android: http://www.phonegap.com/start#android
▪▪ BlackBerry: http://www.phonegap.com/start#blackberry
▪▪ WebOS: http://www.phonegap.com/start#webos
▪▪ Symbian: http://www.phonegap.com/start#symbian
▪▪ Windows Mobile: http://phonegap.pbworks.com/

Getting-Started-with-PhoneGap-(WiMo)

If you want to view the website using a different skin, then click once on Menu in
the PhoneGap Debug Panel, select Skin, and pick the phone that you want to switch to
(figure 5.4).

Figure 5.4

  29

Creating a Bare-Bones Native App

This chapter will help you create a quick, bare-bones app that will run on the iPhone. I
use the iPhone as an example because it is the device that most users will have for native
apps—although Android is quickly catching up. The iPhone is also the easiest device to
quickly develop apps for.

Despite some negative press about the iPhone app process being overly protec-
tive and the rejection of apps left and right, it is surprisingly easy and very friendly to
PhoneGap’s open-source framework. As long as you adhere to the iPhone guidelines,
which aren’t as strict as they are sometimes made out to be, you will have no problem
developing your app.

The first thing you need to do before you begin developing any app, be it mobile
or web, is to draft a concept of what you want it to include and look like. I recommend
MockApp (www.mockapp.com), a free service that lets you use PowerPoint to develop
a sample iPhone app, one that you can run on your device as a PDF. It’s one thing to tell
library administrators that the library needs an iPhone app; it’s another thing to show
them what the app will look like. Developing a sam-
ple app will let you quickly demonstrate what the
app will look like and how patrons can take advan-
tage of its features. As you develop the app, keep in
mind that you don’t want to have to update things
too frequently.

I show here the app that I developed for this book
(it’s meant to look like an iPhone screen). The end of
the chapter provides the code for the app.

Unlike a mobile web app, for which you have to
be very careful with images, native apps can feature
a few more graphics (see figure 6.1). All of the images
I used for this basic app came from the Open Clip Art
Library (www.openclipart.org), a great resource for
libraries.

Box 3 shows the code used for figure 6.1 for your
reference.

6
building your first

native app

Figure 6.1

30 	 BUIL D ING YOUR FIRS T N A T IVE A PP

Box 3  n C ode for Library App

<HTML>

<head>

<title>Generic Library Logo</title>

<style type=“text/css”>

.style1 {

text-align: center;

}

.style2 {

text-align: center;

font-size: x-large;

}

.style3 {

margin-right: 0px;

}

</style>

</head>

<body>

<table style=“width: 852px; height: 115px”>

<tr>

 <td class=“style2” colspan=“3” style=“height: 19px”>Generic

 Library Logo</td>

</tr>

<tr>

 <td class=“style1” style=“height: 23px; width: 283px”>

 Callstrong></td>

 <td class=“style1” style=“height: 23px; width: 283px”>

 Hours</td>

 <td class=“style1” style=“height: 23px; width: 284px”>

 Locations</td>

</tr>

<tr>

 <td class=“style1” style=“height: 23px; width: 283px”>

31  BUIL D ING YOUR FIRS T N A T IVE A PP

 Find a

 Book</td>

 <td class=“style1” style=“height: 23px; width: 283px”>

 Research</td>

 <td class=“style1” style=“height: 23px; width: 284px”>

 Children's

 Services</td>

</tr>

<tr>

 <td class=“style1” style=“height: 23px; width: 283px”>

 Teen

 Program</td>

 <td class=“style1” style=“height: 23px; width: 283px”>

 Computer

 Classes</td>

 <td class=“style1” style=“height: 23px; width: 284px”>

 Text a

 Question</td>

</tr>

<tr>

 <td class=“style1” colspan=“3” style=“height: 19px”>

 About</td>

</tr>

</table>

</body>

</html>

32 	 BUIL D ING YOUR FIRS T N A T IVE A PP

So let’s talk about this app. All the buttons are placed in what I considered the
order of most importance to patrons. The most popular buttons will likely be “Call the
Library” and “Hours.” This is what will be the Home screen.

Generic Library Logo: Whenever possible, I recommend using the logo that
patrons already know; try to also use similar colors as on your main web page.
Remember, however, that users won’t be normal computer users—people who
access the app are frequently outside and their screen is harder to see. Colors
are even more important on a cell phone than on a computer.

Call: When creating apps there are two kinds of buttons; the first is a hyperlink
that takes you to another page. The second is an action button. Action buttons
do exactly what the word action says. They might tell the phone that the user
wants to call a number; when pressed, the phone automatically launches the
dialer and begins to make a call (see the end of this chapter for the code used
for the action button).

Hours: You can do one of two things with the “Hours” link: you can create a
mobile page with hours of operation, which is the simplest and quickest
approach, or you can create a script that counts down the number of minutes
until the library either closes or reopens again.

