
15 | OSCILLATIONS

Figure 15.1 (a) The Comcast Building in Philadelphia, Pennsylvania, looming high above the skyline, is approximately 305
meters (1000 feet) tall. At this height, the top floors can oscillate back and forth due to seismic activity and fluctuating winds. (b)
Shown above is a schematic drawing of a tuned, liquid-column mass damper, installed at the top of the Comcast, consisting of a
300,000-gallon reservoir of water to reduce oscillations.
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Introduction
We begin the study of oscillations with simple systems of pendulums and springs. Although these systems may seem
quite basic, the concepts involved have many real-life applications. For example, the Comcast Building in Philadelphia,
Pennsylvania, stands approximately 305 meters (1000 feet) tall. As buildings are built taller, they can act as inverted,
physical pendulums, with the top floors oscillating due to seismic activity and fluctuating winds. In the Comcast Building,
a tuned-mass damper is used to reduce the oscillations. Installed at the top of the building is a tuned, liquid-column mass
damper, consisting of a 300,000-gallon reservoir of water. This U-shaped tank allows the water to oscillate freely at a
frequency that matches the natural frequency of the building. Damping is provided by tuning the turbulence levels in the
moving water using baffles.
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15.1 | Simple Harmonic Motion

Learning Objectives

By the end of this section, you will be able to:

• Define the terms period and frequency

• List the characteristics of simple harmonic motion

• Explain the concept of phase shift

• Write the equations of motion for the system of a mass and spring undergoing simple harmonic
motion

• Describe the motion of a mass oscillating on a vertical spring

When you pluck a guitar string, the resulting sound has a steady tone and lasts a long time (Figure 15.2). The string
vibrates around an equilibrium position, and one oscillation is completed when the string starts from the initial position,
travels to one of the extreme positions, then to the other extreme position, and returns to its initial position. We define
periodic motion to be any motion that repeats itself at regular time intervals, such as exhibited by the guitar string or
by a child swinging on a swing. In this section, we study the basic characteristics of oscillations and their mathematical
description.

Figure 15.2 When a guitar string is plucked, the string
oscillates up and down in periodic motion. The vibrating string
causes the surrounding air molecules to oscillate, producing
sound waves. (credit: Yutaka Tsutano)

Period and Frequency in Oscillations
In the absence of friction, the time to complete one oscillation remains constant and is called the period (T). Its units are
usually seconds, but may be any convenient unit of time. The word ‘period’ refers to the time for some event whether
repetitive or not, but in this chapter, we shall deal primarily in periodic motion, which is by definition repetitive.

A concept closely related to period is the frequency of an event. Frequency (f) is defined to be the number of events per
unit time. For periodic motion, frequency is the number of oscillations per unit time. The relationship between frequency
and period is

(15.1)f = 1
T .

The SI unit for frequency is the hertz (Hz) and is defined as one cycle per second:

1 Hz = 1cycle
sec or 1 Hz = 1

s = 1 s−1.
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A cycle is one complete oscillation.

Example 15.1

Determining the Frequency of Medical Ultrasound

Ultrasound machines are used by medical professionals to make images for examining internal organs of the
body. An ultrasound machine emits high-frequency sound waves, which reflect off the organs, and a computer
receives the waves, using them to create a picture. We can use the formulas presented in this module to determine
the frequency, based on what we know about oscillations. Consider a medical imaging device that produces
ultrasound by oscillating with a period of 0.400 µs . What is the frequency of this oscillation?

Strategy

The period (T) is given and we are asked to find frequency (f).

Solution

Substitute 0.400 µs for T in f = 1
T :

f = 1
T = 1

0.400 × 10−6 s
.

Solve to find

f = 2.50 × 106 Hz.

Significance

This frequency of sound is much higher than the highest frequency that humans can hear (the range of human
hearing is 20 Hz to 20,000 Hz); therefore, it is called ultrasound. Appropriate oscillations at this frequency
generate ultrasound used for noninvasive medical diagnoses, such as observations of a fetus in the womb.

Characteristics of Simple Harmonic Motion
A very common type of periodic motion is called simple harmonic motion (SHM). A system that oscillates with SHM is
called a simple harmonic oscillator.

Simple Harmonic Motion

In simple harmonic motion, the acceleration of the system, and therefore the net force, is proportional to the
displacement and acts in the opposite direction of the displacement.

A good example of SHM is an object with mass m attached to a spring on a frictionless surface, as shown in Figure 15.3.
The object oscillates around the equilibrium position, and the net force on the object is equal to the force provided by the
spring. This force obeys Hooke’s law Fs = −kx, as discussed in a previous chapter.

If the net force can be described by Hooke’s law and there is no damping (slowing down due to friction or other
nonconservative forces), then a simple harmonic oscillator oscillates with equal displacement on either side of the
equilibrium position, as shown for an object on a spring in Figure 15.3. The maximum displacement from equilibrium is
called the amplitude (A). The units for amplitude and displacement are the same but depend on the type of oscillation. For
the object on the spring, the units of amplitude and displacement are meters.
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Figure 15.3 An object attached to a spring sliding on a frictionless surface is an
uncomplicated simple harmonic oscillator. In the above set of figures, a mass is attached to a
spring and placed on a frictionless table. The other end of the spring is attached to the wall. The
position of the mass, when the spring is neither stretched nor compressed, is marked as x = 0
and is the equilibrium position. (a) The mass is displaced to a position x = A and released from

rest. (b) The mass accelerates as it moves in the negative x-direction, reaching a maximum
negative velocity at x = 0 . (c) The mass continues to move in the negative x-direction, slowing

until it comes to a stop at x = −A . (d) The mass now begins to accelerate in the positive x-

direction, reaching a positive maximum velocity at x = 0 . (e) The mass then continues to move

in the positive direction until it stops at x = A . The mass continues in SHM that has an

amplitude A and a period T. The object’s maximum speed occurs as it passes through
equilibrium. The stiffer the spring is, the smaller the period T. The greater the mass of the object
is, the greater the period T.

What is so significant about SHM? For one thing, the period T and frequency f of a simple harmonic oscillator are
independent of amplitude. The string of a guitar, for example, oscillates with the same frequency whether plucked gently or
hard.

Two important factors do affect the period of a simple harmonic oscillator. The period is related to how stiff the system is.
A very stiff object has a large force constant (k), which causes the system to have a smaller period. For example, you can
adjust a diving board’s stiffness—the stiffer it is, the faster it vibrates, and the shorter its period. Period also depends on the
mass of the oscillating system. The more massive the system is, the longer the period. For example, a heavy person on a
diving board bounces up and down more slowly than a light one. In fact, the mass m and the force constant k are the only
factors that affect the period and frequency of SHM. To derive an equation for the period and the frequency, we must first
define and analyze the equations of motion. Note that the force constant is sometimes referred to as the spring constant.

Equations of SHM
Consider a block attached to a spring on a frictionless table (Figure 15.4). The equilibrium position (the position where
the spring is neither stretched nor compressed) is marked as x = 0 . At the equilibrium position, the net force is zero.
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Figure 15.4 A block is attached to a spring and placed on a
frictionless table. The equilibrium position, where the spring is
neither extended nor compressed, is marked as x = 0.

Work is done on the block to pull it out to a position of x = + A, and it is then released from rest. The maximum x-

position (A) is called the amplitude of the motion. The block begins to oscillate in SHM between x = + A and x = −A,
where A is the amplitude of the motion and T is the period of the oscillation. The period is the time for one oscillation.
Figure 15.5 shows the motion of the block as it completes one and a half oscillations after release. Figure 15.6 shows
a plot of the position of the block versus time. When the position is plotted versus time, it is clear that the data can be
modeled by a cosine function with an amplitude A and a period T. The cosine function cosθ repeats every multiple of 2π,

whereas the motion of the block repeats every period T. However, the function cos⎛
⎝
2π
T t⎞⎠ repeats every integer multiple of

the period. The maximum of the cosine function is one, so it is necessary to multiply the cosine function by the amplitude
A.

(15.2)x(t) = Acos⎛
⎝
2π
T t⎞⎠ = Acos(ωt).

Recall from the chapter on rotation that the angular frequency equals ω = dθ
dt . In this case, the period is constant, so the

angular frequency is defined as 2π divided by the period, ω = 2π
T .
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Figure 15.5 A block is attached to one end of a spring and placed on a frictionless table. The other end of the spring is
anchored to the wall. The equilibrium position, where the net force equals zero, is marked as x = 0 m. Work is done on the

block, pulling it out to x = + A , and the block is released from rest. The block oscillates between x = + A and x = −A .

The force is also shown as a vector.

Figure 15.6 A graph of the position of the block shown in
Figure 15.5 as a function of time. The position can be modeled
as a periodic function, such as a cosine or sine function.

The equation for the position as a function of time x(t) = Acos(ωt) is good for modeling data, where the position of the

block at the initial time t = 0.00 s is at the amplitude A and the initial velocity is zero. Often when taking experimental

data, the position of the mass at the initial time t = 0.00 s is not equal to the amplitude and the initial velocity is not zero.

Consider 10 seconds of data collected by a student in lab, shown in Figure 15.7.
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Figure 15.7 Data collected by a student in lab indicate the
position of a block attached to a spring, measured with a sonic
range finder. The data are collected starting at time t = 0.00s,
but the initial position is near position
x ≈ − 0.80 cm ≠ 3.00 cm , so the initial position does not

equal the amplitude x0 = + A . The velocity is the time

derivative of the position, which is the slope at a point on the
graph of position versus time. The velocity is not v = 0.00 m/s
at time t = 0.00 s , as evident by the slope of the graph of

position versus time, which is not zero at the initial time.

The data in Figure 15.7 can still be modeled with a periodic function, like a cosine function, but the function is shifted to
the right. This shift is known as a phase shift and is usually represented by the Greek letter phi (ϕ) . The equation of the

position as a function of time for a block on a spring becomes

x(t) = Acos⎛
⎝ωt + ϕ⎞

⎠.

This is the generalized equation for SHM where t is the time measured in seconds, ω is the angular frequency with units

of inverse seconds, A is the amplitude measured in meters or centimeters, and ϕ is the phase shift measured in radians

(Figure 15.8). It should be noted that because sine and cosine functions differ only by a phase shift, this motion could be
modeled using either the cosine or sine function.

Figure 15.8 (a) A cosine function. (b) A cosine function
shifted to the right by an angle ϕ . The angle ϕ is known as the

phase shift of the function.

The velocity of the mass on a spring, oscillating in SHM, can be found by taking the derivative of the position equation:

v(t) = dx
dt = d

dt
⎛
⎝Acos⎛

⎝ωt + ϕ⎞
⎠
⎞
⎠ = −Aωsin(ωt + φ) = −vmax sin⎛

⎝ωt + ϕ⎞
⎠.

