CHAPTER 6

1. A car is traveling at a speed of $50.0 \mathrm{~m} / \mathrm{s}$ on a circular track of radius 320 m .
a. What is its centripetal acceleration in $\mathrm{m} / \mathrm{s} 2$?
b. What is the centripetal force on the car if its mass is 800 kg ?
c. What is the minimum static coefficient of friction which will prevent the car from skidding if the track is level?
2. Body A in diagram \# 2 has a mass of 10 kg and B has a mass of 13 kg . The coefficient of friction acting on B is 0.213 . What is the velocity of the masses after A has fallen a distance of 2.87 m ?
3. A mass is sliding up a frictionless inclined plane whose angle of inclination is 59 degrees. Find the acceleration of the mass.
4. A mass is sliding down an inclined plane whose angle of inclination is 43 degrees and kinetic coefficient of friction is 0.324 .
a. Find the acceleration of the mass.
b. If it starts with a velocity of $14.3 \mathrm{~m} / \mathrm{s}$ how fast will it be going after 3 seconds?
5. Block A in diagram \#3 has a mass of 12 kg , and block B has a mass of 8 kg , and is traveling downwards. The kinetic coefficient of friction is 0.33 and A is traveling to the right.
a. Find the acceleration of the two masses.
b. Find the tension in the string.
6. A person drags a 7 kg mass by a rope at an angle of 29 degrees above horizontal. The frictional force of the surface is 10 N , and the person exerts a force of 30 N .
a. What is the acceleration of the mass?
b. If the mass starts with a velocity of $7 \mathrm{~m} / \mathrm{s}$ how far does it travel in 4 seconds?
7. Block A is moving to the right in diagram \#2 has a mass of 5 kg , and block B has a mass of 3 kg . The coefficient of friction of A on the surface is 0.4 .
a. Find the acceleration of the two masses.
b. Find the tension in the string.
8. You are designing a freeway exit for cars going at $60 \mathrm{mph}(88 \mathrm{ft} / \mathrm{s})$. The exit road is level, circular in shape and the coefficient of friction is 0.4 . What minimum radius of curvature is required for the exit?