Locations: Patrons want to know not just where the library is but also how to get
there; this is where a mobile app can help. To keep things simple, I won’t go into
using GPS; if you want to know more, refer to the PhoneGap website tutorial
(http://phonegap.pbworks.com/PhoneGap-Tutorial:-Get-GPS-Coordinates/).

Find a Book: Most libraries will be a little limited in the “Find a Book” option
because, unfortunately, many vendors haven’t yet gone mobile, so it’s difficult
to make a mobile-friendly version of your catalog. In the chapter on advanced
features, I talk a little bit about a workaround to this. If your catalog vendor
does not currently offer a web app, start asking why. Few vendors have caught
on, and they won’t until librarians continually ask for it.

Research: Many research providers have yet to go mobile, so make sure you
encourage them to do so. One vendor that has gone mobile is Gale, which has
a terrific app called AccessMyLibrary. The app lets patrons use the database
from their phone if they are within a ten-mile radius of the library—and no
log-in is required. Even if you do not decide to develop an app, you can pro-
mote this service.

Children’s and Teen Programs: Obviously, you will want to reference the services
you actually have in the library on this page; it is also possible, however, to put

33  BUIL D ING YOUR FIRS T N A T IVE A PP

games on this page. There are a number of places you can go to get JavaScript-
based games that you could implement on these pages; a Google search will
give you literally thousands of pages—some are open source, some are paid.
JavaScript, especially on the iPhone, can be tricky; make sure you test the page
to see if the JavaScript code actually works. When you are getting code from
the Internet to use on a mobile app, it can be hit or miss.

Computer Classes: The next chapter goes into greater detail on this topic, but
one thing to consider is providing videos of different classes or two- to three-
minute demos of how to do different things on the computer—or even a
hyperlink to a helpful YouTube video on different computer-related subjects.

Text a Question: If you don’t have a texting service at the library, get one! It’s
free! Google Voice is fine for most libraries. There’s an easy code for an
action button for this. Just add the following code to your app: <a href=“
sms:1234133424243”>Text a Question.

About: This is where you can explain the app’s purpose and who to contact to
report any bugs or glitches.

All the information on the app so far easily applies to web apps. Changing your app to
an iPhone app requires only one or two extra steps.

The District of Columbia Public Library was one of the first public libraries to build
an app for its book catalog; the library put the code for the app online, and it’s free to
copy (http://dclibrarylabs.org/projects/iphone/). You may not want to use it (or may not
even like it), but it’s a good reference to start with as you begin to learn about code.

Putting the App on the iPhone and iPod Touch

To begin installing your app on the iPhone, you will need to download both the iPhone
SDK and PhoneGap (on an Intel-based Mac computer) from the following websites:

iPhone SDK: http://developer.apple.com/iphone/index.action/

PhoneGap: www.phonegap.com

It’s important that you save all of your mobile web files with the HTML extension
(not HTM). If you have saved them as HTM, then make sure to rename them with the
appropriate extension before proceeding. Also, make sure that your home page file is
named “index.html.”

Then move the mobile website you have created into the PhoneGap directory. After
unzipping the PhoneGap files, open the PhoneGap directory and then open the iPhone
directory (figure 6.2).

34 	 BUIL D ING YOUR FIRS T N A T IVE A PP

The iPhone app structure has already been created, so what you are doing at this
point is simply applying your mobile web app to a prebuilt template. You can then drag
and drop all of your mobile web app files into the WWW directory (figure 6.3).

Figure 6.2

Figure 6.3

Your first iPhone app is now complete! Yes, it really is that quick! There are still
some tweaks left to perform, but the description here should give you a good idea of just
how easy it is to get started developing apps for the iPhone.

To see your app in action, go back to the PhoneGap and iPhone directory and open
the file “PhoneGap.xcodeproj.” This will launch Xcode, the iPhone developer software
(figure 6.4).

35  BUIL D ING YOUR FIRS T N A T IVE A PP

Next, click the drop-down menu in the upper-
left corner of Xcode, make sure it is set to “Debug,”
and then select the simulator you want to run. It’s
best to select the most current simulator (iPhone
4.0), because that is the device that most people
will have. It is also a good idea to ensure that the
simulator runs on all platforms. For example, if
you select iPad as your simulator, it will run the
app as an iPhone app, not an iPad app, and so
the app will appear significantly smaller than it
would normally (figure 6.5).

You are now ready to build the app. Click the
“Build and Run” button.

Figure 6.4

Figure 6.5

After about ten seconds the simulator will launch, and your app will appear. If it
does not launch and you see red or yellow flags in the lower-right side of the screen,
click on the flags to examine the message.

You will notice two things the first time the app loads. First, the icon is for PhoneGap;
second, the loading image reads “PhoneGap.” Let’s see how to get rid of those two
graphics and replace them with library images.