Because the sine function oscillates between –1 and +1, the maximum velocity is the amplitude times the angular
frequency, vmax = Aω . The maximum velocity occurs at the equilibrium position (x = 0) when the mass is moving

toward x = + A . The maximum velocity in the negative direction is attained at the equilibrium position (x = 0) when

the mass is moving toward x = −A and is equal to −vmax .
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The acceleration of the mass on the spring can be found by taking the time derivative of the velocity:

a(t) = dv
dt = d

dt
⎛
⎝−Aωsin⎛

⎝ωt + ϕ⎞
⎠
⎞
⎠ = −Aω2 cos(ωt + φ) = −amax cos⎛

⎝ωt + ϕ⎞
⎠.

The maximum acceleration is amax = Aω2 . The maximum acceleration occurs at the position (x = −A) , and the

acceleration at the position (x = −A) and is equal to −amax .

Summary of Equations of Motion for SHM
In summary, the oscillatory motion of a block on a spring can be modeled with the following equations of motion:

(15.3)x(t) = Acos⎛
⎝ωt + ϕ⎞

⎠

(15.4)v(t) = −vmax sin⎛
⎝ωt + ϕ⎞

⎠

(15.5)a(t) = −amax cos⎛
⎝ωt + ϕ⎞

⎠

(15.6)xmax = A
(15.7)vmax = Aω
(15.8)amax = Aω2.

Here, A is the amplitude of the motion, T is the period, ϕ is the phase shift, and ω = 2π
T = 2π f is the angular frequency

of the motion of the block.

Example 15.2

Determining the Equations of Motion for a Block and a Spring

A 2.00-kg block is placed on a frictionless surface. A spring with a force constant of k = 32.00 N/m is attached

to the block, and the opposite end of the spring is attached to the wall. The spring can be compressed or extended.
The equilibrium position is marked as x = 0.00 m.

Work is done on the block, pulling it out to x = + 0.02 m. The block is released from rest and oscillates between

x = + 0.02 m and x = −0.02 m. The period of the motion is 1.57 s. Determine the equations of motion.

Strategy

We first find the angular frequency. The phase shift is zero, ϕ = 0.00 rad, because the block is released from

rest at x = A = + 0.02 m. Once the angular frequency is found, we can determine the maximum velocity and

maximum acceleration.

Solution

The angular frequency can be found and used to find the maximum velocity and maximum acceleration:

ω = 2π
1.57 s = 4.00 s−1;

vmax = Aω = 0.02m⎛
⎝4.00 s−1⎞

⎠ = 0.08 m/s;

amax = Aω2 = 0.02 m⎛
⎝4.00 s−1⎞

⎠
2

= 0.32 m/s2.

All that is left is to fill in the equations of motion:

x(t) = Acos⎛
⎝ωt + ϕ⎞

⎠ = (0.02 m)cos⎛
⎝4.00 s−1 t⎞

⎠;

v(t) = −vmax sin⎛
⎝ωt + ϕ⎞

⎠ = (−0.08 m/s)sin⎛
⎝4.00 s−1 t⎞

⎠;

a(t) = −amax cos⎛
⎝ωt + ϕ⎞

⎠ = ⎛
⎝−0.32 m/s2⎞

⎠cos⎛
⎝4.00 s−1 t⎞

⎠.
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Significance

The position, velocity, and acceleration can be found for any time. It is important to remember that when using
these equations, your calculator must be in radians mode.

The Period and Frequency of a Mass on a Spring
One interesting characteristic of the SHM of an object attached to a spring is that the angular frequency, and therefore the
period and frequency of the motion, depend on only the mass and the force constant, and not on other factors such as the

amplitude of the motion. We can use the equations of motion and Newton’s second law ( F→ net = m a→ ) to find equations

for the angular frequency, frequency, and period.

Consider the block on a spring on a frictionless surface. There are three forces on the mass: the weight, the normal force,
and the force due to the spring. The only two forces that act perpendicular to the surface are the weight and the normal
force, which have equal magnitudes and opposite directions, and thus sum to zero. The only force that acts parallel to the
surface is the force due to the spring, so the net force must be equal to the force of the spring:

Fx = −kx;

ma = −kx;

md2 x
dt2 = −kx;

d2 x
dt2 = − k

mx.

Substituting the equations of motion for x and a gives us

−Aω2 cos⎛
⎝ωt + ϕ⎞

⎠ = − k
mAcos⎛

⎝ωt + ϕ⎞
⎠.

Cancelling out like terms and solving for the angular frequency yields

(15.9)ω = k
m.

The angular frequency depends only on the force constant and the mass, and not the amplitude. The angular frequency is
defined as ω = 2π/T , which yields an equation for the period of the motion:

(15.10)T = 2π m
k .

The period also depends only on the mass and the force constant. The greater the mass, the longer the period. The stiffer the
spring, the shorter the period. The frequency is

(15.11)f = 1
T = 1

2π
k
m.

Vertical Motion and a Horizontal Spring
When a spring is hung vertically and a block is attached and set in motion, the block oscillates in SHM. In this case, there is
no normal force, and the net effect of the force of gravity is to change the equilibrium position. Consider Figure 15.9. Two
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forces act on the block: the weight and the force of the spring. The weight is constant and the force of the spring changes as
the length of the spring changes.

Figure 15.9 A spring is hung from the ceiling. When a block is
attached, the block is at the equilibrium position where the weight
of the block is equal to the force of the spring. (a) The spring is
hung from the ceiling and the equilibrium position is marked as
yo . (b) A mass is attached to the spring and a new equilibrium

position is reached ( y1 = yo − Δy ) when the force provided by

the spring equals the weight of the mass. (c) The free-body
diagram of the mass shows the two forces acting on the mass: the
weight and the force of the spring.

When the block reaches the equilibrium position, as seen in Figure 15.9, the force of the spring equals the weight of the
block, Fnet = Fs − mg = 0 , where

−k⎛
⎝−Δy⎞

⎠ = mg.

From the figure, the change in the position is Δy = y0 − y1 and since −k⎛
⎝−Δy⎞

⎠ = mg , we have

k(y0 − y1) − mg = 0.

If the block is displaced and released, it will oscillate around the new equilibrium position. As shown in Figure 15.10, if
the position of the block is recorded as a function of time, the recording is a periodic function.

If the block is displaced to a position y, the net force becomes Fnet = k(y − y0) − mg = 0 . But we found that at the

equilibrium position, mg = kΔy = ky0 − ky1 . Substituting for the weight in the equation yields

Fnet = ky − ky0 − ⎛
⎝ky0 − ky1

⎞
⎠ = −k(y − y1).

Recall that y1 is just the equilibrium position and any position can be set to be the point y = 0.00m. So let’s set y1 to

y = 0.00 m. The net force then becomes

Fnet = −ky;

md2 y
dt2 = −ky.

This is just what we found previously for a horizontally sliding mass on a spring. The constant force of gravity only
served to shift the equilibrium location of the mass. Therefore, the solution should be the same form as for a block on a
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horizontal spring, y(t) = Acos⎛
⎝ωt + ϕ⎞

⎠. The equations for the velocity and the acceleration also have the same form as for

the horizontal case. Note that the inclusion of the phase shift means that the motion can actually be modeled using either a
cosine or a sine function, since these two functions only differ by a phase shift.

Figure 15.10 Graphs of y(t), v(t), and a(t) versus t for the motion of an
object on a vertical spring. The net force on the object can be described
by Hooke’s law, so the object undergoes SHM. Note that the initial
position has the vertical displacement at its maximum value A; v is
initially zero and then negative as the object moves down; the initial
acceleration is negative, back toward the equilibrium position and
becomes zero at that point.
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15.2 | Energy in Simple Harmonic Motion

Learning Objectives

By the end of this section, you will be able to:

• Describe the energy conservation of the system of a mass and a spring

• Explain the concepts of stable and unstable equilibrium points

To produce a deformation in an object, we must do work. That is, whether you pluck a guitar string or compress a car’s
shock absorber, a force must be exerted through a distance. If the only result is deformation, and no work goes into thermal,
sound, or kinetic energy, then all the work is initially stored in the deformed object as some form of potential energy.

Consider the example of a block attached to a spring on a frictionless table, oscillating in SHM. The force of the spring is a
conservative force (which you studied in the chapter on potential energy and conservation of energy), and we can define a
potential energy for it. This potential energy is the energy stored in the spring when the spring is extended or compressed.
In this case, the block oscillates in one dimension with the force of the spring acting parallel to the motion:

W = ∫
xi

x f

Fx dx = ∫
xi

x f

−kxdx = ⎡
⎣−

1
2kx2⎤

⎦xi

x f
= −⎡

⎣
1
2kx f

2 − 1
2kxi

2⎤
⎦ = −⎡

⎣U f − Ui
⎤
⎦ = −ΔU.

When considering the energy stored in a spring, the equilibrium position, marked as xi = 0.00 m, is the position at which

the energy stored in the spring is equal to zero. When the spring is stretched or compressed a distance x, the potential energy
stored in the spring is

U = 1
2kx2.

Energy and the Simple Harmonic Oscillator
To study the energy of a simple harmonic oscillator, we need to consider all the forms of energy. Consider the example
of a block attached to a spring, placed on a frictionless surface, oscillating in SHM. The potential energy stored in the
deformation of the spring is

U = 1
2kx2.

In a simple harmonic oscillator, the energy oscillates between kinetic energy of the mass K = 1
2mv2 and potential energy

U = 1
2kx2 stored in the spring. In the SHM of the mass and spring system, there are no dissipative forces, so the total

energy is the sum of the potential energy and kinetic energy. In this section, we consider the conservation of energy of the
system. The concepts examined are valid for all simple harmonic oscillators, including those where the gravitational force
plays a role.

Consider Figure 15.11, which shows an oscillating block attached to a spring. In the case of undamped SHM, the energy
oscillates back and forth between kinetic and potential, going completely from one form of energy to the other as the system
oscillates. So for the simple example of an object on a frictionless surface attached to a spring, the motion starts with all
of the energy stored in the spring as elastic potential energy. As the object starts to move, the elastic potential energy is
converted into kinetic energy, becoming entirely kinetic energy at the equilibrium position. The energy is then converted
back into elastic potential energy by the spring as it is stretched or compressed. The velocity becomes zero when the kinetic
energy is completely converted, and this cycle then repeats. Understanding the conservation of energy in these cycles will
provide extra insight here and in later applications of SHM, such as alternating circuits.
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Figure 15.11 The transformation of energy in SHM for an object attached to a spring on a
frictionless surface. (a) When the mass is at the position x = + A , all the energy is stored as

potential energy in the spring U = 1
2kA2 . The kinetic energy is equal to zero because the

velocity of the mass is zero. (b) As the mass moves toward x = −A , the mass crosses the

position x = 0 . At this point, the spring is neither extended nor compressed, so the potential

energy stored in the spring is zero. At x = 0 , the total energy is all kinetic energy where

K = 1
2m(−vmax)2 . (c) The mass continues to move until it reaches x = −A where the mass

stops and starts moving toward x = + A . At the position x = −A , the total energy is stored as

potential energy in the compressed U = 1
2k(−A)2 and the kinetic energy is zero. (d) As the

mass passes through the position x = 0 , the kinetic energy is K = 1
2mvmax

2 and the potential

energy stored in the spring is zero. (e) The mass returns to the position x = + A , where K = 0

and U = 1
2kA2 .

