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ABSTRACT 

Cluster of Differentiation (CD) proteins are proteins found in the cell membranes 

of leukocytes. These proteins are important because they are cell surface markers for 

many immune cells and can be used as therapeutic and diagnostic targets. Biophysical 

methods like X-ray crystallography and nuclear magnetic resonance (NMR) are 

commonly used to determine the function of proteins through the generation of their 

three-dimensional structures. However, applications of these experimental methods do 

not work very well in order to determine the function of membrane proteins because of 

their high flexibility and instability, their partial hydrophobic surface, and the 

requirement of highly specific detergents for their extraction from phospholipids 

membranes. In order to address this problem, we devised a theoretical approach where 

type I CD proteins can be classified into two different functional groups (enzyme and 

non-enzyme) by using physicochemical parameters related to the primary sequence of the 

individual CD proteins. Principal component analysis (PCA) was used to analyze 126 

parameters of 244 type I CD proteins. Two different clusters of type I CD proteins with 

enzymatic activity and non-enzymatic activity were found on the score plot, and the 

separation of those clusters was found to be statistically significant. Cytoplasmic amino 

acid count was found to be the most important variable for separating enzymes and non-

enzymes. The continuous probability densities of CD proteins with enzymatic activity 

and non-enzymatic activity were then approximated by kernel density estimation (KDE) 

of cytoplasmic amino acid count. This is the first time this method of determining type I 

CD proteins functional classes has been employed and appears quite promising. In the 
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future, this statistical approach could be very useful in determining the functional class of 

newly discovered or poorly characterized type I CD proteins. 
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Chapter I  

INTRODUCTION 

Proteins are important macromolecules found in living organisms. According to 

Alberts et al. (2002), proteins exhibit a wide variety of functions, such as: catalysts, 

signal receptors, switches and motors. This huge diversity in protein function is attributed 

to their ability to bind with specific molecules. There are two broad classifications of 

proteins: water-soluble proteins and membrane proteins. Water-soluble proteins are found 

in the aqueous medium, and they fold into globular structure, because the amino acids 

found in their interior are mostly hydrophobic while the amino acids found on the surface 

are hydrophilic (Berg, Tymoczko, and Stryer, 2002). Membrane proteins consist of 

integral membrane proteins and peripheral membrane proteins. While peripheral 

membrane proteins are found on the surface of the phospholipid bilayer, integral 

membrane proteins have one or more transmembrane domains embedded in the 

hydrophobic phospholipid bilayer core and have mostly hydrophobic amino acids. 

Cytosolic and exoplasmic domains are found in aqueous mediums, and have mostly 

hydrophilic amino acids (Lodish et al., 2000). The study of membrane proteins presents 

major challenges, because they can only be studied in vitro, outside of their native 

membranes where they are often flexible and unstable, and specific detergents are 

required to keep them functionally stable (Carpenter, Beis, Cameron, and Iwata, 2008). 
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Seddon, Curnow, and Booth (2004) state three major challenges while studying 

the three-dimensional structures of membrane proteins. The first challenge is acquiring 

the desired protein types. A wide variety of membrane protein types are present in the 

membranes of most cells and are usually present in low quantity. To enhance the yield of 

desired protein, heterologous expression is used. This works well for water-soluble 

proteins. However, for membrane proteins, the expressed proteins aggregate in the 

cytoplasm of the heterologous host. Similarly, for mammalian proteins, post- 

transcriptional modifications are required to generate functional proteins, but 

heterologous hosts are devoid of those mechanisms. The second major challenge arises 

from the fact that the phospholipid membrane provides a complex, heterogeneous, and 

dynamic environment to membrane proteins. Thus, to study the structure of membrane 

proteins using standard biophysical methods (NMR and X-ray crystallography) samples 

need to be prepared in vitro using a detergent/lipid medium. Unless a highly appropriate 

detergent/lipid is selected, there is a high probability that erroneous results might be 

obtained due to the spectral contributions from the lipid/detergents. The third major 

challenge to studying membrane proteins is the preparation of a synthetic system that 

emulates the behavior of the protein of interest in its native environment. Creating the 

lipid/detergent environment where the isolated membrane proteins retain their native 

structure and function is very challenging. 

One of the most important steps in the reconstruction of membrane proteins 

during in vitro studies of three-dimensional structure is solubilization. Solubilization is 

necessary because if the transmembrane proteins are separated from the membrane, their 

hydrophobic portions will interact with one other, causing them to precipitate out of the 
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solution (Lodish et al., 2000). Moreover, difficulty exists in other areas including: 

expression, purification, crystallization, data collection and structure solution for 

membrane proteins. According to Carpenter et al. (2008), the selection of an appropriate 

detergent is critical for biochemical methods used to determine three-dimensional 

structure of proteins (i.e., isolation, purification, solubilization and recrystallization). This 

problem is so prevalent that among all the membrane proteins currently available in the 

PDB database, less than 1% of them have been successfully crystallized (Parker & 

Newstead, 2016). Hence, there is a great need for alternative theoretical methods that can 

accurately predict the functions of membrane proteins.  

To address this problem, an alternative theoretical approach was developed, 

where bioinformatics and multivariate statistics tools were used to categorize type I CD 

proteins into two distinct groups, based on their functional relevance, simply by 

analyzing their physicochemical characteristics derived from their amino acid sequence. 

According to Zola, Swart, Nicholson, and Elena (2007), the amino acid sequence of a 

protein determines its three-dimensional structure, which then dictates the function of the 

protein. Based on this fact, we formed a scientific hypothesis: by analyzing 126 different 

physicochemical properties (directly related to their primary sequence) of 244 type I CD 

proteins, they can be classified into two broad categories based on function: Enzymes and 

Non-enzymes.  

 The purposes of this thesis were: 1) to classify the type I CD proteins into distinct 

groups based on function (enzymes or non-enzymes); 2) to use principal components 

analysis to identify the variable (out of 126 different variables) that contributed the most 

in separating enzyme and non-enzyme; 3) to predict the likelihood of a novel type I CD 
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protein being an enzyme or non-enzyme based on the probability distribution of currently 

available type I CD proteins using the highest contributing variable. We found out that, 

just by using bioinformatics datasets and multivariate statistics tools (and few others 

statistical tools), type I CD proteins can be classified into two groups: enzymes and non-

enzymes. Using the kernel density estimation of the most important variables, the 

likelihood of a newly discovered type I CD protein being enzyme or non-enzyme can be 

predicted. 
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Chapter II 

LITERATURE REVIEW 

Membrane Proteins 

There are two broad categories of membrane proteins: integral membrane proteins 

and peripheral membrane proteins. Integral membrane proteins span through the plasma 

membrane, while peripheral membrane proteins are found on the surface of the 

membrane (Lodish et al., 2000). Furthermore, integral membrane proteins can be grouped 

into different classes based on the orientation of N-terminus and C-terminus of the 

polypeptide chain. For type I integral membrane proteins, the N-terminus lies outside of 

the cell, while the C-terminus lies in the cytoplasm. The signal sequence from the protein 

is cleaved before it is transported to the cell membrane. For type II integral membrane 

proteins, the C-terminus lies outside of the cell membrane, while the N-terminus of the 

polypeptide lies in the cytoplasm. In type II integral membrane proteins, the N-terminus 

cytoplasmic sequence is short and no cleavage of the protein occurs. Type III and type IV 

proteins are both multipass proteins. Type V protein is attached to the membrane by its 

C-terminus through glycosyl-phosphatidylinositol (GPI linked) (Zola et al., 2007). Our 

research focuses on the type I class of integral membrane proteins.  

Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a multivariate statistics tool which 

analyzes the observations from multiple correlated variables such that important 

information can be obtained. The purpose of applying PCA is to reduce the 
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dimensionality of potential predictor variables by identifying which variables best explain 

the variance in the data set. PCA computes the new set of orthogonal variables called 

principle components (PCs). The number of PCs obtained after principal components 

analysis is the same as the number of variables for the original dataset. The first PC 

(PC1) explains the highest amount of the variance from the original dataset. The second 

PC (PC2) is orthogonal to PC1 and is responsible for the second highest amount of 

variance. The remaining PCs are computed in a similar way. Each observation has score 

values for each principal component, which can be plotted to observe the distribution of 

the whole dataset based on the new dataset. When the most important PCs are retained 

(and the PCs carrying noise are excluded) and their score values are plotted, a clear and 

concise picture of the distribution of the data can be observed (Abdi & Williams, 2010). 

Parallel Analysis 

Parallel analysis is the most effective statistical method to determine the optimal 

number of principal components to be retained (Dinno, 2009). Most of the methods used 

to determine the optimal number of principal components are subjective. This results in 

either the loss of information in the case of under-extraction or inclusion of noise, which 

affects subsequent analysis in the case of over-extraction (Franklin et al., 1995). Parallel 

analysis uses Monte Carlo simulation to generate a random dataset equal to the original 

data set in terms of number of observations and variables. Horn’s parallel analysis 

performs PCA on random datasets (uncorrelated variables) and the original dataset in 

order to compare the eigenvalues between them and produce the principal components 

that are adjusted for sampling error-induced inflation. Only those principal components 
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whose estimated bias (difference of unadjusted eigenvalues and adjusted eigenvalues) are 

greater than one are retained (Dinno, 2009).  

Kernel Density Estimation (KDE) 

Kernel Density Estimation (KDE) is a non-parametric method, which is used to 

predict the probability density function from a set of discontinuous measurements of a 

random variable. When plotting a histogram, data are binned into discrete classes and the 

bar represents the relative frequency of occurrence in that bin, whereas during KDE, a 

continuous distribution (of a specified shape and bandwidth) is centered on each data 

point and then all of the kernels are added to obtain the KDE (Deng & Wickham, 2011; 

Zambon & Dias, 2012). The most commonly used kernel weighting function is the 

Gaussian distribution, but other commonly used kernel weighting functions are 

Epanechnikov, Uniform, and Triweight. Once a kernel function is chosen, one must also 

select a bandwidth. When the bandwidth is too large, an overly smooth probability 

density estimate is generated, which will obscure important characteristics of the 

distribution. On the other hand, when the bandwidth is small, the distribution becomes 

noisy (Zambon & Dias, 2012). 
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Chapter III 

 MATERIALS AND METHODS 

Data Retrieval 

Retrieval of Type I Protein List 

A CD protein list was obtained from www.hcdm.org (Engel et al., 2015). Out of 

371 CD protein molecules found on hcdm.org, 244 of them were identified as type I CD 

proteins using a bioinformatics protein database called UniProt Knowledgebase 

(UniProtKB) (Breuza et al., 2016). The type of CD protein was accessed from the 

“Subcellular Location” panel of UniProtKB for each type I CD protein from the list. The 

correct UniProtKB accession number was obtained for each type I CD protein. In order to 

verify if the CD proteins obtained from hcdm.org were the same as the proteins that were 

used in UniProtKB, alternative names were matched from both websites.  

For each type I CD protein, 126 different sequence parameters were selected. 

These parameters were primary and secondary physicochemical characteristics, which 

were obtained from the primary amino acid sequence of each type I CD proteins using 

various bioinformatics tools. 

Retrieval of Protein Sequence 

In order to obtain the sequence for each type I CD protein, the UniProtKB 

accession number was entered in the UniProtKB search toolbar. The “Feature Table”
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displayed protein features such as: topology, molecular processing, secondary structure 

etc. The sequence for each topological domain: extracellular, transmembrane, and 

cytoplasmic were retrieved from the topology tab under “Feature Table.” 

Retrieval of Regional Amino Acid Count  

The regional amino acid count (extracellular amino acid count, transmembrane 

amino acid count, and cytoplasmic amino acid count) were extracted from the subcellular 

location panel of UniProtKB. The number of amino acids in each topological domain 

were recorded in Excel for each type I CD protein. 

Total Amino Acid Count Calculation 

The total amino acid count for each type I CD protein was obtained by summing 

up each regional amino acid count. The signal peptide sequence was excluded from the 

total amino acid count calculation. 

Retrieval of Charges  

The positive and negative charges for each topological domain: extracellular, 

transmembrane, and cytoplasmic were extracted by using ExPASy ProtParam tool under 

the “Sequence” feature of UniProtKB (Gasteiger et al., 2005). The total positive charge 

was calculated by summing the positive charges from each topological region. Similarly, 

the total negative charge was calculated by summing the negative charges for each 

topological region. The total charge was calculated by subtracting total negative charge 

from total positive charge. Similarly, the absolute charges were calculated by taking the 

absolute value of total extracellular charges, total transmembrane charges and total 

cytoplasmic charges, respectively in Excel. Similarly, total absolute charges were 

calculated by taking absolute values of total charges. 
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Retrieval of Number of Amino Acids 

Retrieval of Number of Individual Amino Acid Type  

For each type I CD protein, the number of amino acids from each of the 20 

individual amino acids types were recorded separately using the ExPASy ProtParam tool. 

The numbers were recorded for each topological domain.  

Retrieval of Total Number of Each Individual Amino Acid Type 

The total number of each individual amino acid was recorded from the chain 

sequence tab of ExPASy ProtParam tool. The chain sequence tab excluded the signal 

peptide and included only the total amino acid sequence. To avoid mistakes, while 

recording the data, the entire set of amino acid numbers was copied directly into 

Microsoft Excel file from the ExPASy ProtParam tool’s screen. 

Retrieval of Theoretical Isoelectric Point (pI) 

The theoretical isoelectric point (pI) was retrieved from the amino acid sequence 

for each topological domain (extracellular, transmembrane and cytoplasmic) using the 

ExPASy ProtParam tool.  

Retrieval of Instability Index 

The instability index was retrieved from sequence fragments for each topological 

domain (extracellular, transmembrane and cytoplasmic) using the ExPASy ProtParam 

tool.  

