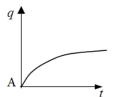
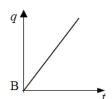
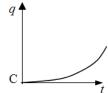
Ch. 21 Worksheet

1. Complete the following statement: The sum of the magnitudes of the currents directed into a junction _____

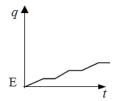
2. Consider each of the graphs shown. Which of these graphs represents the charge on a capacitor as it is being charged in a circuit containing a resistor and a capacitor in series shortly after they are connected to a battery?

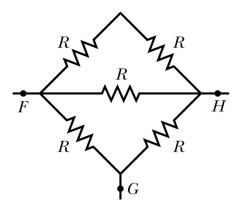


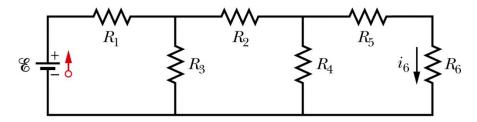

b. B


c. C

d. D


e. E





3. The figure to the right shows five 5.00 Ω resistors. Find the equivalent resistance between points F and H. (Hint: For each pair of points, imagine that a battery is connector across the pair.)

4. A car battery with a 12 V emf and an internal resistance of 0.040Ω is being charged with a current of 50 A. What are (a) the potential difference across the terminals, (b) the rate P_r of energy dissipation inside the battery, and (c) the rate P_{emf} of energy conversion to chemical form?

5. In the figure below, the resistance of the each resistor is R_1 = R_2 = R_3 = 2.00 Ω , R_4 = 16.0 Ω , R_5 = 8.00 Ω , and R_6 = 4.00 Ω . What is the equivalent resistance?