Close the Xcode program and simulator.
Now, let’s make an iPhone app icon. It’s simple. Create an image with a dimension

of 57 × 57; use the file name “icon.png” to save the image. Move the file you created into
the PhoneGap and iPhone directory. The file will replace the already-created “icon.png”
and replace it with your new one.

Next, let’s change the start-up image. Repeat the steps to create an icon, except this
time name your image “Default.png” and make sure it has the following dimensions:
320 × 480. Move this image into the PhoneGap and iPhone directory.

36 	 BUIL D ING YOUR FIRS T N A T IVE A PP

Before launching the Xcode app again, rename “PhoneGap.xcodeproj” to your
actual app name (i.e., “libraryapp.xcodeproj”); for our purposes, let’s use “library
.xcodeproj” as a file name. Once you rename it, open the file again, which will relaunch
the Xcode software.

At this point, your icons and start-up screen will have changed, but the icon will still
read “PhoneGap.” To change the name that appears, click on the Config directory in the
open window (figure 6.6).

Figure 6.8

Figure 6.7

Before loading your app in the simulator again, go to the top of the screen, click on
Build, and then click on Clean All Targets (figure 6.8). It is advisable to do this before
you run the simulator, just to make sure that you’ve saved and updated all changes.

Figure 6.6

This will bring up a new window at the lower-right side of the screen (figure 6.7).
Under “Bundle display name,” click on PhoneGap and then type in the name that you
want to appear. For our purposes, I used the name “Library App.”

37  BUIL D ING YOUR FIRS T N A T IVE A PP

Finally, click on “Build and Run.” Everything should now look as you want it to.

Moving Your App from the Simulator to the iPhone

To move the app from your computer to your iPhone or iPod for testing purposes (not
to put on the app store, which takes a little bit more work), you will need to obtain a
provisioning profile for your app, for your device, and for yourself.

The first step is to go to the iOS Dev Center site (http://developer.apple.com/iphone/)
to register to become a developer. Once you are logged in, you will see a menu bar on
the right that reads “iPhone Developer Program” (figure 6.9).

Figure 6.9

Figure 6.10

Next, click on iPhone Provisioning Profile. Then click on App IDs at the left-hand
side; click on New App ID and fill in the information for your app.

Next, click on Provisioning at the left side of the screen and select New Profile. Once
you’ve created the profile, download it to your computer. In the next few steps, we will
match the profile to the key that you’ll generate for the iPhone or iPod that you wish to
test the app on.

After you have created your provisioning profile, you’ll want to return to the Xcode
Organizer (located in the Window menu) to pull the product identifier from your device
(figure 6.10). Once you’ve plugged in the device and opened the organizer, click on
Provisioning Profile and copy the app identifier. Next, go back into Xcode, click on Info
.plist, and go to the box in the lower-right pane (figure 6.11). Change the bundle identi-
fier to the one you have just copied, but leave in your user name.

38 	 BUIL D ING YOUR FIRS T N A T IVE A PP

If you have done everything correctly, there will be a delay of approximately ten
seconds before the iPod or iPhone turns on. If you missed a step, then in your device
organizer there will be an orange circle next to the device (figure 6.13). When you click

So your app ID should look something like this: IDNUMBER.com.scottlacounte
.libraryapp (App ID.com.PROFILE NAME.APP NAME).

When you have installed all of the certificates and are finally read to go, the most
important step is to make sure the Xcode is set to Device and not Simulator (figure 6.12).
Until you switch this, the app will not load on the iPod or iPhone.

Figure 6.11

Figure 6.12

39  BUIL D ING YOUR FIRS T N A T IVE A PP

on the device, it will tell you what the error is. The
most common error has to do with the provision-
ing profile not matching the device, which means
that there is a certificate missing. Double-check
the iOS Dev Center page to make sure you have
downloaded all the certificates.

Once you are satisfied with your app and
ready to sell it, then you will need to follow the
instructions online to do so. You’ll also need to
pay the $99 registration fee for developers.

Testing Core Users

Once you have an app ready to go, the final thing to consider is the best way to promote
it. For example, people who will use the app are not necessarily the same people who
visit the library regularly. How can you promote a service to a group of users whom you
might not see on a regular basis?

One way to reach your user base is through a local online campaign. If the library
does not have a Facebook page, then it should create one—fan pages regularly attract
nonregular library users or people who want to know what’s going on in their commu-
nity but don’t frequently visit the library.

Many businesspeople use smartphones—with this user base, you might collabo-
rate with restaurants and coffeehouses near business areas of the city. Many businesses
would be glad to leave out flyers advertising your app, especially if you include their
name on the app in a sponsor category or work out some other arrangement. To get
people into the library whom you might not usually see, you might put a coupon for a
free video rental on the app—all they have to do is show the coupon on their phone and
then the library would make a note that the patron has used the rental coupon.