Retrieval of Aliphatic Index 

The aliphatic index was retrieved from sequence fragments for each topological 

domain (extracellular, transmembrane and cytoplasmic) using the ExPASy ProtParam 

tool.  
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Retrieval of Grand Average of Hydropathicity  

The grand average of hydropathicity was retrieved from sequence fragments for 

each topological domain (extracellular, transmembrane and cytoplasmic) using the 

ExPASy ProtParam tool.  

Retrieval of Glycosylation Site for Extracellular Region 

The glycosylation site for extracellular region were retrieved using the 

PTM/Processing tab of UniProtKB. The total number of glycosylation position(s) located 

only in the extracellular domain was counted and recorded.  

Retrieval of Phosphorylation Site for Cytoplasmic Domain 

The amino acid sequences from the cytoplasmic domain for each type I CD 

protein were extracted from UniProtKB. The phosphorylation sites were computed by 

running the sequence in ExPASy: SIB Bioinformatics Resource Portal tool Netphos 2.0 

Server (Artimo et al. 2012; Blom, Gammeltoft, & Brunak, 1999). The total number of 

Serene, Threonine and Tyrosine residues predicted by the Netphos 2.0 neural network 

was recorded. The number of phosphorylation sites with less than 15 and more than 4000 

amino acid residues could not be computed by Netphos 2.0 server. For the cytoplasmic 

sequence with less than 15 amino acid residues, the number of phosphorylation sites was 

recorded as zero.  

Retrieval of Secondary Structure Content 

The amino acid sequences for the extracellular and cytoplasmic domain were 

extracted from UniProtKB. The secondary structure content was obtained by using the 

GOR IV tool of the ExPASy: SIB Bioinformatics Resource Portal (Sen, Jernigan, 

Garnier, & Kloczkowski, 2005). 
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Alpha Helix Content 

For each type I CD protein, alpha helix content (%) for extracellular and 

cytoplasmic domains were retrieved. 

Beta Sheet Content   

For each type I CD protein, beta sheet content (%) for extracellular and 

cytoplasmic domains were retrieved. 

Random Coil Content  

For each type I CD proteins, random coil content (%) for extracellular and 

cytoplasmic domain were retrieved.  

Retrieval of Disorder Average and Standard Deviation  

Disorder average and disorder standard deviation was calculated for each 

topological domain of type I CD proteins. The bioinformatics tool IUPred: Prediction of 

Intrinsically Unstructured Proteins (Dosztányi, Csizmok, Tompa, and Simon, 2005) was 

used to predict the disorder tendency for each amino acid residue. The average and 

standard deviation of disorder tendency was computed in MS Excel using the disorder 

tendency of individual residue, for each topological domain. While selecting the 

prediction criteria for IUPred, long disorder and raw data were used as prediction type 

and output type, respectively. 

Determination of Function (Enzyme or Non-Enzyme) 

To assess the functional category of each type I CD protein (enzyme or non-

enzyme), the information under the “Function” tab of UniProtKB was examined. Based 

on the information found under the “Function” tab, type I CD proteins with enzymatic 

activity were assigned as enzymes, and those with non-enzymatic activity (i.e., binding, 
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signal anchor) were assigned as non-enzymes. For those CD proteins that could not be 

clearly identified as having enzymatic activity or non-enzymatic activity, further 

investigation into scientific publications was made to clarify their functional class. 

Statistical Analysis 

Principal Component Analysis (PCA) 

 MiniTab 17 statistical software (2010) was used to perform principal component 

analysis (PCA) on the Type I CD protein dataset, with 244 observations and 126 different 

variables. While performing the PCA, the correlation matrix option was selected because 

the units and range of the values of the variables differed.  

Parallel Analysis to Determine the Number of Principal Components to be 

Retained 

Horn’s parallel analysis was performed to determine the number of principal 

components to be retained for the analysis. R’s ‘paran’ package was used to perform 

Horn’s parallel analysis (Dinno, 2012). 

Assessment of Statistical Significance of Separation of Enzymes and Non-

Enzymes from PCA Data 

Applying the methods used by Goodpaster and Kennedy (2011), the statistical 

significance of separation of enzymes and non-enzymes from the principal component 

analysis data was tested. The centroids for Enzymes and Non-Enzymes clusters were 

calculated from the PCA score value. The centroid values are the average score values for 

each principal component, from PC1 to PC10 for Enzymes and Non-Enzymes, 

respectively. The Mahalanobis distance (DM) was calculated as: 
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 𝐷𝐷𝑀𝑀 = √𝑑𝑑′𝐶𝐶𝑤𝑤−1𝑑𝑑                                                   

where 𝑑𝑑 = 1×2 Euclidian difference vector between the centroids of enzymes and non-

enzymes, calculated as  

 𝑑𝑑 = �PC1(NE) −   PC1(E), PC2(NE) −   PC2(E), … … … … . . , PC10(NE) −   PC10(E)� 

and Cw
-1 = Inverse of the pooled variance-covariance matrix between enzymes (E) and 

non-enzymes (NE). 

Here, V is the pooled variance-covariance matrix between enzyme (E) and non-

enzyme (NE). 

Hoteling’s T2 was calculated using the formula: 

𝑇𝑇2 = n1 .  n2
n1+n2

 𝑑𝑑′𝐶𝐶𝑤𝑤−1𝑑𝑑   

where n1 = 26 (number of Enzymes) and n2= 218 (number of Non-Enzymes). 

The Hoteling’s T2 can be converted into 𝐹𝐹-statistics by using the following formula: 

𝐹𝐹 = n1+ n2−p−1
p(n1+n2−2)

𝑇𝑇2  

In this case, p is the number of discriminator variables. Since, 10 principal components 

(PC1 to PC10) are being evaluated in this case, p = 10. 

The 𝐹𝐹-value is the ratio of between group variance to that of within group variance 

between enzyme and non-enzyme. 

Critical 𝐹𝐹-value =  F(p, n1 + n2 − p − 1) 

The critical 𝐹𝐹-value was calculated using 

http://www.danielsoper.com/statcalc/calculator.aspx?id=4 (Soper, 2017). The server 

required the number of degrees of freedom in the numerator, which is equal to two. The 

number of degrees of freedom in the denominator is given by the formula (n1 + n2 −

http://www.danielsoper.com/statcalc/calculator.aspx?id=4
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p − 1 ), which equaled 241. The 𝐹𝐹-critical value was calculated at a significance level (α) 

of 0.05.  

To determine if the separation of type I CD proteins with enzymatic activity (as 

represented by blue dots in Figure 2) and with non-enzymatic activity (as represented by 

red dots in Figure 2) was statistically significant, the 𝐹𝐹-value computed using Hoteling’s 

T2 value and 𝐹𝐹-critical value was compared.  