Consider Figure 15.11, which shows the energy at specific points on the periodic motion. While staying constant, the
energy oscillates between the kinetic energy of the block and the potential energy stored in the spring:

ETotal = U + K = 1
2kx2 + 1

2mv2.

The motion of the block on a spring in SHM is defined by the position x(t) = Acos⎛
⎝ωt + ϕ⎞

⎠ with a velocity of

v(t) = −Aωsin⎛
⎝ωt + ϕ⎞

⎠ . Using these equations, the trigonometric identity cos2 θ + sin2 θ = 1 and ω = k
m , we can find

the total energy of the system:
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ETotal = 1
2kA2 cos2 ⎛

⎝ωt + ϕ⎞
⎠ + 1

2mA2 ω2 sin2 ⎛
⎝ωt + ϕ⎞

⎠

= 1
2kA2 cos2 ⎛

⎝ωt + ϕ⎞
⎠ + 1

2mA2 ⎛
⎝

k
m

⎞
⎠sin2 ⎛

⎝ωt + ϕ⎞
⎠

= 1
2kA2 cos2 ⎛

⎝ωt + ϕ⎞
⎠ + 1

2kA2 sin2 ⎛
⎝ωt + ϕ⎞

⎠

= 1
2kA2 ⎛

⎝cos2 ⎛
⎝ωt + ϕ⎞

⎠ + sin2 ⎛
⎝ωt + ϕ⎞

⎠
⎞
⎠

= 1
2kA2.

The total energy of the system of a block and a spring is equal to the sum of the potential energy stored in the spring plus

the kinetic energy of the block and is proportional to the square of the amplitude ETotal = (1/2)kA2. The total energy of

the system is constant.

A closer look at the energy of the system shows that the kinetic energy oscillates like a sine-squared function, while
the potential energy oscillates like a cosine-squared function. However, the total energy for the system is constant and
is proportional to the amplitude squared. Figure 15.12 shows a plot of the potential, kinetic, and total energies of the
block and spring system as a function of time. Also plotted are the position and velocity as a function of time. Before time
t = 0.0 s, the block is attached to the spring and placed at the equilibrium position. Work is done on the block by applying

an external force, pulling it out to a position of x = + A . The system now has potential energy stored in the spring. At

time t = 0.00 s, the position of the block is equal to the amplitude, the potential energy stored in the spring is equal to

U = 1
2kA2 , and the force on the block is maximum and points in the negative x-direction ⎛

⎝FS = −kA⎞
⎠ . The velocity and

kinetic energy of the block are zero at time t = 0.00 s. At time t = 0.00 s, the block is released from rest.

Figure 15.12 Graph of the kinetic energy, potential energy, and total energy of a block oscillating on a spring in SHM.
Also shown are the graphs of position versus time and velocity versus time. The total energy remains constant, but the
energy oscillates between kinetic energy and potential energy. When the kinetic energy is maximum, the potential energy is
zero. This occurs when the velocity is maximum and the mass is at the equilibrium position. The potential energy is
maximum when the speed is zero. The total energy is the sum of the kinetic energy plus the potential energy and it is
constant.

Oscillations About an Equilibrium Position
We have just considered the energy of SHM as a function of time. Another interesting view of the simple harmonic oscillator
is to consider the energy as a function of position. Figure 15.13 shows a graph of the energy versus position of a system
undergoing SHM.
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Figure 15.13 A graph of the kinetic energy (red), potential energy
(blue), and total energy (green) of a simple harmonic oscillator. The force

is equal to F = − dU
dx . The equilibrium position is shown as a black dot

and is the point where the force is equal to zero. The force is positive when
x < 0 , negative when x > 0 , and equal to zero when x = 0 .

The potential energy curve in Figure 15.13 resembles a bowl. When a marble is placed in a bowl, it settles to the
equilibrium position at the lowest point of the bowl (x = 0) . This happens because a restoring force points toward the

equilibrium point. This equilibrium point is sometimes referred to as a fixed point. When the marble is disturbed to a
different position (x = + A) , the marble oscillates around the equilibrium position. Looking back at the graph of potential

energy, the force can be found by looking at the slope of the potential energy graph ⎛
⎝F = − dU

dx
⎞
⎠ . Since the force on either

side of the fixed point points back toward the equilibrium point, the equilibrium point is called a stable equilibrium point.
The points x = A and x = −A are called the turning points. (See Potential Energy and Conservation of Energy.)

Stability is an important concept. If an equilibrium point is stable, a slight disturbance of an object that is initially at the
stable equilibrium point will cause the object to oscillate around that point. The stable equilibrium point occurs because the
force on either side is directed toward it. For an unstable equilibrium point, if the object is disturbed slightly, it does not
return to the equilibrium point.

Consider the marble in the bowl example. If the bowl is right-side up, the marble, if disturbed slightly, will oscillate around
the stable equilibrium point. If the bowl is turned upside down, the marble can be balanced on the top, at the equilibrium
point where the net force is zero. However, if the marble is disturbed slightly, it will not return to the equilibrium point, but
will instead roll off the bowl. The reason is that the force on either side of the equilibrium point is directed away from that
point. This point is an unstable equilibrium point.

Figure 15.14 shows three conditions. The first is a stable equilibrium point (a), the second is an unstable equilibrium point
(b), and the last is also an unstable equilibrium point (c), because the force on only one side points toward the equilibrium
point.
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Figure 15.14 Examples of equilibrium points. (a) Stable equilibrium point; (b) unstable equilibrium point;
(c) unstable equilibrium point (sometimes referred to as a half-stable equilibrium point).

The process of determining whether an equilibrium point is stable or unstable can be formalized. Consider the potential
energy curves shown in Figure 15.15. The force can be found by analyzing the slope of the graph. The force is

F = − dU
dx . In (a), the fixed point is at x = 0.00 m. When x < 0.00 m, the force is positive. When x > 0.00 m, the

force is negative. This is a stable point. In (b), the fixed point is at x = 0.00 m. When x < 0.00 m, the force is negative.

When x > 0.00 m, the force is also negative. This is an unstable point.

Figure 15.15 Two examples of a potential energy function. The force at a position is equal to the negative of the
slope of the graph at that position. (a) A potential energy function with a stable equilibrium point. (b) A potential
energy function with an unstable equilibrium point. This point is sometimes called half-stable because the force on
one side points toward the fixed point.

A practical application of the concept of stable equilibrium points is the force between two neutral atoms in a molecule. If
two molecules are in close proximity, separated by a few atomic diameters, they can experience an attractive force. If the
molecules move close enough so that the electron shells of the other electrons overlap, the force between the molecules
becomes repulsive. The attractive force between the two atoms may cause the atoms to form a molecule. The force between
the two molecules is not a linear force and cannot be modeled simply as two masses separated by a spring, but the atoms of
the molecule can oscillate around an equilibrium point when displaced a small amount from the equilibrium position. The
atoms oscillate due the attractive force and repulsive force between the two atoms.

Consider one example of the interaction between two atoms known as the van Der Waals interaction. It is beyond the scope
of this chapter to discuss in depth the interactions of the two atoms, but the oscillations of the atoms can be examined by
considering one example of a model of the potential energy of the system. One suggestion to model the potential energy of
this molecule is with the Lennard-Jones 6-12 potential:
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U(x) = 4ε⎡
⎣

⎛
⎝
σ
x

⎞
⎠
12

− ⎛
⎝
σ
x

⎞
⎠
6⎤
⎦.

A graph of this function is shown in Figure 15.16. The two parameters ε and σ are found experimentally.

Figure 15.16 The Lennard-Jones potential energy function for a system of two
neutral atoms. If the energy is below some maximum energy, the system oscillates
near the equilibrium position between the two turning points.

From the graph, you can see that there is a potential energy well, which has some similarities to the potential energy well
of the potential energy function of the simple harmonic oscillator discussed in Figure 15.13. The Lennard-Jones potential
has a stable equilibrium point where the potential energy is minimum and the force on either side of the equilibrium point
points toward equilibrium point. Note that unlike the simple harmonic oscillator, the potential well of the Lennard-Jones
potential is not symmetric. This is due to the fact that the force between the atoms is not a Hooke’s law force and is not
linear. The atoms can still oscillate around the equilibrium position xmin because when x < xmin , the force is positive;

when x > xmin , the force is negative. Notice that as x approaches zero, the slope is quite steep and negative, which means

that the force is large and positive. This suggests that it takes a large force to try to push the atoms close together. As x
becomes increasingly large, the slope becomes less steep and the force is smaller and negative. This suggests that if given a
large enough energy, the atoms can be separated.

If you are interested in this interaction, find the force between the molecules by taking the derivative of the potential energy
function. You will see immediately that the force does not resemble a Hooke’s law force (F = −kx) , but if you are familiar

with the binomial theorem:

(1 + x)n = 1 + nx + n(n − 1)
2! x2 + n(n − 1)(n − 2)

3! x3 + ⋯ ,

the force can be approximated by a Hooke’s law force.

Velocity and Energy Conservation
Getting back to the system of a block and a spring in Figure 15.11, once the block is released from rest, it begins
to move in the negative direction toward the equilibrium position. The potential energy decreases and the magnitude of
the velocity and the kinetic energy increase. At time t = T /4 , the block reaches the equilibrium position x = 0.00 m,
where the force on the block and the potential energy are zero. At the equilibrium position, the block reaches a negative
velocity with a magnitude equal to the maximum velocity v = −Aω . The kinetic energy is maximum and equal to

K = 1
2mv2 = 1

2mA2 ω2 = 1
2kA2. At this point, the force on the block is zero, but momentum carries the block, and it

continues in the negative direction toward x = −A . As the block continues to move, the force on it acts in the positive

direction and the magnitude of the velocity and kinetic energy decrease. The potential energy increases as the spring
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compresses. At time t = T /2 , the block reaches x = −A . Here the velocity and kinetic energy are equal to zero. The force

on the block is F = + kA and the potential energy stored in the spring is U = 1
2kA2 . During the oscillations, the total

energy is constant and equal to the sum of the potential energy and the kinetic energy of the system,

(15.12)ETotal = 1
2kx2 + 1

2mv2 = 1
2kA2.

The equation for the energy associated with SHM can be solved to find the magnitude of the velocity at any position:

(15.13)|v| = k
m

⎛
⎝A2 − x2⎞

⎠.

The energy in a simple harmonic oscillator is proportional to the square of the amplitude. When considering many forms of
oscillations, you will find the energy proportional to the amplitude squared.

Check Your Understanding Why would it hurt more if you snapped your hand with a ruler than with a
loose spring, even if the displacement of each system is equal?

Check Your Understanding Identify one way you could decrease the maximum velocity of a simple
harmonic oscillator.