To publicize your app, you can also look beyond the library at what businesses
have done to get people on their Facebook pages or websites. Many local Chick-fil-A
Facebook fan pages, for example, post code words each week on the fan page. If you go
to the restaurant on a certain day and say the code word, then you get a reward. People
visit the page fanatically to keep up to date just so they don’t miss out on something.
Thousands of other businesses have similar strategies.

Phones don’t have a lot of storage or screen space. So you need to make your app
appealing. If patrons have to choose between leaving the iPhone app for the Internet
Movie Database on their phone and the library’s app, will they really choose the library’s?
Why not? As you develop the app, continually ask yourself, “What will make people
come back again and again?” For example, why would patrons bother downloading an
app that tells them what time the library closes?

Library apps need to be interactive. If it was easy to communicate with librar-
ians through an app, and if there are lots of phone-enabled research tools, then the
app becomes a more essential tool. If it’s not interactive, users will go with other apps
every time.

Figure 6.13

40 	 BUIL D ING YOUR FIRS T N A T IVE A PP

Gale’s AccessMyLibrary app is free for your patrons to use, and they probably don’t
even know it exists. This is a great app to make your patrons aware of through your own
app. Through your own library’s app, patrons can access Gale’s research tools at any
library within a ten-mile radius and without logging in.

If there is an incentive for patrons to download the app, then you will find users.
If not, then you will have wasted a lot of resources. Mobile apps are a bit like animated
graphics; when the Internet first became big, every amateur web designer showed off
their talents with a flashy animated GIF. Those GIFs were definitely flashy, but after
about three seconds, they became quite annoying. In a nutshell, iPhone apps work in
the same way—for every excellent app, there are at least ten apps that fail. Unless your
mission in developing an app is to do something cool and flashy and short lived, then
think interactive.

  41

T he point of this book is to make building an app as simple as possible. You can
add JavaScript to your app to make it flashier, but talking in detail about Java
Script would take away from the point of this book—keeping it simple.

JavaScript is a pretty powerful language that can do a lot of things, but learning
it isn’t essential to building a great-looking app. If you know JavaScript, then use it;
if you don’t, then there’s another option: widgets. If you blog or read blogs, then you
likely know all about widgets, even if you don’t know them by name. Widgets are the
small little boxes that sit on the sidebars of blogs and offer links to things like Twitter,
Facebook, and Google News streams. Widgets appear on the surface to be quite simple,
but there are pages of code built into each one. The good news is that you don’t have to
know the code to build them.

A simple Web search for “widgets” turns up thousands of pages that offer customiz-
able widgets; some are free, and others have small fees attached. You’ll need to watch
out for widgets that use Flash (which many phones do not currently support—most
notably, the iPhone).

Many websites also offer widgets. Twitter is the perfect example. On the widget
web page for Twitter (https://twitter.com/widgets/) you can build a custom widget in
just a couple of short steps.

First, on the widget page, select My Website (figure 7.1).
On the following page you will

see several options; choose Profile
Widget, which will display your
library’s most recent tweets.

Next, you can customize your
widget (figure 7.2). Under the user
name, you ideally would put the
name of your library, but you can
also put authors, magazines, or the
name of anyone else with a public
Twitter account. This would give
your app content if you don’t have
time to do it yourself.

7
beyond the

basics

Figure 7.1

42 	 BEYON D T H E B A SICS

Under Preferences, you can select how many tweets you display. Although the limit
on Twitter is thirty tweets, it is advisable to consider the screen size of the mobile device
you are developing for. You don’t want users to have to scroll too much—ideally, you
don’t want them to scroll at all. Because of that, you might keep the number of tweets
displayed to four.

Under Appearance, make sure the colors you select match the colors of your app.
Under dimensions, you can adjust them to the dimensions of the phone or choose auto
width if you want it to resize the widget yourself.

Finally, go to the bottom of the page and select Finish & Grab Code (figure 7.3). Now
just copy the code and paste it into your app’s code.

Figure 7.2

Figure 7.3

If you are thinking about providing a chat-based reference service (if you are not,
you should be—by not doing so, you’ll miss an entire generation of users), then con-
sider LibraryH3lp (http://libraryh3lp.com). There is a small annual fee for the site’s ser-
vice (which varies depending on the size of the city you’re in), but it is much cheaper
than many similar services. Meebo and Google Talk offer free chat services, but their
widgets use Flash, so they aren’t supported on the iPhone app. In contrast, LibraryH3lp
uses Java, so it’s app friendly. Box 4 displays the source code of LibraryH3lp’s widget.

In a mobile browser, the code from box 4 would look similar to figure 7.4.
Widgetbox (www.widgetbox.com) is one of the most popular widget builders; it’s

free but advertisement supported. A pro version (without the ads) is also available,
starting at $29.99 a year. The site offers both Flash- and Java-based widgets.