Matrix Plot of Scores Values  

To observe the pattern of distribution of enzymes and non-enzymes in a two- 

dimensional scatter plot, a matrix plot was created where PCs (PC1 to PC10) were paired 

with one another. Forty-five different two-dimensional scatter plots were obtained in the 

matrix plot. Mahalanobis distance was computed between the centroid of enzymes and 

non-enzyme clusters for each individual scatter plot. By using the Mahalanobis distances, 

Hoteling’s T2 test and 𝐹𝐹-statistics were assessed. Out of 45 scatter plots, the PC that had 

the highest Mahalanobis distances and their corresponding T2 values and 𝐹𝐹-statistics 

values was be the best PC for separating enzymes and non-enzymes. 

Wilcoxon Ranked-Sum Test and Kernel Density Estimation (KDE) Plot 

  The Wilcoxon ranked-sum test was performed to if the variable that had highest 

loading value for the most important PC had the same distribution for enzyme and non-

enzyme data. R 3.4.2 was used to perform the analysis. Kernel Density Estimation (KDE) 

was used to plot the probability density estimation function for the non-parametric data of 

cytoplasmic amino acid count for enzymes and non-enzymes. The density function from 

the ‘stats’ package was used to perform KDE analysis (Bowman & Azzalini, 2014). 

Gaussian kernel and direct plug-in (dpi) from bw.SJ functions were used to calculate the 
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kernel type and bandwidth used. In order to integrate the kernel density function over 

different cytoplasmic AA count, R package sfsmisc was used (Maechler et al., 2017). 
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Chapter IV 

RESULTS 

Principal Component Analysis 

Scree Plot 

Based on the scree plot (Figure 1), 126 total principal components (PCs) were 

obtained. Among those 126 PCs, principal component 1 (PC1) and principal component 2 

(PC2) had eigenvalues of 42.504 and 20.967 respectively. The first ten PCs accounted for 

71.8 % of the total variance of the data.
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Figure 1. Scree plot of physicochemical characteristics of Type I CD proteins. 

Horn’s Parallel Analysis 

Horn’s parallel analysis was performed to determine the number of principal 

components to be retained. Based on Horn’s parallel analysis (Figure 2, Table 1), the first 

10 PCs were retained.  
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Figure 2. Horn’s Parallel Analysis plot to determine the optimal number of PCs retained. 

PCs with adjusted EV greater than 1 were retained. 

 

 

 

 

 

 

 

 

 

 

 



 

20 
  

Table 1. Components Retention of First 10 PCs (3780 Iterations). 

Component Adjusted Eigenvalue Unadjusted Eigenvalue Estimated Bias 

1 40.5995 42.45059 1.851084 

2 19.25349 20.98743 1.733934 

3 3.331805 4.979356 1.647551 

4 2.852459 4.42674 1.574281 

5 2.255807 3.76413 1.508323 

6 1.881135 3.329175 1.44804 

7 1.626716 3.018798 1.392082 

8 1.445181 2.785131 1.339949 

9 1.087669 2.377974 1.290304 

10 1.118029 2.36047 1.242441 

 

Matrix Plot for First 10 PCs Score Values 

After plotting the matrix plot of the first 10 PCs score values with each other, 45 

different combinations of unique two-dimensional scatter plots were obtained (Figure 3). 

It is clearly visible that all the scatter plots including PC2 had a higher separation of 

enzymes and non-enzymes cluster compared to the other 36 scatter plots where PC2 

score values were not used. This clearly indicates that among the first 10 PCs retained 

from Horn’s parallel analysis, PC2 was the most effective in separating enzymes and 

non-enzymes into two different clusters.  
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Figure 3. Matrix plot of score values for PC1 to PC10. All the score plots that involved 

PC2 yielded the greatest amount of separation between enzymes and non-enzymes. 

Separation of Enzyme (E) and Non-enzyme (NE) clusters. 

 Hoteling’s T2 and 𝐹𝐹-statistics for the enzyme group and the non-enzyme group 

were calculated using the score values for the first 10 PCs to find out if the separation of 

enzymes and non-enzymes clusters obtained after performing PCA was statistically 

significant (Table 2). Mahalanobis distance between the enzyme and non-enzyme groups 

was 7.014. The Hoteling’s T2 value obtained for enzyme and non-enzyme clusters was 

1142.824. The 𝐹𝐹-statistic calculated using Hoteling’s T2 value was 110.0322 and the 

critical value of 𝐹𝐹0.05,10,233 was 1.87. This signifies that when PCA was used for the type 
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I CD protein data, there was a statistically significant separation of enzyme and non-

enzyme clusters. 

Table 2. Mahalanobis Distance (Dm), Hoteling’s T2 and 𝐹𝐹-statistics between Enzyme and 

Non-enzyme Based on the First 10 PCs. 
 

For Enzymes and Non-enzymes (10 PCs) 

Mahalanobis Distance 

(Dm) 

7.014 

Dm2 49.197 

Hotelling’s T2 1142.82 

𝐹𝐹-statistics 110.032 

𝐹𝐹-critical 1.87 

 

 From the matrix plot, it was apparent that the two-dimensional score plots 

containing PC2 had the highest separation of enzyme and non-enzyme clusters. To test 

this observation objectively, the Mahalanobis distance and the corresponding T2 and 𝐹𝐹-

statistics for each individual score plot involving the first ten PCs were calculated 

(Appendix A).  

Loadings Plot for PC1 

Based on the loading values for PC1 (Appendix B, Figure 4), total amino acid 

count displayed the highest contribution to PC1, with a loadings value of 0.153. 

Similarly, other variables that have relatively high loadings values (in descending order) 

are total negative charges, total positive charges, total number of Glutamic acid (E), total 

number of Aspartic Acid(D), total number of Serine (S), total number of Arginine (R), 
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total number of Glycine(G), total number of Tyrosine (Y), and total number of Valine 

(V), respectively. The variables that are related to the entire type I protein (not just 

variables for particular topological domains) contribute the most to PC1 (Figure 4, 

Appendix B).  

 

Figure 4. Loadings plot for 126 protein characteristics using PC1.  

Loadings Plot for PC2 

Since PC2 was established as the most important PC to separate enzyme and non-

enzyme clusters, PC2 loading values were analyzed to identify the variable that showed 

the highest contribution to PC2. The loading values were plotted in MS Excel to obtain 

the loadings plot for PC2 (Figure 5). Based on the PC2 loading values (Table 2, Figure 

5), cytoplasmic amino acid count had the highest loading value of 0.193. Similarly, some 

of the other parameters with high loadings value were number of Cytoplasmic Negative 
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Charges, number of Cytoplasmic Glutamic Acid (E), number of Cytoplasmic Leucine 

(L), number of Cytoplasmic Valine (V), number of Cytoplasmic Serine (S), Cytoplasmic 

positive Charges, Number of Phosphorylation Sites, number of Cytoplasmic Alanine(A), 

number of Cytoplasmic Aspartic Acid (D), number of Cytoplasmic Glutamate (Q), 

number of Cytoplasmic Threonine (T) and number of Cytoplasmic Arginine (R). As 

indicated in (Figure 5 and Appendix B), the variables that are related to cytoplasmic 

topological domain contribute the most to PC2.  