15.3 | Comparing Simple Harmonic Motion and Circular

Motion

Learning Objectives

By the end of this section, you will be able to:

• Describe how the sine and cosine functions relate to the concepts of circular motion

• Describe the connection between simple harmonic motion and circular motion

An easy way to model SHM is by considering uniform circular motion. Figure 15.17 shows one way of using this method.
A peg (a cylinder of wood) is attached to a vertical disk, rotating with a constant angular frequency. Figure 15.18 shows
a side view of the disk and peg. If a lamp is placed above the disk and peg, the peg produces a shadow. Let the disk have a
radius of r = A and define the position of the shadow that coincides with the center line of the disk to be x = 0.00 m . As

the disk rotates at a constant rate, the shadow oscillates between x = + A and x = −A . Now imagine a block on a spring

beneath the floor as shown in Figure 15.18.
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Figure 15.17 SHM can be modeled as rotational motion by
looking at the shadow of a peg on a wheel rotating at a constant
angular frequency.
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Figure 15.18 Light shines down on the disk so that the peg makes a
shadow. If the disk rotates at just the right angular frequency, the shadow
follows the motion of the block on a spring. If there is no energy dissipated
due to nonconservative forces, the block and the shadow will oscillate back
and forth in unison. In this figure, four snapshots are taken at four different
times. (a) The wheel starts at θ = 0o and the shadow of the peg is at

x = + A , representing the mass at position x = + A . (b) As the disk

rotates through an angle θ = ωt , the shadow of the peg is between

x = + A and x = 0 . (c) The disk continues to rotate until θ = 900 , at

which the shadow follows the mass to x = 0 . (d) The disk continues to

rotate, the shadow follows the position of the mass.

If the disk turns at the proper angular frequency, the shadow follows along with the block. The position of the shadow can
be modeled with the equation
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(15.14)x(t) = Acos(ωt).

Recall that the block attached to the spring does not move at a constant velocity. How often does the wheel have to turn
to have the peg’s shadow always on the block? The disk must turn at a constant angular frequency equal to 2π times the

frequency of oscillation ⎛
⎝ω = 2π f ⎞

⎠ .

Figure 15.19 shows the basic relationship between uniform circular motion and SHM. The peg lies at the tip of the radius,
a distance A from the center of the disk. The x-axis is defined by a line drawn parallel to the ground, cutting the disk in
half. The y-axis (not shown) is defined by a line perpendicular to the ground, cutting the disk into a left half and a right
half. The center of the disk is the point ⎛

⎝x = 0, y = 0⎞
⎠. The projection of the position of the peg onto the fixed x-axis gives

the position of the shadow, which undergoes SHM analogous to the system of the block and spring. At the time shown in
the figure, the projection has position x and moves to the left with velocity v. The tangential velocity of the peg around the
circle equals v–max of the block on the spring. The x-component of the velocity is equal to the velocity of the block on the

spring.

Figure 15.19 A peg moving on a circular path with a constant
angular velocity ω is undergoing uniform circular motion. Its

projection on the x-axis undergoes SHM. Also shown is the
velocity of the peg around the circle, vmax , and its projection,

which is v. Note that these velocities form a similar triangle to
the displacement triangle.

We can use Figure 15.19 to analyze the velocity of the shadow as the disk rotates. The peg moves in a circle with a speed
of vmax = Aω . The shadow moves with a velocity equal to the component of the peg’s velocity that is parallel to the

surface where the shadow is being produced:

(15.15)v = −vmax sin(ωt).

It follows that the acceleration is
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(15.16)a = −amax cos(ωt).

Check Your Understanding Identify an object that undergoes uniform circular motion. Describe how
you could trace the SHM of this object.

15.4 | Pendulums

Learning Objectives

By the end of this section, you will be able to:

• State the forces that act on a simple pendulum

• Determine the angular frequency, frequency, and period of a simple pendulum in terms of the
length of the pendulum and the acceleration due to gravity

• Define the period for a physical pendulum

• Define the period for a torsional pendulum

Pendulums are in common usage. Grandfather clocks use a pendulum to keep time and a pendulum can be used to measure
the acceleration due to gravity. For small displacements, a pendulum is a simple harmonic oscillator.

The Simple Pendulum
A simple pendulum is defined to have a point mass, also known as the pendulum bob, which is suspended from a string
of length L with negligible mass (Figure 15.20). Here, the only forces acting on the bob are the force of gravity (i.e., the
weight of the bob) and tension from the string. The mass of the string is assumed to be negligible as compared to the mass
of the bob.

Figure 15.20 A simple pendulum has a small-diameter bob
and a string that has a very small mass but is strong enough not
to stretch appreciably. The linear displacement from equilibrium
is s, the length of the arc. Also shown are the forces on the bob,
which result in a net force of −mgsin θ toward the equilibrium

position—that is, a restoring force.

Consider the torque on the pendulum. The force providing the restoring torque is the component of the weight of the
pendulum bob that acts along the arc length. The torque is the length of the string L times the component of the net force
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that is perpendicular to the radius of the arc. The minus sign indicates the torque acts in the opposite direction of the angular
displacement:

τ = −L⎛
⎝mg sin θ⎞

⎠;
Iα = −L⎛

⎝mg sin θ⎞
⎠;

Id2 θ
dt2 = −L⎛

⎝mg sin θ⎞
⎠;

mL2 d2 θ
dt2 = −L⎛

⎝mg sin θ⎞
⎠;

d2 θ
dt2 = − g

Lsin θ.

The solution to this differential equation involves advanced calculus, and is beyond the scope of this text. But note that
for small angles (less than 15 degrees), sin θ and θ differ by less than 1%, so we can use the small angle approximation

sin θ ≈ θ. The angle θ describes the position of the pendulum. Using the small angle approximation gives an approximate

solution for small angles,

(15.17)d2 θ
dt2 = − g

Lθ.

Because this equation has the same form as the equation for SHM, the solution is easy to find. The angular frequency is

(15.18)ω = g
L

and the period is

(15.19)T = 2π L
g .

The period of a simple pendulum depends on its length and the acceleration due to gravity. The period is completely
independent of other factors, such as mass and the maximum displacement. As with simple harmonic oscillators, the period
T for a pendulum is nearly independent of amplitude, especially if θ is less than about 15°. Even simple pendulum clocks

can be finely adjusted and remain accurate.

Note the dependence of T on g. If the length of a pendulum is precisely known, it can actually be used to measure the
acceleration due to gravity, as in the following example.

Example 15.3

Measuring Acceleration due to Gravity by the Period of a Pendulum

What is the acceleration due to gravity in a region where a simple pendulum having a length 75.000 cm has a
period of 1.7357 s?

Strategy

We are asked to find g given the period T and the length L of a pendulum. We can solve T = 2π L
g for g,

assuming only that the angle of deflection is less than 15° .
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Solution

1. Square T = 2π L
g and solve for g:

g = 4π2 L
T 2.

2. Substitute known values into the new equation:

g = 4π2 0.75000 m
(1.7357 s)2.

3. Calculate to find g:

g = 9.8281 m/s2.

Significance

This method for determining g can be very accurate, which is why length and period are given to five digits in
this example. For the precision of the approximation sin θ ≈ θ to be better than the precision of the pendulum

length and period, the maximum displacement angle should be kept below about 0.5° .

Check Your Understanding An engineer builds two simple pendulums. Both are suspended from
small wires secured to the ceiling of a room. Each pendulum hovers 2 cm above the floor. Pendulum 1 has a bob
with a mass of 10 kg. Pendulum 2 has a bob with a mass of 100 kg. Describe how the motion of the pendulums
will differ if the bobs are both displaced by 12° .

Physical Pendulum
Any object can oscillate like a pendulum. Consider a coffee mug hanging on a hook in the pantry. If the mug gets knocked,
it oscillates back and forth like a pendulum until the oscillations die out. We have described a simple pendulum as a point
mass and a string. A physical pendulum is any object whose oscillations are similar to those of the simple pendulum, but
cannot be modeled as a point mass on a string, and the mass distribution must be included into the equation of motion.

As for the simple pendulum, the restoring force of the physical pendulum is the force of gravity. With the simple pendulum,
the force of gravity acts on the center of the pendulum bob. In the case of the physical pendulum, the force of gravity acts
on the center of mass (CM) of an object. The object oscillates about a point O. Consider an object of a generic shape as
shown in Figure 15.21.
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Figure 15.21 A physical pendulum is any object that
oscillates as a pendulum, but cannot be modeled as a point mass
on a string. The force of gravity acts on the center of mass (CM)
and provides the restoring force that causes the object to
oscillate. The minus sign on the component of the weight that
provides the restoring force is present because the force acts in
the opposite direction of the increasing angle θ .

When a physical pendulum is hanging from a point but is free to rotate, it rotates because of the torque applied at the CM,
produced by the component of the object’s weight that acts tangent to the motion of the CM. Taking the counterclockwise
direction to be positive, the component of the gravitational force that acts tangent to the motion is −mg sin θ . The minus

sign is the result of the restoring force acting in the opposite direction of the increasing angle. Recall that the torque is

equal to τ→ = r→ × F→ . The magnitude of the torque is equal to the length of the radius arm times the tangential

component of the force applied, |τ| = rFsin θ . Here, the length L of the radius arm is the distance between the point of

rotation and the CM. To analyze the motion, start with the net torque. Like the simple pendulum, consider only small angles
so that sin θ ≈ θ . Recall from Fixed-Axis Rotation on rotation that the net torque is equal to the moment of inertia

I = ∫ r2 dm times the angular acceleration α, where α = d2 θ
dt2 :

Iα = τnet = L(−mg)sin θ.

Using the small angle approximation and rearranging:

Iα = −L(mg)θ;
Id2 θ

dt2 = −L(mg)θ;

d2 θ
dt2 = −⎛

⎝
mgL

I
⎞
⎠θ.

Once again, the equation says that the second time derivative of the position (in this case, the angle) equals minus a constant
⎛
⎝−mgL

I
⎞
⎠ times the position. The solution is

θ(t) = Θcos⎛
⎝ωt + ϕ⎞

⎠,

where Θ is the maximum angular displacement. The angular frequency is

(15.20)
ω = mgL

I .
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The period is therefore

(15.21)T = 2π I
mgL.

Note that for a simple pendulum, the moment of inertia is I = ∫ r2 dm = mL2 and the period reduces to T = 2π L
g .

Example 15.4

Reducing the Swaying of a Skyscraper

In extreme conditions, skyscrapers can sway up to two meters with a frequency of up to 20.00 Hz due to high
winds or seismic activity. Several companies have developed physical pendulums that are placed on the top of the
skyscrapers. As the skyscraper sways to the right, the pendulum swings to the left, reducing the sway. Assuming
the oscillations have a frequency of 0.50 Hz, design a pendulum that consists of a long beam, of constant density,
with a mass of 100 metric tons and a pivot point at one end of the beam. What should be the length of the beam?

Strategy

We are asked to find the length of the physical pendulum with a known mass. We first need to find the moment
of inertia of the beam. We can then use the equation for the period of a physical pendulum to find the length.