Facebook also provides steps for embedding profiles into websites (http://develop
ers.facebook.com/docs/guides/web/). Widgetbox, however, makes a much more user-
friendly version, and if you are new to development, it is the better choice. Just make
sure you copy the Java-based version of the widget and not the Flash-based one.

43  BEYON D T H E B A SICS

Box 4  n S ource Code for Library H3lp’s Widget

<html xmlns=“http://www.w3.org/1999/xhtml” xml:lang=“en” lang=“en”>

 <head>

 <meta http-equiv=content-type content=“text/html; charset=UTF-8”>

 <meta name=“viewport” content=“width=device-width, initial-scale=1.0 user-

scalable=yes” />

 <title></title>

 <link type=“text/css” rel=“stylesheet” href=“/css/mobile.css” />

 <style id=“dynamic” type=“text/css”>

 </style>

 <script type=“text/javascript” src=“http://ajax.googleapis.com/ajax/libs/jquery/1.3.2/

jquery.min.js”></script>

 <script type=“text/javascript” src=“http://d1aaqh87bn7fin.cloudfront.net/

mobile_2010011801.min.js”></script>

 <!—

 <script type=“text/javascript” src=“/js/lib/strophe.js”></script>

 <script type=“text/javascript” src=“/emoticons/emoticons.js”></script>

 <script type=“text/javascript” src=“/js/mobile.js”></script>

 —>

 </head>

 <body>

 <div id=“header”>

 <h1 id=“title”></h1>

 </div>

 <div id=“to” jid=“my-queue@chat.libraryh3lp.com” lang=“en”></div>

 <div id=“recv”></div>

 <div id=“send”>

 <form action=“#” method=“post” onSubmit=“return false;”>

 <textarea id=“msg”>chat requires javascript...

</textarea>

 </form>

 <div id=“buttons”><img

height=“42” width=“30” src=“/images/mobilesend.png” /></div>

 </div>

 <div id=“status”><a id=“mail” href=“#” onclick=“libraryh3lp.mailTranscript(); return

false;”>Email transcript

</div>

 </body>

</html>

44 	 BEYON D T H E B A SICS

Figure 7.4

Widgetbox also makes it easy to develop a mobile app (www.widgetbox.com/
mobile/). If you want a basic mobile web app (not a native app) that shows Twitter,
Facebook, or Flickr updates, then Widgetbox might work well for the library; it does
not, however, allow for users to edit the source code, and you might quickly find it to be
too restrictive for your library.

Widgipedia (www.widgipedia.com) is another great resource for finding widgets;
however, they are user submitted and customizable.

PhoneGap offers several codes that developers can copy for use in their own
app; you can find these in the Community section of the website (www.phonegap
.com/community/). It’s frequently updated, so check back often. A useful code is for
including a map, based on the phone’s GPS (http://phonegap.pbworks.com/Phone
Gap-Geolocation-Sample-Application).

I have tested all of the widgets and tools in this chapter to ensure that they will work
with an iPhone app. As I have said before, however, JavaScript is tricky on mobile web
apps and native apps, so always test before implementing. For every JavaScript that I
have tested successfully on a native iPhone app, a dozen more come back with errors.

  45

8
 other ways

to GO mobile

T he point of this book is to show librarians how simple it can be to develop mobile
applications. For the most part, mobile apps run on smartphones. However,
librarians can also proactively investigate other mobile application program-

ming interfaces (APIs).
Foursquare (for documentation information, see http://groups.google.com/group/

foursquare-api/web/api-documentation/), which some bill as the next Twitter, is a
location-based social media app that allows people to tell their friends exactly where
they are and become “mayors” of locations they visit frequently. Gowalla (http://
gowalla.com) is another social website like Foursquare that’s growing in popularity;
unlike Foursquare, though, Gowalla offers a little more in terms of customization.

When thinking about mobile apps, libraries should think of as many free technolo-
gies as possible for promotion—Foursquare and Yelp already have apps that you can
easily link to. If your library has not staked its claim on Foursquare, why not? It’s a per-
fect avenue for promotion—people can check into the library with the library app and
get something for free—free videos, reduced fines, small prizes, and so on.

Some of the best social media sites that work on mobile phones are the same ones
that are most popular on the Web: Facebook, Twitter, YouTube, and Flickr. If your library
doesn’t have a Facebook fan page, it’s time. This is true too, though to a lesser extent,
with the other three. What better way to showcase your library programming than with
videos and photos? What’s great about all the social media sites is that they are inte-
grated together—you can feed Twitter updates into Facebook and share YouTube vid-
eos and Flickr slide shows instantly on Twitter and Facebook. The best thing about these
sites, however, is that you don’t have to do anything to go mobile. If you have a page on
Twitter or Facebook, it’s already mobile compatible—no extra steps are required.