 

Figure 5. Loadings plot for 126 variables using PC1. 
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Statistical Difference and Kernel Density Estimation (KDE) 

Wilcoxon ranked-sum test (equivalent to the Mann-Whitney 𝑈𝑈 test) was 

performed to determine if there was a significant difference in the median of cytoplasmic 

amino acid count between enzymes and non-enzymes. The number of type I CD proteins 

that were identified as enzymes and non-enzymes were 218 and 26, respectively 

(Appendix C). The median cytoplasmic amino acid count between enzyme and non-

enzyme was 424 and 60 respectively. The 𝑝𝑝-value was found to be 2.054e-10 which is 

much smaller than the significance level of 0.05. This result indicated that there was a 

significant difference in the distribution of cytoplasmic amino acid counts between 

enzymes and non-enzymes of Type I CD proteins. 

When the probability density functions were plotted for the cytoplasmic amino 

acid count for enzymes and non-enzymes, the probability of obtaining non-enzyme was 

extremely high in the 0 to 280 range (approximate point where enzyme and non-enzyme 

kernel density estimation curve met). However, when the cytoplasmic amino acid count 

exceeded 280, the probability of obtaining non-enzymes was quite small. At a 

cytoplasmic AA count higher than 280, the probability of obtaining enzymes was 

substantially higher. When the KDE for enzyme and non-enzyme was integrated within 

the range of 0-280, the probability of obtaining enzyme and non-enzyme within that 

range was 0.18 and 0.93, respectively. However, when the KDE for enzyme and non-

enzyme were integrated in the range of 280-1089, the respective probabilities of 

obtaining enzyme and non-enzyme were 0.79 and 0.04, respectively. 
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Figure 6.  Kernel density estimation for enzymes and non-enzymes.  
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Chapter V 

DISCUSSION 

PCA was found as an effective tool for separating enzyme and non-enzyme 

clusters for type I CD proteins. Previously, Patterson and Kang (2011) successfully 

separated enzyme and non-enzyme clusters for type II CD proteins using principal 

component analysis. Thus, the results from these two experiments help to establish 

principal component analysis as an important statistical tool for the separation and 

classification of all single-pass CD proteins based on their function. Since type I and type 

II CD proteins are a subclass of single-pass transmembrane proteins, it is proposed that 

PCA can be applied to all single-pass transmembrane proteins for the separation and 

classification of enzymes and non-enzymes.  

Prediction of Type I CD Proteins Functional Class Based on Their Cytoplasmic Amino 

Acid Counts 

 Results from this experiment indicated that the probability of a randomly selected 

type I CD protein being an enzyme or non-enzyme can be predicted based on its 

cytoplasmic amino acid count. Out of 126 protein characteristics, the 30 most important 

protein characteristics were associated with cytoplasmic domain. This finding suggested 

that the cytoplasmic domain was important for determining the enzymatic activity of a 

type I CD protein. When we assessed the catalytic function of each enzyme for type I CD 

proteins, we found that the majority of the enzymes (21 out of 26) were protein 

kinases/phosphatases kinases/phosphatases, which were involved in signal transduction, 
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and their catalytic domain was present in cytoplasmic region. Moreover, those enzymes 

involved in signal transduction had their catalytic domain present in the cytoplasmic 

region and their cytoplasmic amino acid count was substantially larger than their 

extracellular amino acid count. This clearly indicates that for a type I CD enzyme that 

participate in signal transduction, cytoplasmic domain plays a key role, which was 

consistent with our observation.  Five out of 26 enzymes were involved in peptidase and 

oxidase activity and their catalytic domain were present in the extracellular region. This 

finding suggests that for type I CD enzymes, nature is more biased towards production of 

signal transduction enzymes and prefers cytoplasmic domain for their catalytic activity. 

However, this bias is not absolute because type I CD enzymes could be involved in 

oxidation or cleavage of other proteins, and in that case the catalytic domain is present in 

the extracellular region. Also, it was found found that if a type I CD protein exists that 

have enzymatic activity other than signal transduction (peptidase and oxidase activity), its 

cytoplasmic amino acid count should be subastantly smaller compared to its extracellular 

amino acid count. In addition, the catalytic domain must be present in the extracellular 

region.  Patterson and Kang (2011) found that type II CD proteins with enzymatic 

activity had diverse function such as endopeptidases, metalloproteases, ectoenzymes, 

phosphodiesterases, phosphatases and exopeptidases. All the enzymes for type II CD 

proteins had their catalytic domains in the extracellular region. They also found that the 

extracellular amino acid count was the most important protein characteristic for 

determination of enzymatic activity for a type II CD protein. Since the C-terminus is in 

the extracellular domain for type II CD proteins, the C-terminus is very important for the 

catalytic activity of the majority of single-pass CD enzymes.  
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Since the advent of genome sequencing, the number of novel protein sequences 

submitted to the UniProt database has grown in an unprecedented way (Mills, Beuning, 

& Ondrechen, 2015). This  method of predicting protein function is broadly applicable 

because it is a simple tool compared to currently available tools for function prediction. 

Most of the currently available tools for predicting function depend on the comparison of 

the uncharacterized protein with a protein having similar structure or function. They use 

complex algorithms, and many times the functions are incorrectly annotated (Mills et al., 

2015). The prediction tool that has been developed from this experiment is quite simple 

and does not require comparison of sequence or structure to proteins with experimentally 

verified function. This method employs a well-established statistical method (principal 

component analysis) to identify the most important protein characteristics responsible for 

separation of enzymes and non-enzymes.  Based on the kernel density estimation (KDE) 

of the protein characteristics (cytoplasmic amino acid count for type I CD proteins), 

anyone can predict whether a newly discovered protein or poorly characterized protein 

will be an enzyme or non-enzyme.  
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APPENDIX A: 

Mahalnobis Distance, Hotelling’s T-squared Values and F-statistics for each 

Combinations of Principle Components for PC1 to PC10.  
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Appendix A: Mahalanobis distance, Hotelling’s T-squared values and F-statistics for 

each combinations of principle components for PC1 to PC10. As highlighted in bold, 

the highest F-statistics values corresponds to the score plots having one of the 

component as PC2. 