Solution
1. Find the moment of inertia for the CM:

2. Use the parallel axis theorem to find the moment of inertia about the point of rotation:

I = ICM + L
4

2
M = 1

12ML2 + 1
4ML2 = 1

3ML2.
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3. The period of a physical pendulum has a period of T = 2π I
mgL . Use the moment of inertia to solve for

the length L:

T = 2π I
MgL = 2π

1
3ML2

MgL = 2π L
3g;

L = 3g⎛
⎝

T
2π

⎞
⎠

2
= 3⎛

⎝9.8m
s2

⎞
⎠

⎛
⎝
2 s
2π

⎞
⎠

2
= 2.98 m.

Significance

There are many ways to reduce the oscillations, including modifying the shape of the skyscrapers, using multiple
physical pendulums, and using tuned-mass dampers.

Torsional Pendulum
A torsional pendulum consists of a rigid body suspended by a light wire or spring (Figure 15.22). When the body is
twisted some small maximum angle (Θ) and released from rest, the body oscillates between (θ = + Θ) and (θ = − Θ) .

The restoring torque is supplied by the shearing of the string or wire.

Figure 15.22 A torsional pendulum consists of a rigid body
suspended by a string or wire. The rigid body oscillates between
θ = + Θ and θ = −Θ .

The restoring torque can be modeled as being proportional to the angle:

τ = −κθ.

The variable kappa (κ) is known as the torsion constant of the wire or string. The minus sign shows that the restoring

torque acts in the opposite direction to increasing angular displacement. The net torque is equal to the moment of inertia
times the angular acceleration:

Id2 θ
dt2 = −κθ;

d2 θ
dt2 = − κ

I θ.

This equation says that the second time derivative of the position (in this case, the angle) equals a negative constant times

the position. This looks very similar to the equation of motion for the SHM d2 x
dt2 = − k

mx , where the period was found to

be T = 2π m
k . Therefore, the period of the torsional pendulum can be found using
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(15.22)T = 2π I
κ .

The units for the torsion constant are [κ] = N-m = ⎛
⎝kgm

s2
⎞
⎠m = kg m2

s2 and the units for the moment of inertial are

[I] = kg-m2, which show that the unit for the period is the second.

Example 15.5

Measuring the Torsion Constant of a String

A rod has a length of l = 0.30 m and a mass of 4.00 kg. A string is attached to the CM of the rod and the system

is hung from the ceiling (Figure 15.23). The rod is displaced 10 degrees from the equilibrium position and
released from rest. The rod oscillates with a period of 0.5 s. What is the torsion constant κ ?

Figure 15.23 (a) A rod suspended by a string from the ceiling. (b) Finding the rod’s moment of
inertia.

Strategy

We are asked to find the torsion constant of the string. We first need to find the moment of inertia.

Solution
1. Find the moment of inertia for the CM:

ICM = ∫ x2dm = ∫
−L/2

+L/2
x2 λdx = λ⎡

⎣
x3

3
⎤
⎦−L/2

+L/2
= λ2L3

24 = ⎛
⎝
M
L

⎞
⎠
2L3

24 = 1
12ML2.

2. Calculate the torsion constant using the equation for the period:

T = 2π I
κ ;

κ = I⎛
⎝
2π
T

⎞
⎠
2

= ⎛
⎝

1
12ML2⎞

⎠
⎛
⎝
2π
T

⎞
⎠
2
;

= ⎛
⎝

1
12

⎛
⎝4.00 kg⎞

⎠(0.30 m)2⎞
⎠
⎛
⎝

2π
0.50 s

⎞
⎠

2
= 4.73 N · m.

Significance

Like the force constant of the system of a block and a spring, the larger the torsion constant, the shorter the period.
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15.5 | Damped Oscillations

Learning Objectives

By the end of this section, you will be able to:

• Describe the motion of damped harmonic motion

• Write the equations of motion for damped harmonic oscillations

• Describe the motion of driven, or forced, damped harmonic motion

• Write the equations of motion for forced, damped harmonic motion

In the real world, oscillations seldom follow true SHM. Friction of some sort usually acts to dampen the motion so it dies
away, or needs more force to continue. In this section, we examine some examples of damped harmonic motion and see
how to modify the equations of motion to describe this more general case.

A guitar string stops oscillating a few seconds after being plucked. To keep swinging on a playground swing, you must
keep pushing (Figure 15.24). Although we can often make friction and other nonconservative forces small or negligible,
completely undamped motion is rare. In fact, we may even want to damp oscillations, such as with car shock absorbers.

Figure 15.24 To counteract dampening forces, you need to
keep pumping a swing. (credit: Bob Mical)

Figure 15.25 shows a mass m attached to a spring with a force constant k. The mass is raised to a position A0 , the initial

amplitude, and then released. The mass oscillates around the equilibrium position in a fluid with viscosity but the amplitude
decreases for each oscillation. For a system that has a small amount of damping, the period and frequency are constant and
are nearly the same as for SHM, but the amplitude gradually decreases as shown. This occurs because the non-conservative
damping force removes energy from the system, usually in the form of thermal energy.
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Figure 15.25 For a mass on a spring oscillating in a viscous fluid, the
period remains constant, but the amplitudes of the oscillations decrease due
to the damping caused by the fluid.

Consider the forces acting on the mass. Note that the only contribution of the weight is to change the equilibrium position,
as discussed earlier in the chapter. Therefore, the net force is equal to the force of the spring and the damping force ⎛

⎝FD
⎞
⎠ . If

the magnitude of the velocity is small, meaning the mass oscillates slowly, the damping force is proportional to the velocity
and acts against the direction of motion ⎛

⎝FD = −bv⎞
⎠ . The net force on the mass is therefore

ma = −bv − kx.

Writing this as a differential equation in x, we obtain

(15.23)md2 x
dt2 + bdx

dt + kx = 0.

To determine the solution to this equation, consider the plot of position versus time shown in Figure 15.26. The curve

resembles a cosine curve oscillating in the envelope of an exponential function A0 e−αt where α = b
2m . The solution is

(15.24)
x(t) = A0 e

− b
2mt

cos⎛
⎝ωt + ϕ⎞

⎠.

It is left as an exercise to prove that this is, in fact, the solution. To prove that it is the right solution, take the first and second
derivatives with respect to time and substitute them into Equation 15.23. It is found that Equation 15.24 is the solution
if

ω = k
m − ⎛

⎝
b

2m
⎞
⎠

2
.

Recall that the angular frequency of a mass undergoing SHM is equal to the square root of the force constant divided by the
mass. This is often referred to as the natural angular frequency, which is represented as

(15.25)ω0 = k
m.
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The angular frequency for damped harmonic motion becomes

(15.26)
ω = ω0

2 − ⎛
⎝

b
2m

⎞
⎠

2
.

Figure 15.26 Position versus time for the mass oscillating on a spring in a viscous fluid.
Notice that the curve appears to be a cosine function inside an exponential envelope.

Recall that when we began this description of damped harmonic motion, we stated that the damping must be small. Two
questions come to mind. Why must the damping be small? And how small is small? If you gradually increase the amount
of damping in a system, the period and frequency begin to be affected, because damping opposes and hence slows the back
and forth motion. (The net force is smaller in both directions.) If there is very large damping, the system does not even
oscillate—it slowly moves toward equilibrium. The angular frequency is equal to

ω = k
m − ⎛

⎝
b

2m
⎞
⎠

2
.

As b increases, k
m − ⎛

⎝
b

2m
⎞
⎠

2
becomes smaller and eventually reaches zero when b = 4mk . If b becomes any larger,

k
m − ⎛

⎝
b

2m
⎞
⎠

2
becomes a negative number and k

m − ⎛
⎝

b
2m

⎞
⎠

2
is a complex number.

Figure 15.27 shows the displacement of a harmonic oscillator for different amounts of damping. When the damping
constant is small, b < 4mk , the system oscillates while the amplitude of the motion decays exponentially. This system

is said to be underdamped, as in curve (a). Many systems are underdamped, and oscillate while the amplitude decreases
exponentially, such as the mass oscillating on a spring. The damping may be quite small, but eventually the mass comes
to rest. If the damping constant is b = 4mk , the system is said to be critically damped, as in curve (b). An example

of a critically damped system is the shock absorbers in a car. It is advantageous to have the oscillations decay as fast
as possible. Here, the system does not oscillate, but asymptotically approaches the equilibrium condition as quickly as
possible. Curve (c) in Figure 15.27 represents an overdamped system where b > 4mk. An overdamped system will

approach equilibrium over a longer period of time.
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Figure 15.27 The position versus time for three systems consisting of a mass and a spring in a

viscous fluid. (a) If the damping is small ⎛
⎝b < 4mk⎞

⎠ , the mass oscillates, slowly losing amplitude as

the energy is dissipated by the non-conservative force(s). The limiting case is (b) where the damping is
⎛
⎝b = 4mk⎞

⎠ . (c) If the damping is very large ⎛
⎝b > 4mk⎞

⎠ , the mass does not oscillate when displaced,

but attempts to return to the equilibrium position.

Critical damping is often desired, because such a system returns to equilibrium rapidly and remains at equilibrium as well.
In addition, a constant force applied to a critically damped system moves the system to a new equilibrium position in the
shortest time possible without overshooting or oscillating about the new position.

Check Your Understanding Why are completely undamped harmonic oscillators so rare?

15.6 | Forced Oscillations

Learning Objectives

By the end of this section, you will be able to:

• Define forced oscillations

• List the equations of motion associated with forced oscillations

• Explain the concept of resonance and its impact on the amplitude of an oscillator

• List the characteristics of a system oscillating in resonance

Sit in front of a piano sometime and sing a loud brief note at it with the dampers off its strings (Figure 15.28). It will
sing the same note back at you—the strings, having the same frequencies as your voice, are resonating in response to the
forces from the sound waves that you sent to them. This is a good example of the fact that objects—in this case, piano
strings—can be forced to oscillate, and oscillate most easily at their natural frequency. In this section, we briefly explore
applying a periodic driving force acting on a simple harmonic oscillator. The driving force puts energy into the system at a
certain frequency, not necessarily the same as the natural frequency of the system. Recall that the natural frequency is the
frequency at which a system would oscillate if there were no driving and no damping force.
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Figure 15.28 You can cause the strings in a piano to vibrate
simply by producing sound waves from your voice.

Most of us have played with toys involving an object supported on an elastic band, something like the paddle ball suspended
from a finger in Figure 15.29. Imagine the finger in the figure is your finger. At first, you hold your finger steady, and
the ball bounces up and down with a small amount of damping. If you move your finger up and down slowly, the ball
follows along without bouncing much on its own. As you increase the frequency at which you move your finger up and
down, the ball responds by oscillating with increasing amplitude. When you drive the ball at its natural frequency, the ball’s
oscillations increase in amplitude with each oscillation for as long as you drive it. The phenomenon of driving a system
with a frequency equal to its natural frequency is called resonance. A system being driven at its natural frequency is said
to resonate. As the driving frequency gets progressively higher than the resonant or natural frequency, the amplitude of the
oscillations becomes smaller until the oscillations nearly disappear, and your finger simply moves up and down with little
effect on the ball.

