Homework: Ch. 24

- 1. As a parallel-plate capacitor with circular plates 20.0 cm in diameter is being charged, the current density of the displacement current in the region between the plates is uniform and has a magnitude of 20.0 A/m².
 - a. Calculate the magnitude B of the magnetic field at a distance r= 50.0 mm from the axis of symmetry of this region.
 - b. Calculate $\Delta E/\Delta t$ in this region.
- 2. A 0.50 T magnetic field is applied to a paramagnetic gas whose atoms have an intrinsic magnetic dipole moment of 1.0×10^{-23} J/T. At what temperature will the mean kinetic energy of translation of the atoms equal the energy required to reverse such a dipole end for end in this magnetic field?
- 3. Assume the average value of the vertical component of Earth's magnetic field is $43 \,\mu\text{T}$ (downward) for all of Arizona, which has an area of $2.95 \times 10^5 \, \text{km}^2$. What then is the magnitude of the net magnetic flux through the rest of Earth's surface (the entire surface excluding Arizona)?
- 4. A silver wire has resistivity $\rho = 1.62 \times 10^{-8} \,\Omega \cdot m$ and a cross-sectional area of 5.00 mm². The current in the wire is uniform and changing at the rate of 2000 A/s when the current is 100 A. What is the magnitude of the (uniform) electric field in the wire when the current in the wire is 100 A?
- 5. In the figure below three snapshots of the electric field and the magnetic field of different electromagnetic waves. In each snapshot, what is the direction of the wave's travel?

6. A uniform beam of light completely illuminates a card that is perpendicular to the beam and that has area $A = 4.00 \times 10^{-4}$ m². The light intensity is 7.0×10^{-15} W/m². What is the radiation pressure and radiation force on the card if it is totally reflecting (it reflects all of the light) back along the incident path?

- 7. A searchlight (the type that was once used to search for incoming enemy aircraft at night) emits a beam of light at a power Pr = 24 kW. What is the force on the searchlight housing due to the light emission? Assume that the area of the housing is 2.50×10^{-2} m².
- 8. What is the magnitude of the electric field component and the magnitude of the Poynting vector of a traveling plan electromagnetic wave if $B_m = 1.0 \times 10^{-4} \text{ T}$?
- 9. The average intensity of the solar radiation that strikes normally on a surface just outside Earth's atmosphere is 1.4 kW/m². (a) What radiation pressure p_r is exerted on this surface, assuming complete absorption? (b) For comparison, find the ratio of p_r to Earth's sea-level atmospheric pressure, which is 1.0×10^5 Pa.
- 10. In a plane radio wave the maximum value of the electric field component is 5.00 V/m. Calculate the maximum value of the magnetic field component and the wave intensity.
- 11. Sunlight just outside the Earth's atmosphere has an intensity of 1.40 kW/m². Calculate E_m and B_m for sunlight there, assuming it to be a plane wave.