PCs Used Dm Dm 2 Hot T2 F-stat F-critical 

PC1-PC2 5.65 31.89 740.82 368.88 3.03 

PC1-PC3 1.51 2.29 53.28 26.53 
 

PC1-PC4 1.34 1.79 41.49 20.66 
 

PC1-PC5 1.34 1.78 41.43 20.63 
 

PC1-PC6 1.35 1.81 42.03 20.93 
 

PC1-PC7 1.79 3.20 74.34 37.02 
 

PC1-PC8 1.36 1.85 43.09 21.46 
 

PC1-PC9 1.34 1.79 41.53 20.68 
 

PC1-PC10 1.36 1.86 43.12 21.47 
 

PC2-PC3 3.51 12.29 285.60 142.21 
 

PC2-PC4 3.26 10.65 247.42 123.20 
 

PC2-PC5 3.26 10.64 247.24 123.11 
 

PC2-PC6 3.27 10.72 249.13 124.05 
 

PC2-PC7 3.88 15.02 348.87 173.72 
 

PC2-PC8 3.30 10.88 252.71 125.83 
 

PC2-PC9 3.26 10.66 247.58 123.28 
 

PC2-PC10 3.30 10.88 252.78 125.87 
 

PC3-PC4 0.14 0.02 0.47 0.23 
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PC3-PC5 0.14 0.02 0.46 0.23 
 

PC3-PC6 0.15 0.02 0.51 0.26 
 

PC3-PC7 0.50 0.25 5.91 2.94 
 

PC3-PC8 0.16 0.03 0.61 0.30 
 

PC3-PC9 0.14 0.02 0.47 0.23 
 

PC3-PC10 0.16 0.03 0.62 0.31 
 

PC4-PC5 0.00 0.00 0.00 0.00 
 

PC4-PC6 0.01 0.00 0.00 0.00 
 

PC4-PC7 0.35 0.13 2.92 1.46 
 

PC4-PC8 0.02 0.00 0.01 0.01 
 

PC4-PC9 0.00 0.00 0.00 0.00 
 

PC4-PC10 0.02 0.00 0.01 0.01 
 

PC5-PC6 0.01 0.00 0.00 0.00 
 

PC5-PC7 0.35 0.13 2.91 1.45 
 

PC5-PC8 0.02 0.00 0.01 0.01 
 

PC5-PC9 0.00 0.00 0.00 0.00 
 

PC5-PC10 0.02 0.00 0.01 0.01 
 

PC6-PC7 0.36 0.13 3.04 1.52 
 

PC6-PC8 0.03 0.00 0.02 0.01 
 

PC6-PC9 0.01 0.00 0.00 0.00 
 

PC6-PC10 0.03 0.00 0.02 0.01 
 

PC7-PC8 0.38 0.14 3.29 1.64 
 

PC7-PC9 0.36 0.13 2.93 1.46 
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PC7-PC10 0.38 0.14 3.30 1.64 
 

PC8-PC9 0.02 0.00 0.01 0.01 
 

PC8-PC10 0.04 0.00 0.04 0.02 
 

PC9-PC10 0.02 0.00 0.01 0.01 
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APPENDIX B: 

Loadings Values of PC1 to PC10 for 126 Different Physicochemical Properties.
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Appendix B: Loadings values of PC1 to PC10 for 126 different physicochemical properties. 

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Extracellular Length 0.140 -0.089 0.002 0.005 -0.016 -0.019 -0.006 0.013 0.003 0.022 

Transmembrane Length 0.015 -0.044 0.076 0.052 -0.065 0.053 -0.060 -0.167 0.124 0.070 

Cytoplasmic Length 0.071 0.193 0.005 0.012 -0.020 0.006 0.010 -0.002 0.015 0.021 

Total Length 0.153 -0.015 0.004 0.009 -0.021 -0.015 -0.003 0.011 0.008 0.027 

Extracellular + Charges 0.138 -0.084 -0.020 0.006 -0.014 0.020 -0.030 -0.015 0.019 0.025 

Extracellular Negative Charges 0.139 -0.085 0.018 0.001 0.010 0.044 -0.018 -0.013 -0.019 -0.054 

Total Extracellular Charges -0.105 0.068 -0.111 0.014 -0.069 -0.095 -0.016 0.005 0.111 0.243 

Transmembrane + Charges -0.018 -0.020 0.020 -0.303 -0.250 0.259 0.028 0.087 -0.108 0.133 

Transmembrane Neg Charges -0.027 -0.010 0.015 0.331 -0.042 0.266 0.054 0.224 -0.116 0.045 

Total Transmembrane Charges 0.008 -0.006 0.002 -0.438 -0.136 -0.020 -0.020 -0.103 0.012 0.056 

Cytoplasmic + Charges 0.069 0.183 -0.036 0.032 -0.001 0.022 -0.080 0.025 0.042 0.060 

Cytoplasmic Neg Charges 0.070 0.189 0.027 0.004 0.013 0.032 0.030 -0.023 -0.020 0.023 

Total Cytoplasmic Charges -0.039 -0.114 -0.143 0.056 -0.036 -0.036 -0.239 0.110 0.136 0.062 
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Total + Charges 0.149 -0.007 -0.031 0.016 -0.014 0.027 -0.056 -0.004 0.032 0.045 

Total  Neg Charges 0.151 -0.007 0.026 0.003 0.014 0.053 -0.005 -0.020 -0.025 -0.040 

Total Charges -0.109 0.007 -0.162 0.030 -0.079 -0.099 -0.124 0.053 0.159 0.240 

Extracellular Absolute Charges 0.111 -0.069 0.104 -0.019 0.048 0.068 -0.001 0.000 -0.077 -0.222 

Transmembrane Absolute 

Charges 

-0.033 -0.022 0.025 0.039 -0.206 0.380 0.060 0.229 -0.162 0.126 

Cytoplasmic Absolute Charges 0.024 0.112 0.103 0.001 0.033 0.060 0.233 -0.106 -0.077 -0.052 

Total Absolute Charges 0.111 -0.011 0.138 -0.029 0.059 0.078 0.122 -0.055 -0.123 -0.223 

Number of Extracellular A 0.117 -0.085 0.062 0.006 -0.058 -0.121 0.034 0.096 -0.036 0.057 

Number of Extracellular R 0.132 -0.084 0.036 0.015 -0.063 -0.043 0.019 0.051 0.006 0.002 

Number of Extracellular N 0.131 -0.079 -0.058 -0.006 0.028 0.069 -0.055 -0.067 0.011 -0.025 

Number of Extracellular D 0.133 -0.087 0.041 0.003 0.001 0.057 -0.027 -0.009 -0.009 -0.088 

Number of Extracellular C 0.113 -0.073 0.090 0.036 -0.059 0.067 -0.087 -0.053 0.075 -0.138 

Number of Extracellular Q 0.125 -0.095 -0.008 -0.008 -0.001 -0.057 0.068 0.042 -0.003 0.027 

Number of Extracellular E 0.137 -0.077 -0.012 -0.001 0.023 0.024 -0.006 -0.018 -0.028 -0.009 

Number of Extracellular G 0.130 -0.093 0.056 0.017 -0.039 -0.035 -0.016 0.042 0.013 0.023 
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Number of Extracellular H 0.130 -0.073 0.017 0.001 -0.055 -0.055 -0.001 0.063 0.028 0.016 

Number of Extracellular I 0.130 -0.072 -0.073 -0.017 0.056 0.084 -0.022 -0.074 -0.009 0.021 

Number of Extracellular L 0.123 -0.075 -0.118 -0.004 -0.032 -0.093 0.073 0.090 -0.017 0.004 

Number of Extracellular K 0.124 -0.071 -0.083 -0.005 0.046 0.091 -0.083 -0.090 0.032 0.048 