Figure 15.29 The paddle ball on its rubber band moves in response to the finger
supporting it. If the finger moves with the natural frequency f0 of the ball on the

rubber band, then a resonance is achieved, and the amplitude of the ball’s oscillations
increases dramatically. At higher and lower driving frequencies, energy is transferred
to the ball less efficiently, and it responds with lower-amplitude oscillations.

Consider a simple experiment. Attach a mass m to a spring in a viscous fluid, similar to the apparatus discussed in the
damped harmonic oscillator. This time, instead of fixing the free end of the spring, attach the free end to a disk that is driven
by a variable-speed motor. The motor turns with an angular driving frequency of ω . The rotating disk provides energy

to the system by the work done by the driving force ⎛
⎝Fd = F0 sin(ωt)⎞

⎠ . The experimental apparatus is shown in Figure

15.30.
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Figure 15.30 Forced, damped harmonic motion produced by
driving a spring and mass with a disk driven by a variable-speed
motor.

Using Newton’s second law ( F→ net = m a→ ), we can analyze the motion of the mass. The resulting equation is similar

to the force equation for the damped harmonic oscillator, with the addition of the driving force:

(15.27)−kx − bdx
dt + F0 sin(ωt) = md2 x

dt2 .

When an oscillator is forced with a periodic driving force, the motion may seem chaotic. The motions of the oscillator is
known as transients. After the transients die out, the oscillator reaches a steady state, where the motion is periodic. After
some time, the steady state solution to this differential equation is

(15.28)x(t) = Acos⎛
⎝ωt + ϕ⎞

⎠.

Once again, it is left as an exercise to prove that this equation is a solution. Taking the first and second time derivative of
x(t) and substituting them into the force equation shows that x(t) = Asin⎛

⎝ωt + ϕ⎞
⎠ is a solution as long as the amplitude is

equal to

(15.29)A = F0

m⎛
⎝ω2 − ω0

2⎞
⎠
2

+ b2 ω2

where ω0 = k
m is the natural angular frequency of the system of the mass and spring. Recall that the angular frequency,

and therefore the frequency, of the motor can be adjusted. Looking at the denominator of the equation for the amplitude,
when the driving frequency is much smaller, or much larger, than the natural frequency, the square of the difference of the

two angular frequencies ⎛
⎝ω2 − ω0

2⎞
⎠
2

is positive and large, making the denominator large, and the result is a small amplitude
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for the oscillations of the mass. As the frequency of the driving force approaches the natural frequency of the system, the
denominator becomes small and the amplitude of the oscillations becomes large. The maximum amplitude results when the

frequency of the driving force equals the natural frequency of the system
⎛
⎝Amax = F0

bω
⎞
⎠ .

Figure 15.31 shows a graph of the amplitude of a damped harmonic oscillator as a function of the frequency of the periodic
force driving it. Each of the three curves on the graph represents a different amount of damping. All three curves peak at the
point where the frequency of the driving force equals the natural frequency of the harmonic oscillator. The highest peak, or
greatest response, is for the least amount of damping, because less energy is removed by the damping force. Note that since
the amplitude grows as the damping decreases, taking this to the limit where there is no damping (b = 0) , the amplitude

becomes infinite.

Note that a small-amplitude driving force can produce a large-amplitude response. This phenomenon is known as resonance.
A common example of resonance is a parent pushing a small child on a swing. When the child wants to go higher, the parent
does not move back and then, getting a running start, slam into the child, applying a great force in a short interval. Instead,
the parent applies small pushes to the child at just the right frequency, and the amplitude of the child’s swings increases.

Figure 15.31 Amplitude of a harmonic oscillator as a
function of the frequency of the driving force. The curves
represent the same oscillator with the same natural frequency
but with different amounts of damping. Resonance occurs when
the driving frequency equals the natural frequency, and the
greatest response is for the least amount of damping. The
narrowest response is also for the least damping.

It is interesting to note that the widths of the resonance curves shown in Figure 15.31 depend on damping: the less the
damping, the narrower the resonance. The consequence is that if you want a driven oscillator to resonate at a very specific
frequency, you need as little damping as possible. For instance, a radio has a circuit that is used to choose a particular radio
station. In this case, the forced damped oscillator consists of a resistor, capacitor, and inductor, which will be discussed later
in this course. The circuit is “tuned” to pick a particular radio station. Here it is desirable to have the resonance curve be
very narrow, to pick out the exact frequency of the radio station chosen. The narrowness of the graph, and the ability to pick
out a certain frequency, is known as the quality of the system. The quality is defined as the spread of the angular frequency,

or equivalently, the spread in the frequency, at half the maximum amplitude, divided by the natural frequency
⎛
⎝Q = Δω

ω0
⎞
⎠

as shown in Figure 15.32. For a small damping, the quality is approximately equal to Q ≈ 2b
m .
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Figure 15.32 The quality of a system is defined as the spread in the
frequencies at half the amplitude divided by the natural frequency.

These features of driven harmonic oscillators apply to a huge variety of systems. For instance, magnetic resonance imaging
(MRI) is a widely used medical diagnostic tool in which atomic nuclei (mostly hydrogen nuclei or protons) are made to
resonate by incoming radio waves (on the order of 100 MHz). In all of these cases, the efficiency of energy transfer from the
driving force into the oscillator is best at resonance. Figure 15.33 shows a photograph of a famous example (the Tacoma
Narrows bridge) of the destructive effects of a driven harmonic oscillation. The Millennium bridge in London was closed
for a short period of time for the same reason while inspections were carried out. Observations lead to modifications being
made to the bridge prior to the reopening.

Figure 15.33 In 1940, the Tacoma Narrows bridge in the state of Washington collapsed.
Moderately high, variable cross-winds (much slower than hurricane force winds) drove the
bridge into oscillations at its resonant frequency. Damping decreased when support cables broke
loose and started to slip over the towers, allowing increasingly greater amplitudes until the
structure failed.

Check Your Understanding A famous magic trick involves a performer singing a note toward a crystal
glass until the glass shatters. Explain why the trick works in terms of resonance and natural frequency.
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amplitude (A)

critically damped

elastic potential energy

equilibrium position

force constant (k)

frequency (f)

natural angular frequency

oscillation

overdamped

period (T)

periodic motion

phase shift

physical pendulum

resonance

restoring force

simple harmonic motion (SHM)

simple harmonic oscillator

simple pendulum

stable equilibrium point

torsional pendulum

underdamped

CHAPTER 15 REVIEW

KEY TERMS
maximum displacement from the equilibrium position of an object oscillating around the equilibrium

position

condition in which the damping of an oscillator causes it to return as quickly as possible to its
equilibrium position without oscillating back and forth about this position

potential energy stored as a result of deformation of an elastic object, such as the stretching of a
spring

position where the spring is neither stretched nor compressed

characteristic of a spring which is defined as the ratio of the force applied to the spring to the
displacement caused by the force

number of events per unit of time

angular frequency of a system oscillating in SHM

single fluctuation of a quantity, or repeated and regular fluctuations of a quantity, between two extreme values
around an equilibrium or average value

condition in which damping of an oscillator causes it to return to equilibrium without oscillating; oscillator
moves more slowly toward equilibrium than in the critically damped system

time taken to complete one oscillation

motion that repeats itself at regular time intervals

angle, in radians, that is used in a cosine or sine function to shift the function left or right, used to match up the
function with the initial conditions of data

any extended object that swings like a pendulum

large amplitude oscillations in a system produced by a small amplitude driving force, which has a frequency
equal to the natural frequency

force acting in opposition to the force caused by a deformation

oscillatory motion in a system where the restoring force is proportional to the
displacement, which acts in the direction opposite to the displacement

a device that oscillates in SHM where the restoring force is proportional to the
displacement and acts in the direction opposite to the displacement

point mass, called a pendulum bob, attached to a near massless string

point where the net force on a system is zero, but a small displacement of the mass will cause a
restoring force that points toward the equilibrium point

any suspended object that oscillates by twisting its suspension

condition in which damping of an oscillator causes the amplitude of oscillations of a damped harmonic
oscillator to decrease over time, eventually approaching zero

KEY EQUATIONS

Relationship between frequency and period f = 1
T

Position in SHM with ϕ = 0.00 x(t) = Acos(ωt)

General position in SHM x(t) = Acos⎛
⎝ωt + ϕ⎞

⎠
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General velocity in SHM v(t) = −Aωsin⎛
⎝ωt + ϕ⎞

⎠

General acceleration in SHM a(t) = −Aω2 cos⎛
⎝ωt + ϕ⎞

⎠

Maximum displacement (amplitude) of SHM xmax = A

Maximum velocity of SHM |vmax| = Aω

Maximum acceleration of SHM |amax| = Aω2

Angular frequency of a mass-spring system in SHM ω = k
m

Period of a mass-spring system in SHM T = 2π m
k

Frequency of a mass-spring system in SHM f = 1
2π

k
m

Energy in a mass-spring system in SHM ETotal = 1
2kx2 + 1

2mv2 = 1
2kA2

The velocity of the mass in a spring-mass
system in SHM

v = ± k
m

⎛
⎝A2 − x2⎞

⎠

The x-component of the radius of a rotating disk x(t) = Acos⎛
⎝ωt + ϕ⎞

⎠

The x-component of the velocity of the edge of a rotating disk v(t) = −vmax sin⎛
⎝ωt + ϕ⎞

⎠

The x-component of the acceleration of the
edge of a rotating disk

a(t) = −amax cos⎛
⎝ωt + ϕ⎞

⎠

Force equation for a simple pendulum
d2 θ
dt2 = − g

Lθ

Angular frequency for a simple pendulum ω = g
L

Period of a simple pendulum T = 2π L
g

Angular frequency of a physical pendulum ω = mgL
I

Period of a physical pendulum T = 2π I
mgL

Period of a torsional pendulum T = 2π I
κ

Newton’s second law for harmonic motion md2 x
dt2 + bdx

dt + kx = 0

Solution for underdamped harmonic motion x(t) = A0 e
− b

2mt
cos⎛

⎝ωt + ϕ⎞
⎠

Natural angular frequency of a
mass-spring system

ω0 = k
m

Angular frequency of underdamped
harmonic motion ω = ω0

2 − ⎛
⎝

b
2m

⎞
⎠

2
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Newton’s second law for forced,
damped oscillation

−kx − bdx
dt + Fo sin(ωt) = md2 x

dt2

Solution to Newton’s second law for forced,
damped oscillations

x(t) = Acos⎛
⎝ωt + ϕ⎞

⎠

Amplitude of system undergoing forced,
damped oscillations

A = Fo

m⎛
⎝ω2 − ωo

2⎞
⎠
2

+ b2 ω2

SUMMARY

15.1 Simple Harmonic Motion

• Periodic motion is a repeating oscillation. The time for one oscillation is the period T and the number of oscillations

per unit time is the frequency f. These quantities are related by f = 1
T .

