CHAPTER 2

1. Vector \mathbf{A} has a magnitude of 22.3 and is at an angle of 162 degrees from the x axis, and vector \mathbf{B} has a magnitude of 14.5 and makes an angle of 72 degrees with the x axis.
a. Calculate the x and y components of both vectors.
b. Calculate $\mathbf{A}+\mathbf{B}$ (magnitude and direction)
c. Calculate $\mathbf{A}-\mathbf{B}$ (magnitude and direction)
d. Calculate $\mathbf{A} \cdot \mathbf{B}$ (dot product)
e. Calculate $\mathbf{A x B}$ (component notation)
2. Vector \mathbf{A} has a magnitude of 43.7 and is at an angle of 215 degrees from the x axis, and vector \mathbf{B} has a magnitude of 24.3 and makes an angle of 134 degrees with the x axis.
a. Calculate the x and y components of both vectors.
b. Calculate $\mathbf{A}+\mathbf{B}$ (magnitude and direction)
c. Calculate $\mathbf{A - B}$ (magnitude and direction)
d. Calculate $\mathbf{A} \cdot \mathbf{B}$ (dot product)
e. Calculate $\mathbf{A x B}$ (magnitude and direction)
3. \quad Vector $\mathbf{A}=7 \mathbf{i}+16 \mathbf{j}$. Vector $\mathbf{B}=4 \mathbf{i}-12 \mathbf{j}$.
a. Calculate the magnitude and direction of $\mathbf{A}+\mathbf{B}$.
b. Calculate the magnitude and direction of $\mathbf{A}-\mathbf{B}$.
c. Calculate $\mathbf{A} \cdot \mathbf{B}$ (dot product)