Number of Extracellular M 0.128 -0.076 -0.038 -0.004 0.007 0.042 0.018 0.006 -0.003 -0.013 

Number of Extracellular F 0.127 -0.085 -0.094 -0.012 0.000 0.004 0.021 0.002 0.019 0.034 

Number of Extracellular P 0.112 -0.075 0.105 0.023 -0.064 -0.127 -0.030 0.076 0.028 0.100 

Number of Extracellular S 0.132 -0.085 0.000 0.007 -0.028 -0.059 -0.017 0.020 0.013 0.094 

Number of Extracellular T 0.125 -0.075 0.052 -0.003 0.014 -0.045 -0.054 0.009 -0.031 0.078 

Number of Extracellular W 0.108 -0.077 0.019 0.034 -0.021 -0.005 0.037 -0.036 0.030 -0.036 

Number of Extracellular Y 0.130 -0.081 -0.032 0.007 0.025 0.057 0.003 -0.050 0.024 0.040 

Number of Extracellular V 0.131 -0.074 -0.021 -0.005 0.013 -0.028 0.049 0.005 -0.045 0.099 

Number of Transmembrane A -0.003 -0.022 0.024 0.029 -0.038 -0.137 -0.135 -0.058 -0.216 0.047 

Number of Transmembrane R -0.016 -0.006 0.006 -0.150 -0.169 0.100 0.013 0.013 -0.027 0.037 

Number of Transmembrane N -0.012 0.001 -0.028 0.028 -0.043 -0.010 0.067 -0.125 0.114 -0.097 

Number of Transmembrane D -0.022 -0.007 0.010 0.262 -0.025 0.218 0.023 0.191 -0.057 0.025 
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Number of Transmembrane C -0.007 0.046 -0.038 0.047 0.006 0.009 -0.089 -0.078 0.146 -0.102 

Number of Transmembrane Q -0.012 -0.017 -0.027 0.029 -0.039 -0.057 -0.022 0.099 0.092 -0.061 

Number of Transmembrane E -0.019 -0.009 0.013 0.239 -0.041 0.184 0.063 0.144 -0.124 0.045 

Number of Transmembrane G -0.013 -0.054 -0.005 0.083 -0.072 -0.160 0.054 -0.140 -0.125 0.120 

Number of Transmembrane H 0.015 -0.015 -0.007 0.012 -0.105 -0.002 0.082 0.021 0.106 -0.218 

Number of Transmembrane I 0.016 0.018 0.017 -0.103 0.230 0.098 -0.070 -0.160 -0.055 0.034 

Number of Transmembrane L 0.027 -0.022 0.091 -0.032 -0.026 -0.066 0.198 0.303 0.203 0.005 

Number of Transmembrane K -0.011 -0.019 0.019 -0.259 -0.188 0.238 0.025 0.092 -0.108 0.131 

Number of Transmembrane M -0.001 0.000 -0.128 0.037 -0.009 0.079 -0.093 0.041 0.136 0.000 

Number of Transmembrane F -0.014 -0.001 -0.031 -0.019 -0.045 0.081 0.043 -0.059 0.221 -0.020 

Number of Transmembrane P -0.001 -0.012 0.045 0.055 -0.086 0.099 0.050 -0.075 0.160 -0.094 

Number of Transmembrane S -0.007 0.006 0.009 -0.016 -0.167 0.101 0.032 -0.095 0.036 -0.076 

Number of Transmembrane T -0.002 0.010 -0.130 0.068 -0.163 -0.039 -0.062 -0.180 -0.057 -0.006 

Number of Transmembrane W 0.019 -0.017 0.004 0.073 0.014 0.123 0.067 0.033 0.246 -0.063 

Number of Transmembrane Y 0.009 0.000 -0.046 0.067 -0.039 0.042 -0.053 -0.115 0.008 0.068 

Number of Transmembrane V -0.011 0.007 0.059 -0.001 0.086 -0.007 -0.157 -0.045 -0.219 0.066 
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Number of Cytoplasmic A 0.062 0.182 0.058 0.019 -0.026 -0.043 0.014 0.047 0.006 0.015 

Number of Cytoplasmic R 0.062 0.175 0.002 0.048 -0.037 -0.019 -0.016 0.085 0.068 0.032 

Number of Cytoplasmic N 0.072 0.160 -0.044 0.010 0.010 0.059 -0.087 -0.032 -0.010 0.072 

Number of Cytoplasmic D 0.069 0.182 0.029 -0.002 0.014 0.046 0.028 -0.015 -0.017 0.017 

Number of Cytoplasmic C 0.051 0.170 -0.016 -0.006 -0.081 -0.016 0.042 -0.034 0.042 -0.049 

Number of Cytoplasmic Q 0.060 0.178 0.044 0.022 -0.037 -0.011 0.047 0.009 0.051 0.045 

Number of Cytoplasmic E 0.068 0.186 0.024 0.008 0.012 0.019 0.030 -0.029 -0.021 0.027 

Number of Cytoplasmic G 0.064 0.174 0.067 0.024 -0.034 -0.010 0.090 -0.014 0.003 -0.014 

Number of Cytoplasmic H 0.069 0.166 -0.022 0.019 -0.024 -0.021 -0.024 -0.001 0.041 0.061 

Number of Cytoplasmic I 0.068 0.170 -0.085 -0.008 0.011 0.045 -0.113 0.001 -0.003 0.036 

Number of Cytoplasmic L 0.067 0.186 -0.021 0.006 -0.046 -0.002 -0.008 0.045 0.003 -0.037 

Number of Cytoplasmic K 0.067 0.165 -0.068 0.012 0.034 0.059 -0.132 -0.038 0.011 0.079 

Number of Cytoplasmic M 0.070 0.165 -0.021 0.010 0.005 0.024 -0.062 0.004 -0.032 0.038 

Number of Cytoplasmic F 0.074 0.171 -0.083 -0.013 -0.015 0.016 -0.021 -0.005 0.017 0.019 

Number of Cytoplasmic P 0.053 0.168 0.090 0.010 -0.044 -0.033 0.146 -0.034 0.028 0.023 

Number of Cytoplasmic S 0.061 0.185 0.024 0.006 -0.022 0.004 0.067 -0.049 0.025 0.023 
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Number of Cytoplasmic T 0.063 0.177 0.029 0.014 -0.022 0.008 -0.010 0.002 0.082 0.037 

Number of Cytoplasmic W 0.052 0.164 -0.090 -0.015 -0.079 -0.014 0.002 0.054 0.000 -0.088 

Number of Cytoplasmic Y 0.069 0.169 -0.063 0.016 0.026 0.018 -0.052 0.004 -0.042 0.033 

Number of Cytoplasmic V 0.068 0.186 -0.010 0.009 -0.026 0.002 -0.017 0.015 0.024 0.013 

Total number of A 0.130 -0.020 0.078 0.014 -0.065 -0.134 0.029 0.102 -0.043 0.061 