Librarians don’t give you answers—they merely point you in the right direction.
Your app should work the same way. Save yourself time and trouble by finding code
that’s already finished. I hope you decide to develop a mobile app, but at the very least,
I hope you make sure that your library is actively involved in the mobile technologies
mentioned here.

46 	 O T H ER W A YS T O GO M OBILE

WYSIWYG App Editors

Mobile app development is a powerful library tool that every library should try out
in some capacity, but not every library will have the time and/or resources to make it
happen. For this reason, it’s worth noting some alternate solutions. The disadvantage
of using the alternates is their cost and, in most cases, the limited ability they offer to
customize apps. Their advantages are that they will help you set up much quicker and
nearly guarantee that your app will make it into an app store.

Some of the tools listed here will basically build an app for you; others provide
an easy WYSIWYG interface. All are available for the iPhone; most are available for
Android; some are available for BlackBerry and other mobile devices.

The up-front costs of these interfaces can be expensive, but the cost is next to noth-
ing compared with what you would pay a programmer to take on the project.

Appanda
Website: www.appanda.com
Platform: Do-it-yourself (DIY) app solution for iPhone and Android
Summary: Appanda is best for libraries that want to feature only iPhone and/or
Android versions of already-existing content (e.g., feeding in a blog or a video hosted
on YouTube).
Pricing: $29.99 per month plus a onetime activation fee of $99

Swebapps
Website: www.swebapps.com
Platform: iPhone
Summary: The interface is a bit more visually appeasing than some do-it-yourself apps
that feature a boxier look. Swebapps has all the same features as other DIY builders but
also incorporates tools to create forms, lists, maps, and events pages.
Pricing: Basic plan starts at $29 a month, plus a $399 onetime fee

AppBreeder
Website: www.appbreeder.com
Platform: iPhone and web app
Summary: There are no up-front fees, but the site is limited in terms of customization
and has a very generic look.
Pricing: $29–$49 per month for iPhone app or free web app

My App Builder
Website: www.myappbuilder.com
Platform: iPhone and Android
Summary: There are no up-front fees, but the website offers few screen shots and few
details about features.
Pricing: $29 per month

http://www.appanda.com/
http://www.swebapps.com/
http://www.appbreeder.com/
http://www.myappbuilder.com/

47  O T H ER W A YS T O GO M OBILE

Build an App
Website: www.buildanapp.com
Platform: BlackBerry, Android, Windows Mobile, Mobile Web, iPhone
Summary: Available on more devices than most app builders, and for a price that
is cheaper than most, but the app has a very generic look and is limited in terms of
customization.
Pricing: $14 a month and $19 setup fee for all apps, but iPhone app requires $199 setup
fee

Mobile App Loader
Website: www.mobileapploader.com
Platform: iPhone, iPad, and Android
Summary: This is not the best-looking app builder, but it has low fees and is one of a
few compatible with the iPad. Don’t let the price fool you, however; extra buttons and
features incur additional fees. There is also not a lot of room for customization.
Pricing: $4.99 per month and $59.99 setup fee

Game Salad
This DIY editor is for games. It isn’t ideal for libraries, but it might be something to con-
sider for teens. A program that lets teens build a game would be a great program. Best of
all, it’s free! Unfortunately, a Mac is required (http://gamesalad.com/landing/overview).

Google App Inventor

Things were more complex for app developers just a few years ago—PhoneGap cer-
tainly has helped take away the complexity of mobile app development. In the past
year, dozens of virtual companies have emerged promising to assist users who want to
go mobile but lack programming skills. In this section I discuss Google’s App Inventor
(http://appinventor.googlelabs.com).

In my experience, developing apps for the iPhone is much simpler than developing
for Android; Apple has spent much more money on app development, and it’s obvious
in its presentation and SDK functionality. Google is still playing catch-up. If you want to
develop an app using PhoneGap, then refer to the appendix, which gives a list of where
to go for tutorials on the Web. Google App Inventor, however, is entirely different from
the traditional method of app development, so it’s worth noting here what it is and how
it works.

App Inventor was first made available on July 12, 2010; the tool claims to be so easy
that elementary school children can use it with little effort. The interface uses drag-and-
drop objects to create apps that run on any Android phone.

Because of App Inventor’s simplicity, it is difficult to develop an app that is visually
stunning. It is, however, an excellent place to test mobile development and decide what
the best practices for the library will be. As Google continues to improve the drag-and-
drop developer, it will most definitely get easier to use and more powerful.

http://www.buildanapp.com/
http://www.mobileapploader.com/

48 	 O T H ER W A YS T O GO M OBILE

At the time of this writing, Google App Inventor has only recently become public;
Google is rapidly updating the program, and some instructions here will likely already
be outdated.

Is it simple to use? App Inventor takes some getting used to, but it’s much simpler
than developing a native iPhone app. Is it cool? Not so much, but it has promise. I sus-
pect that it will continue to get better—app development is something that Google has
emphasized in recent months.

