Chapter 24

Example Problems

1. A parallel-plate capacitor with circular plates of radius R is being charged. Find the magnetic field at a distance of $r=R / 5=11.0 \mathrm{~mm}$ if the electric field changes in time as $\Delta E / \Delta t=1.50 \times 10^{12} \mathrm{~V} / \mathrm{m} \cdot \mathrm{s}$.

(a)
2. What is the measured component of the orbital magnetic dipole moment of an electron with $m_{l}=1$ and $m_{l}=-2$?
3. A paramagnetic gas at room temperature ($T=300 \mathrm{~K}$) is placed in an external uniform magnetic field of magnitude $B=1.5 \mathrm{~T}$; the atoms of the gas have magnetic dipole moment μ $=1.0 \mu_{B}$. Calculate the mean translational kinetic energy K of an atom of the gas and the energy difference U_{B} between parallel alignment and antiparallel alignment of the atom's magnetic dipole moment with the external field. Assume that the mean translational kinetic energy for a gas can be approximated as $\mathrm{KE}=(3 / 2) \mathrm{k}_{\mathrm{B}} \mathrm{T}$, where k_{b} is the Boltzmann constant given by $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$.
4. A compass needle made of pure iron (density $7900 \mathrm{~kg} / \mathrm{m}^{3}$) has a length of 3.0 cm , a width of 1.0 mm , and a thickness of 0.50 mm . The magnitude of the magnetic dipole moment of an iron atom is $\mu_{\mathrm{Fe}}=2.1 \times 10^{-23} \mathrm{~J} / \mathrm{T}$. If the magnetization of the needle is equivalent to the alignment of 10% of the atoms in the needle, what is the magnitude of the needle's magnetic dipole moment $\boldsymbol{\mu}$?
5. When you look at the North Star (Polaris), you intercept light from a star at a distance of 431 ly and emitting energy at a rate of 2200 times that of our sun ($P_{\text {sun }}=3.90 \times 10^{26} \mathrm{~W}$). Neglecting any atmospheric absorption, find the rms values of the electric and magnetic fields when the starlight reaches you. (Note that $1 \mathrm{ly}=9.46 \times 10^{15} \mathrm{~m}$)
6. Assume that a TV station acts as a point source broadcasting isotropically at 1.0 MW . What is the intensity of transmitted signal reaching Proxima Centauri, the star nearest our solar system, 4.3 ly away? (Note that $1 \mathrm{ly}=9.46 \times 10^{15} \mathrm{~m}$)
7. Radiation from the sun reaching Earth has an intensity of $1.4 \mathrm{~kW} / \mathrm{m}^{2}$. Assuming that the Earth behaves like a flat disk perpendicular to the Sun's rays and that all the incident energy is absorbed. Note that $R_{E}=6.37 \times 10^{6} \mathrm{~m}, M_{E}=5.98 \times 10^{24} \mathrm{~kg}, M_{S}=2.0 \times 10^{30} \mathrm{~kg}$, and $R_{S E}=$ $1.5 \times 10^{11} \mathrm{~m}$.
a. Calculate the force on the Earth due to radiation pressure.
b. For comparison, calculate the force due to the sun's gravitational attraction.