• Simple harmonic motion (SHM) is oscillatory motion for a system where the restoring force is proportional to the
displacement and acts in the direction opposite to the displacement.

• Maximum displacement is the amplitude A. The angular frequency ω , period T, and frequency f of a simple

harmonic oscillator are given by ω = k
m , T = 2π m

k , and f = 1
2π

k
m , where m is the mass of the system and k

is the force constant.

• Displacement as a function of time in SHM is given by x(t) = A cos⎛
⎝
2π
T t + ϕ⎞

⎠ = Acos⎛
⎝ωt + ϕ⎞

⎠ .

• The velocity is given by v(t) = −Aωsin⎛
⎝ωt + ϕ⎞

⎠ = −vmax sin⎛
⎝ωt + ϕ⎞

⎠, where vmax = Aω = A k
m .

• The acceleration is a(t) = −Aω2 cos⎛
⎝ωt + ϕ⎞

⎠ = −amax cos⎛
⎝ωt + ϕ⎞

⎠ , where amax = Aω2 = A k
m .

15.2 Energy in Simple Harmonic Motion

• The simplest type of oscillations are related to systems that can be described by Hooke’s law, F = −kx, where F is
the restoring force, x is the displacement from equilibrium or deformation, and k is the force constant of the system.

• Elastic potential energy U stored in the deformation of a system that can be described by Hooke’s law is given by

U = 1
2kx2.

• Energy in the simple harmonic oscillator is shared between elastic potential energy and kinetic energy, with the total
being constant:

ETotal = 1
2mv2 + 1

2kx2 = 1
2kA2 = constant.

• The magnitude of the velocity as a function of position for the simple harmonic oscillator can be found by using

|v| = k
m

⎛
⎝A2 − x2⎞

⎠.

15.3 Comparing Simple Harmonic Motion and Circular Motion

• A projection of uniform circular motion undergoes simple harmonic oscillation.

• Consider a circle with a radius A, moving at a constant angular speed ω . A point on the edge of the circle moves

at a constant tangential speed of vmax = Aω . The projection of the radius onto the x-axis is x(t) = Acos⎛
⎝ωt + ϕ⎞

⎠ ,

where ⎛
⎝ϕ⎞

⎠ is the phase shift. The x-component of the tangential velocity is v(t) = −Aωsin⎛
⎝ωt + ϕ⎞

⎠ .
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15.4 Pendulums

• A mass m suspended by a wire of length L and negligible mass is a simple pendulum and undergoes SHM for

amplitudes less than about 15° . The period of a simple pendulum is T = 2π L
g , where L is the length of the string

and g is the acceleration due to gravity.

• The period of a physical pendulum T = 2π I
mgL can be found if the moment of inertia is known. The length

between the point of rotation and the center of mass is L.

• The period of a torsional pendulum T = 2π I
κ can be found if the moment of inertia and torsion constant are

known.

15.5 Damped Oscillations

• Damped harmonic oscillators have non-conservative forces that dissipate their energy.

• Critical damping returns the system to equilibrium as fast as possible without overshooting.

• An underdamped system will oscillate through the equilibrium position.

• An overdamped system moves more slowly toward equilibrium than one that is critically damped.

15.6 Forced Oscillations

• A system’s natural frequency is the frequency at which the system oscillates if not affected by driving or damping
forces.

• A periodic force driving a harmonic oscillator at its natural frequency produces resonance. The system is said to
resonate.

• The less damping a system has, the higher the amplitude of the forced oscillations near resonance. The more
damping a system has, the broader response it has to varying driving frequencies.

CONCEPTUAL QUESTIONS

15.1 Simple Harmonic Motion

1. What conditions must be met to produce SHM?

2. (a) If frequency is not constant for some oscillation, can
the oscillation be SHM? (b) Can you think of any examples
of harmonic motion where the frequency may depend on
the amplitude?

3. Give an example of a simple harmonic oscillator,
specifically noting how its frequency is independent of
amplitude.

4. Explain why you expect an object made of a stiff
material to vibrate at a higher frequency than a similar
object made of a more pliable material.

5. As you pass a freight truck with a trailer on a highway,
you notice that its trailer is bouncing up and down slowly.
Is it more likely that the trailer is heavily loaded or nearly
empty? Explain your answer.

6. Some people modify cars to be much closer to the
ground than when manufactured. Should they install stiffer
springs? Explain your answer.

15.2 Energy in Simple Harmonic Motion

7. Describe a system in which elastic potential energy is
stored.

8. Explain in terms of energy how dissipative forces such
as friction reduce the amplitude of a harmonic oscillator.
Also explain how a driving mechanism can compensate. (A
pendulum clock is such a system.)

9. The temperature of the atmosphere oscillates from a
maximum near noontime and a minimum near sunrise.
Would you consider the atmosphere to be in stable or
unstable equilibrium?
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15.3 Comparing Simple Harmonic Motion and

Circular Motion

10. Can this analogy of SHM to circular motion be carried
out with an object oscillating on a spring vertically hung
from the ceiling? Why or why not? If given the choice,
would you prefer to use a sine function or a cosine function
to model the motion?

11. If the maximum speed of the mass attached to a spring,
oscillating on a frictionless table, was increased, what
characteristics of the rotating disk would need to be
changed?

15.4 Pendulums

12. Pendulum clocks are made to run at the correct rate by
adjusting the pendulum’s length. Suppose you move from
one city to another where the acceleration due to gravity
is slightly greater, taking your pendulum clock with you,
will you have to lengthen or shorten the pendulum to keep
the correct time, other factors remaining constant? Explain
your answer.

13. A pendulum clock works by measuring the period of
a pendulum. In the springtime the clock runs with perfect
time, but in the summer and winter the length of the
pendulum changes. When most materials are heated, they
expand. Does the clock run too fast or too slow in the
summer? What about the winter?

14. With the use of a phase shift, the position of an object
may be modeled as a cosine or sine function. If given
the option, which function would you choose? Assuming
that the phase shift is zero, what are the initial conditions
of function; that is, the initial position, velocity, and
acceleration, when using a sine function? How about when
a cosine function is used?

15.5 Damped Oscillations

15. Give an example of a damped harmonic oscillator.
(They are more common than undamped or simple
harmonic oscillators.)

16. How would a car bounce after a bump under each of
these conditions?

(a) overdamping

(b) underdamping

(c) critical damping

17. Most harmonic oscillators are damped and, if
undriven, eventually come to a stop. Why?

15.6 Forced Oscillations

18. Why are soldiers in general ordered to “route step”
(walk out of step) across a bridge?

19. Do you think there is any harmonic motion in the
physical world that is not damped harmonic motion? Try to
make a list of five examples of undamped harmonic motion
and damped harmonic motion. Which list was easier to
make?

20. Some engineers use sound to diagnose performance
problems with car engines. Occasionally, a part of the
engine is designed that resonates at the frequency of the
engine. The unwanted oscillations can cause noise that
irritates the driver or could lead to the part failing
prematurely. In one case, a part was located that had a
length L made of a material with a mass M. What can be
done to correct this problem?

PROBLEMS

15.1 Simple Harmonic Motion

21. Prove that using x(t) = Asin⎛
⎝ωt + ϕ⎞

⎠ will produce the

same results for the period for the oscillations of a mass
and a spring. Why do you think the cosine function was
chosen?

22. What is the period of 60.0 Hz of electrical power?

23. If your heart rate is 150 beats per minute during
strenuous exercise, what is the time per beat in units of
seconds?

24. Find the frequency of a tuning fork that takes

2.50 × 10−3 s to complete one oscillation.

25. A stroboscope is set to flash every 8.00 × 10−5 s .

What is the frequency of the flashes?

26. A tire has a tread pattern with a crevice every 2.00 cm.
Each crevice makes a single vibration as the tire moves.
What is the frequency of these vibrations if the car moves
at 30.0 m/s?

27. Each piston of an engine makes a sharp sound every
other revolution of the engine. (a) How fast is a race car
going if its eight-cylinder engine emits a sound of
frequency 750 Hz, given that the engine makes 2000
revolutions per kilometer? (b) At how many revolutions per
minute is the engine rotating?

Chapter 15 | Oscillations 801



28. A type of cuckoo clock keeps time by having a mass
bouncing on a spring, usually something cute like a cherub
in a chair. What force constant is needed to produce a
period of 0.500 s for a 0.0150-kg mass?

29. A mass m0 is attached to a spring and hung vertically.

The mass is raised a short distance in the vertical direction
and released. The mass oscillates with a frequency f0 . If

the mass is replaced with a mass nine times as large, and
the experiment was repeated, what would be the frequency
of the oscillations in terms of f0 ?

30. A 0.500-kg mass suspended from a spring oscillates
with a period of 1.50 s. How much mass must be added to
the object to change the period to 2.00 s?

31. By how much leeway (both percentage and mass)
would you have in the selection of the mass of the object in
the previous problem if you did not wish the new period to
be greater than 2.01 s or less than 1.99 s?

15.2 Energy in Simple Harmonic Motion

32. Fish are hung on a spring scale to determine their
mass. (a) What is the force constant of the spring in such a
scale if it the spring stretches 8.00 cm for a 10.0 kg load?
(b) What is the mass of a fish that stretches the spring 5.50
cm? (c) How far apart are the half-kilogram marks on the
scale?

33. It is weigh-in time for the local under-85-kg rugby
team. The bathroom scale used to assess eligibility can
be described by Hooke’s law and is depressed 0.75 cm
by its maximum load of 120 kg. (a) What is the spring’s
effective force constant? (b) A player stands on the scales
and depresses it by 0.48 cm. Is he eligible to play on this
under-85-kg team?

34. One type of BB gun uses a spring-driven plunger to
blow the BB from its barrel. (a) Calculate the force constant
of its plunger’s spring if you must compress it 0.150 m to
drive the 0.0500-kg plunger to a top speed of 20.0 m/s. (b)
What force must be exerted to compress the spring?

35. When an 80.0-kg man stands on a pogo stick, the
spring is compressed 0.120 m. (a) What is the force
constant of the spring? (b) Will the spring be compressed
more when he hops down the road?

36. A spring has a length of 0.200 m when a 0.300-kg
mass hangs from it, and a length of 0.750 m when a 1.95-kg
mass hangs from it. (a) What is the force constant of the
spring? (b) What is the unloaded length of the spring?

37. The length of nylon rope from which a mountain
climber is suspended has an effective force constant of

1.40 × 104 N/m . (a) What is the frequency at which he

bounces, given his mass plus and the mass of his equipment
are 90.0 kg? (b) How much would this rope stretch to break
the climber’s fall if he free-falls 2.00 m before the rope runs
out of slack? (Hint: Use conservation of energy.) (c) Repeat
both parts of this problem in the situation where twice this
length of nylon rope is used.