When Google first tested App Inventor, it used elementary-school-age kids to see if
it was easy enough for them to use. It was. So can you develop an app quickly through
the inventor? Yes. Should you? Probably not yet.

What follows is a very brief look at how the App Inventor works. It’s still being
updated, and it will likely look more polished in coming months when it becomes more
public. As with any rapidly growing technology, what you see here will most likely not
be what you see by the time this book is printed.

If you use Google Docs, then the App Inventor interface will look a little bit familiar.
When you sign in, the first thing you will see is a list of all your current projects (if you
have any) (figure 8.1). In the menu, you can either click on New to open a new project or
on More Actions to download the code of previously built projects.

Figure 8.1

Figure 8.2

Next you need to name the project; make sure you do not include spaces in the
name (figure 8.2).

Then the project interface appears (figure 8.3). The first thing you will probably
notice is how visual it is; this is because of its drag-and-drop interface.

49  O T H ER W A YS T O GO M OBILE

Figure 8.3

Figure 8.4

If you want to include an image, then you can simply click on Image in the Palette
menu on the left-hand side of the screen and drop the image into the viewer. From there,
you can go into the Components menu on the right-hand side of the screen, click on
Image, and then go into Properties to change the image or rename it (figure 8.4).

At any time, you can click on Learn at the top of the screen for full tutorials and
videos; the project, like many at Google, is still in beta form. As I mentioned, from a
commercial standpoint, it’s not quite ready for primetime, but if you are considering
developing a library app for Android, it’s certainly worth checking it out.

Many people have speculated that this simple-to-use interface is the future of app
development. One can only hope that it is, because it’s certainly a step in the right direction.

51

Index

A
absolute positioning (CSS

elements), 16
accelerometer (PhoneGap

feature), 26
Advanced Tally Counter Pro,

6
Appanda (website), 46
AppBreeder (website), 46
apps

installing, 33–37
moving, 37–39
testing users, 39–40
using widgets, 41–44

Askdroid, 6

B
Build an App (website), 47

C
camera (PhoneGap feature), 26
Cascading Style Sheets (CSS)

about, 13
creating documents, 17
ID selectors, 14–15
positioning elements, 15–17
tables versus, 15–16
usage considerations, 15
WCSS, 13–14

chat-based reference services,
42

CodeArk Tally Counter, 6
content for mobile apps, 9–10
CSS: The Missing Manual

(McFarland), 13

D
domains, setting up, 7

F
Facebook (website), 42
feature phones, defined, 1
floating technique, 16–17
forms, JavaScript and, 21
Foursquare (website), 45

G
Gale’s AccessMyLibrary app, 40
Game Salad (website), 47
geolocation (PhoneGap feature),

26
Goodman, Danny, 19
Google App Inventor, 47–49
Google Talk, 42
Gowalla, 45

H
HyperText Markup Language

(HTML)
about, 4
CSS and, 13–14
JavaScript and, 20

I
ID selectors, 14–15
images, mobile app, 11
interactivity for mobile apps, 10
iOS Dev Center site, 37
iPhone. See smartphones
iPhone SDK, 33

J
JavaScript

basics of, 20–21
compatibility considerations,

22–23
downloading, 19
forms and, 21
support for, 23
usage considerations, 21–24,

44
JavaScript Bible (Goodman), 19

L
LibraryH3lp (website), 42–43

M
McFarland, David, 13
Meebo (website), 42
Mobile App Loader (website), 47

mobile apps
alternatives for, 45–49
content for, 9–10
defined, 1–2
developing, 2–4, 7–11, 17–18
interactivity for, 10
navigation for, 8, 17–18, 22
surveying users, 5–6
testing core users, 39–40
widgets in, 41–44
WYSIWYG app editors, 46–47

mobile browsers
languages supported, 4, 22
navigation considerations, 8,

17–18, 22
size considerations, 15

mobile websites
defined, 2
essence of, 4–5
JavaScript and design, 19–24
redirecting to, 28
standard websites versus, 7–8
viewing on PhoneGap, 26–28

MockApp (website), 29
moving apps, 37–39
My App Builder (website), 46

N
native apps

creating, 29–33
defined, 2
installing on smartphones,

33–37
testing, 37–40

navigation for mobile apps, 8,
17–18, 22

O
ODK Collect, 6

P
PhoneGap software

code for sharing, 44
downloading, 33

52 	 IN D E X

PhoneGap software (cont.)
features, 25–26
implementing, 28
redirecting to mobile sites, 28
viewing websites, 26–28

positioning CSS elements, 15–17
provisioning profiles, 37

R
redirecting to mobile websites, 28
reference services, chat-based, 42
relative positioning (CSS

elements), 16

S
simulators, 37–39
smartphones

defined, 1
dimensions in pixels, 5
installing native apps on,

33–37
system requirements and

fees, 3

staff training, 6
Survey on the Spot, 6
surveying users, 5–6
SurveyMonkey, 6
Swebapps (website), 46

