CHAPTER 9

1. A machinist drills a 3 cm diameter hole in a 12 cm by 12 cm piece of metal. The coordinates of the hole measured from the lower left hand corner are $(4,5)$
a. Find the x coordinate of the center of mass.
b. Find the y coordinate of the center of mass.
2. A 12 kg mass is traveling to the east at a speed of $14 \mathrm{~m} / \mathrm{s}$. It collides with a 14 kg mass traveling west at a speed of $8 \mathrm{~m} / \mathrm{s}$.
a. If they stick together what is there speed just after the collision?
b. How much kinetic energy is lost in the collision?
c. If the second mass was travelling north instead of west what would the speed of the two masses be just after they collided and stuck together?
3. A 5 kg mass is travelling at a speed of $6 \mathrm{~m} / \mathrm{s}$ collides with a stationary 4 kg mass.
a. Find the speed of each mass if the collision is elastic.
b. Find the final speed of the masses if they stick together.
c. What percentage of the original kinetic energy is lost?
d. What is the average force if the collision lasts for 10 ms ?
4. A 120 g tennis ball is travelling to the right at a speed of $30 \mathrm{~m} / \mathrm{s}$ an bounces off a wall in the opposite direction at a speed of $24 \mathrm{~m} / \mathrm{s}$. The ball is in contact with the wall for 14 ms . What is the average force exerted by the wall?
5. A 1200 kg car traveling north at $20 \mathrm{~m} / \mathrm{s}$ collides with a 1600 kg car travelling east at 30 m / s.
a. If the two cars stick together what is their velocity just after the collision (before they slow down)? Write the velocity in component notation.
b. What is the magnitude of this velocity?
c. What is the direction of the velocity after the collision?
6. M1 has a mass of 2 kg and is moving to the right at a speed of $7 \mathrm{~m} / \mathrm{s}$. M2 has a mass of 3 kg and is moving to the right at a speed of $5 \mathrm{~m} / \mathrm{s}$. After the collision M1 is moving to the right at a speed of $4 \mathrm{~m} / \mathrm{s}$.
a. What is the speed of M2 after the collision?
b. What is the impulse that M1 exerts on M2?
c. If the collision lasted for 0.015 s what is the average force that M1 exerts on M2?
7. A 1200 kg car travelling north at $20 \mathrm{~m} / \mathrm{s}$ collides with a 1600 kg car travelling south at 30
m / s.
a. If the two cars stick together what is speed just after the collision?
b. What fraction of the original kinetic energy is lost in the collision?
8. A mass of 8 kg is located at a position of $(3,1)$, a 6 kg mass is located at $(4,5)$, and a 12 kg mass is located at $(1,3)$. What are the coordinates of the center of mass?
9. A 160 lb skater at rest pushes against his 110 lb partner and gives her a speed of $10 \mathrm{ft} / \mathrm{s}$. What was his speed just after he pushed her away?