15.3 Comparing Simple Harmonic Motion and

Circular Motion

38. The motion of a mass on a spring hung vertically,
where the mass oscillates up and down, can also be
modeled using the rotating disk. Instead of the lights being
placed horizontally along the top and pointing down, place
the lights vertically and have the lights shine on the side of
the rotating disk. A shadow will be produced on a nearby
wall, and will move up and down. Write the equations of
motion for the shadow taking the position at t = 0.0 s to

be y = 0.0 m with the mass moving in the positive y-

direction.

39. (a) A novelty clock has a 0.0100-kg-mass object
bouncing on a spring that has a force constant of 1.25 N/
m. What is the maximum velocity of the object if the object
bounces 3.00 cm above and below its equilibrium position?
(b) How many joules of kinetic energy does the object have
at its maximum velocity?

40. Reciprocating motion uses the rotation of a motor to
produce linear motion up and down or back and forth. This
is how a reciprocating saw operates, as shown below.

If the motor rotates at 60 Hz and has a radius of 3.0 cm,
estimate the maximum speed of the saw blade as it moves
up and down. This design is known as a scotch yoke.

41. A student stands on the edge of a merry-go-round
which rotates five times a minute and has a radius of two
meters one evening as the sun is setting. The student
produces a shadow on the nearby building. (a) Write an
equation for the position of the shadow. (b) Write an
equation for the velocity of the shadow.

15.4 Pendulums

42. What is the length of a pendulum that has a period of
0.500 s?
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43. Some people think a pendulum with a period of 1.00
s can be driven with “mental energy” or psycho kinetically,
because its period is the same as an average heartbeat. True
or not, what is the length of such a pendulum?

44. What is the period of a 1.00-m-long pendulum?

45. How long does it take a child on a swing to complete
one swing if her center of gravity is 4.00 m below the
pivot?

46. The pendulum on a cuckoo clock is 5.00-cm long.
What is its frequency?

47. Two parakeets sit on a swing with their combined
CMs 10.0 cm below the pivot. At what frequency do they
swing?

48. (a) A pendulum that has a period of 3.00000 s and
that is located where the acceleration due to gravity is

9.79 m/s2 is moved to a location where the acceleration

due to gravity is 9.82 m/s2 . What is its new period? (b)

Explain why so many digits are needed in the value for the
period, based on the relation between the period and the
acceleration due to gravity.

49. A pendulum with a period of 2.00000 s in one location

( g = 9.80m/s2 ) is moved to a new location where the

period is now 1.99796 s. What is the acceleration due to
gravity at its new location?

50. (a) What is the effect on the period of a pendulum if
you double its length? (b) What is the effect on the period
of a pendulum if you decrease its length by 5.00%?

15.5 Damped Oscillations

51. The amplitude of a lightly damped oscillator decreases
by 3.0% during each cycle. What percentage of the

mechanical energy of the oscillator is lost in each cycle?

15.6 Forced Oscillations

52. How much energy must the shock absorbers of a
1200-kg car dissipate in order to damp a bounce that
initially has a velocity of 0.800 m/s at the equilibrium
position? Assume the car returns to its original vertical
position.

53. If a car has a suspension system with a force constant

of 5.00 × 104 N/m , how much energy must the car’s

shocks remove to dampen an oscillation starting with a
maximum displacement of 0.0750 m?

54. (a) How much will a spring that has a force constant
of 40.0 N/m be stretched by an object with a mass of 0.500
kg when hung motionless from the spring? (b) Calculate the
decrease in gravitational potential energy of the 0.500-kg
object when it descends this distance. (c) Part of this
gravitational energy goes into the spring. Calculate the
energy stored in the spring by this stretch, and compare it
with the gravitational potential energy. Explain where the
rest of the energy might go.

55. Suppose you have a 0.750-kg object on a horizontal
surface connected to a spring that has a force constant of
150 N/m. There is simple friction between the object and
surface with a static coefficient of friction µs = 0.100 .

(a) How far can the spring be stretched without moving
the mass? (b) If the object is set into oscillation with an
amplitude twice the distance found in part (a), and the
kinetic coefficient of friction is µk = 0.0850 , what total

distance does it travel before stopping? Assume it starts at
the maximum amplitude.
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ADDITIONAL PROBLEMS
56. Suppose you attach an object with mass m to a vertical
spring originally at rest, and let it bounce up and down.
You release the object from rest at the spring’s original rest
length, the length of the spring in equilibrium, without the
mass attached. The amplitude of the motion is the distance
between the equilibrium position of the spring without the
mass attached and the equilibrium position of the spring
with the mass attached. (a) Show that the spring exerts an
upward force of 2.00mg on the object at its lowest point.
(b) If the spring has a force constant of 10.0 N/m, is hung
horizontally, and the position of the free end of the spring
is marked as y = 0.00 m , where is the new equilibrium

position if a 0.25-kg-mass object is hung from the spring?
(c) If the spring has a force constant of 10.0 M/m and
a 0.25-kg-mass object is set in motion as described, find
the amplitude of the oscillations. (d) Find the maximum
velocity.

57. A diver on a diving board is undergoing SHM. Her
mass is 55.0 kg and the period of her motion is 0.800 s.
The next diver is a male whose period of simple harmonic
oscillation is 1.05 s. What is his mass if the mass of the
board is negligible?

58. Suppose a diving board with no one on it bounces up
and down in a SHM with a frequency of 4.00 Hz. The board
has an effective mass of 10.0 kg. What is the frequency of
the SHM of a 75.0-kg diver on the board?

59. The device pictured in the following figure entertains
infants while keeping them from wandering. The child
bounces in a harness suspended from a door frame by a
spring. (a) If the spring stretches 0.250 m while supporting
an 8.0-kg child, what is its force constant? (b) What is the
time for one complete bounce of this child? (c) What is the
child’s maximum velocity if the amplitude of her bounce is
0.200 m?

Figure 15.34 (credit: Lisa Doehnert)

60. A mass is placed on a frictionless, horizontal table.
A spring (k = 100 N/m) , which can be stretched or

compressed, is placed on the table. A 5.00-kg mass is
attached to one end of the spring, the other end is anchored
to the wall. The equilibrium position is marked at zero. A
student moves the mass out to x = 4.0cm and releases it

from rest. The mass oscillates in SHM. (a) Determine the
equations of motion. (b) Find the position, velocity, and
acceleration of the mass at time t = 3.00 s.

61. Find the ratio of the new/old periods of a pendulum
if the pendulum were transported from Earth to the Moon,

where the acceleration due to gravity is 1.63 m/s2 .

62. At what rate will a pendulum clock run on the Moon,

where the acceleration due to gravity is 1.63 m/s2 , if it

keeps time accurately on Earth? That is, find the time (in
hours) it takes the clock’s hour hand to make one revolution
on the Moon.

63. If a pendulum-driven clock gains 5.00 s/day, what
fractional change in pendulum length must be made for it
to keep perfect time?

64. A 2.00-kg object hangs, at rest, on a 1.00-m-long
string attached to the ceiling. A 100-g mass is fired with a
speed of 20 m/s at the 2.00-kg mass, and the 100.00-g mass
collides perfectly elastically with the 2.00-kg mass. Write
an equation for the motion of the hanging mass after the
collision. Assume air resistance is negligible.

65. A 2.00-kg object hangs, at rest, on a 1.00-m-long
string attached to the ceiling. A 100-g object is fired with a
speed of 20 m/s at the 2.00-kg object, and the two objects
collide and stick together in a totally inelastic collision.
Write an equation for the motion of the system after the
collision. Assume air resistance is negligible.

66. Assume that a pendulum used to drive a grandfather
clock has a length L0 = 1.00 m and a mass M at

temperature T = 20.00°C. It can be modeled as a physical

pendulum as a rod oscillating around one end. By what
percentage will the period change if the temperature
increases by 10°C? Assume the length of the rod changes

linearly with temperature, where L = L0 (1 + αΔT) and

the rod is made of brass ⎛
⎝α = 18 × 10−6 °C−1⎞

⎠.

804 Chapter 15 | Oscillations

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5



67. A 2.00-kg block lies at rest on a frictionless table. A
spring, with a spring constant of 100 N/m is attached to
the wall and to the block. A second block of 0.50 kg is
placed on top of the first block. The 2.00-kg block is gently
pulled to a position x = + A and released from rest. There

is a coefficient of friction of 0.45 between the two blocks.
(a) What is the period of the oscillations? (b) What is the
largest amplitude of motion that will allow the blocks to
oscillate without the 0.50-kg block sliding off?

CHALLENGE PROBLEMS
68. A suspension bridge oscillates with an effective force

constant of 1.00 × 108 N/m . (a) How much energy is

needed to make it oscillate with an amplitude of 0.100 m?
(b) If soldiers march across the bridge with a cadence equal

to the bridge’s natural frequency and impart 1.00 × 104 J
of energy each second, how long does it take for the
bridge’s oscillations to go from 0.100 m to 0.500 m
amplitude.

69. Near the top of the Citigroup Center building in New

York City, there is an object with mass of 4.00 × 105 kg
on springs that have adjustable force constants. Its function
is to dampen wind-driven oscillations of the building by
oscillating at the same frequency as the building is being
driven—the driving force is transferred to the object, which
oscillates instead of the entire building. (a) What effective
force constant should the springs have to make the object
oscillate with a period of 2.00 s? (b) What energy is stored
in the springs for a 2.00-m displacement from equilibrium?

70. Parcels of air (small volumes of air) in a stable
atmosphere (where the temperature increases with height)
can oscillate up and down, due to the restoring force
provided by the buoyancy of the air parcel. The frequency
of the oscillations are a measure of the stability of the
atmosphere. Assuming that the acceleration of an air parcel

can be modeled as ∂2z′
∂ t2 = g

ρo
∂ ρ(z)

∂z z′ , prove that

z′ = z0 ′ et −N 2
is a solution, where N is known as the

Brunt-Väisälä frequency. Note that in a stable atmosphere,
the density decreases with height and parcel oscillates up
and down.

71. Consider the van der Waals potential

U(r) = Uo
⎡

⎣
⎢⎛
⎝
Ro
r

⎞
⎠

12
− 2⎛

⎝
Ro
r

⎞
⎠

6⎤

⎦
⎥ , used to model the

potential energy function of two molecules, where the
minimum potential is at r = Ro . Find the force as a

function of r. Consider a small displacement r = Ro + r′
and use the binomial theorem:

(1 + x)n = 1 + nx + n(n − 1)
2! x2 + n(n − 1)(n − 2)

3! x3 + ⋯

,

to show that the force does approximate a Hooke’s law
force.

72. Suppose the length of a clock’s pendulum is changed
by 1.000%, exactly at noon one day. What time will the
clock read 24.00 hours later, assuming it the pendulum
has kept perfect time before the change? Note that there
are two answers, and perform the calculation to four-digit
precision.

73. (a) The springs of a pickup truck act like a single

spring with a force constant of 1.30 × 105 N/m . By how

much will the truck be depressed by its maximum load of
1000 kg? (b) If the pickup truck has four identical springs,
what is the force constant of each?
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