T
tables versus CSS, 15–16
Tally Counter, 6
Tallymander, 6
testing native apps, 37–40
training staff, 6
Twitter (website), 41–42

V
vibration (PhoneGap feature), 26

W
web analytic sites, 5
Widgetbox, 42, 44
widgets in mobile apps, 41–44
Widgipedia, 44
Wireless CSS (WCSS), 13–14

Wireless Markup Language
(WML), 4

World Conference On Soft
Computing (WCS3), 11

WYSIWYG app editors, 46–47

X
Xcode, 34–36
XHTML-MP, 4

You may also be interested in

Doing Social Media So It Matters
A Librarian’s Guide

Laura Solomon

Facebook, Twitter, MySpace, LinkedIn: it’s difficult enough to keep abreast
of social media Web sites, let alone understand how they fit into today’s
library. This practical resource brings together current information on the
topic in a concise format that’s easy to digest.

Print: 978-0-8389-1067-2
eBook: 7400-0672
Print/eBook bundle: 7700-0672
80 pgs / 8.5" × 11"

Grassroots Library
Advocacy
Lauren Comito, Aliqae
Geraci and Christian
Zabriskie

ISBN: 978-0-8389-1134-1

Open Access
Walt Crawford

ISBN: 978-0-8389-1106-8

Building the
Digital Branch
David Lee King

ISBN: 978-0-8389-5804-9

Using WordPress
as a Library Content
Management System
Kyle M. L. Jones and
Polly-Alida Farrington

ISBN: 978-0-8389-5831-5

Privatizing Libraries
Jane Jerrard, Nancy Bolt,
and Karen Strege

ISBN: 978-0-8389-1154-4

Web Scale Discovery
Services
Jason Vaughan

ISBN: 978-0-8389-5829-2

Order today at alastore.ala.org or 866-746-7252!
ALA Store purchases fund advocacy, awareness, and accreditation programs for library professionals worldwide.

M
o

r
e

 A
LA

 E
di

t
ion

s

Sp
e

c
ia

l
Re

p

o
r

ts
Lib

r

a
r

y
 Te

c

h
nolog

y

 Re

p
o

r
ts

http://www.alastore.ala.org/detail.aspx?ID=2903
http://www.alastore.ala.org/detail.aspx?ID=3281
http://www.alastore.ala.org/detail.aspx?ID=3433
http://www.alastore.ala.org/detail.aspx?ID=3431
http://www.alastore.ala.org/detail.aspx?ID=3397
http://www.alastore.ala.org/detail.aspx?ID=2795
http://www.alastore.ala.org/detail.aspx?ID=3270

Scott La Counte

ALA Editions • special reports

You may also be interested in

American Library Association / alastore.ala.org
50 E. Huron Street, Chicago, IL 60611
1 (866) SHOPALA (866) 746-7252

Scan this QR code to go to the
ALA Online Store from your
smartphone (app required).

www.alastore.ala.org

P atrons increasingly expect access to their libraries anywhere, anytime.
This ALA Editions Special Report provides practical guidance for how
librarians can put the library in the palms of their patrons’ hands. Using

the HTML skills that many librarians already have, combined with flexible
development tools, technology expert Scott La Counte shows how creating a
customized mobile app doesn’t need to be expensive or require deep expertise.
In straightforward, practical terms he

• � Demonstrates how to establish a presence on the mobile web with mobile
websites and phone apps

• � Details open-source development tools such as PhoneGap that enable the
creation of mobile apps that work on a variety of mobile operating systems

• � Discusses methods for assessing a library’s user base and for getting buy-in
from administrators

Following the pointers in this ALA Editions Special Report, libraries can easily go
wherever their patrons do!

Developing Apps for Your Library Using Basic HTML Programming

Going
Mobile

G
o

in
g

 M
o

b
ile

L
a Co

u
n

te

9 780838 911297

ISBN 978-0-8389-1129-7

http://www.alastore.ala.org/detail.aspx?ID=2903
http://www.alastore.ala.org/detail.aspx?ID=3102
http://www.alastore.ala.org/detail.aspx?ID=2778
http://www.alastore.ala.org/detail.aspx?ID=2500
www.alastore.ala.org

	CONTENTS
	INTRODUCTION
	Chapter 1: BEFORE YOU BEGIN
	Chapter 2: DEVELOPING A MOBILE WEB APPLICATION
	Chapter 3: USING CSS
	Chapter 4: JAVASCRIPT AND MOBILE WEBSITE DESIGN
	Chapter 5: PHONEGAP
	Chapter 6: BUILDING YOUR FIRST NATIVE APP
	Chapter 7: BEYOND THE BASICS
	Chapter 8: OTHER WAYS TO GO MOBILE
	INDEX