Total number of R 0.142 -0.015 0.034 0.030 -0.071 -0.046 0.012 0.077 0.029 0.013 

Total number of N 0.139 -0.033 -0.064 -0.003 0.028 0.079 -0.072 -0.071 0.008 -0.006 

Total Number of D 0.145 -0.026 0.047 0.004 0.005 0.068 -0.017 -0.012 -0.014 -0.077 

Total number of C 0.119 -0.049 0.086 0.036 -0.069 0.065 -0.083 -0.060 0.085 -0.147 

Total number of Q 0.140 -0.022 0.009 0.001 -0.016 -0.058 0.081 0.044 0.018 0.041 

Total number of E 0.147 0.015 0.000 0.004 0.025 0.030 0.009 -0.027 -0.034 0.005 

Total number of G 0.142 -0.035 0.073 0.026 -0.050 -0.042 0.015 0.030 0.008 0.022 

Total number of H 0.139 -0.018 0.009 0.006 -0.059 -0.056 -0.007 0.058 0.039 0.028 

Total number of I 0.137 -0.010 -0.089 -0.026 0.072 0.096 -0.060 -0.079 -0.014 0.032 

Total number of L 0.135 0.005 -0.106 -0.003 -0.048 -0.087 0.073 0.114 -0.002 -0.011 

Total number of K 0.131 0.004 -0.097 -0.001 0.051 0.102 -0.122 -0.091 0.031 0.073 
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Total number of M 0.138 0.021 -0.050 0.005 0.008 0.052 -0.024 0.010 -0.008 0.009 

Total number of F 0.138 -0.019 -0.115 -0.016 -0.008 0.015 0.015 -0.004 0.039 0.035 

Total number of P 0.123 0.006 0.134 0.026 -0.077 -0.125 0.038 0.052 0.040 0.097 

Total number of S 0.144 -0.008 0.010 0.009 -0.038 -0.050 0.011 -0.003 0.023 0.093 

Total number of T 0.136 -0.019 0.053 0.004 0.002 -0.042 -0.056 0.003 -0.007 0.084 

Total number of W 0.119 -0.038 -0.002 0.035 -0.038 0.000 0.041 -0.021 0.045 -0.059 

Total number of Y 0.142 -0.007 -0.055 0.015 0.031 0.059 -0.020 -0.048 0.006 0.051 

Total number of V 0.142 -0.002 -0.019 -0.002 0.009 -0.025 0.028 0.007 -0.047 0.099 

pI Extracellular -0.027 0.005 -0.059 -0.024 -0.139 -0.104 -0.024 0.049 0.151 0.210 

Instability Index Extra -0.015 0.036 0.155 0.088 -0.151 -0.106 -0.070 0.084 0.072 -0.134 

Aliphatic Index Extra 0.024 0.000 -0.328 -0.018 0.080 -0.052 0.234 0.052 -0.103 0.025 

Hydropathicity Extra 0.021 -0.012 -0.241 0.007 0.003 -0.122 0.232 0.074 -0.043 -0.006 

pI Transmembrane 0.002 -0.020 0.015 -0.384 -0.225 0.121 0.030 -0.015 -0.002 0.021 

Instability Index Trans 0.011 0.004 0.005 -0.007 0.054 0.139 0.098 0.078 0.246 -0.145 

Aliphatic Index Trans 0.030 0.016 0.142 -0.157 0.278 -0.042 0.063 0.245 -0.065 0.060 

Hydropathicity Trans 0.020 0.038 0.108 -0.169 0.357 -0.064 -0.054 0.153 -0.055 0.065 
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pI Cytoplasmic -0.037 -0.073 -0.125 0.050 -0.032 0.023 -0.149 0.113 0.151 0.063 

Instability Index Cyto -0.027 -0.013 0.043 -0.024 -0.037 -0.020 0.205 0.073 0.096 0.081 

Aliphatic Index Cyto 0.021 0.085 -0.103 -0.071 -0.065 -0.045 -0.168 0.135 -0.096 -0.277 

Hydropathicity Cyto 0.024 0.090 -0.082 -0.117 -0.112 -0.110 -0.065 0.089 -0.106 -0.268 

Number of Glycosolation Sites 

E 

0.099 -0.046 -0.025 -0.013 0.050 0.015 -0.053 -0.120 0.013 0.054 

Number of Phosphorylation 

Sites 

0.062 0.183 0.033 0.013 0.006 -0.001 0.033 -0.042 0.015 0.057 

Helix Content of Extracellular 0.031 -0.018 -0.259 -0.072 0.038 -0.119 0.202 0.076 -0.073 -0.058 

Beta Sheet Contect Extra (%) -0.018 0.011 -0.012 0.085 0.129 0.215 0.050 -0.110 0.007 0.126 

Random Coil Content of Extra 

(%) 

-0.019 0.010 0.290 0.010 -0.145 -0.044 -0.259 0.006 0.074 -0.038 

Helix Content of Cytoplasmic 

(%) 

0.031 0.045 -0.034 0.035 0.066 0.001 -0.202 0.193 -0.157 -0.050 

Beta Sheet Content of Cyto 

(%) 

-0.008 -0.033 -0.142 -0.088 0.006 0.062 -0.011 0.077 0.159 -0.068 
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Random Coil Content of Cyto 

(%) 

-0.029 -0.027 0.145 0.025 -0.080 -0.047 0.238 -0.277 0.059 0.109 

Extracellular Disorder Average -0.033 -0.001 0.218 -0.013 0.001 -0.056 -0.118 0.059 -0.153 0.152 

Extracellular Disorder St Dev -0.006 0.018 0.186 -0.029 -0.082 -0.098 -0.169 0.142 0.106 -0.021 

Transmembrane Disorder Avg -0.015 -0.020 -0.067 0.166 -0.282 -0.105 -0.003 -0.119 -0.245 -0.052 

Transmembrane Disorder St 

Dev 

-0.011 -0.019 -0.080 0.166 -0.265 -0.105 0.024 -0.108 -0.233 -0.020 

Cytoplasmic Disorder Avg -0.016 -0.052 0.226 0.104 0.056 0.017 0.162 -0.103 0.078 0.241 

Cytoplasmic Disorder St Dev 0.044 0.112 0.103 -0.021 -0.012 -0.094 0.089 -0.020 -0.064 -0.081 
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Appendix C: 

Wilcoxon Ranked-Sum Test for Cytoplasmic Amino Acid Count for Enzymes and Non-enzymes 

for Type I CD Proteins   
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Appendix C: Wilcoxon Ranked-Sum Test for Cytoplasmic Amino Acid Count for 

enzymes and non-enzymes for Type I CD proteins. The two populations are 

significantly different as the p-value is less than critical value of 0.05. 

 Enzyme  Non-enzymes 

Number (n) 26 218 

Median Cytoplasmic Count 424 60 

W-value 671 

p-value 2.054e-10 

  

 


	Chapter I
	INTRODUCTION
	Chapter II
	LITERATURE REVIEW
	Membrane Proteins
	Principal Component Analysis (PCA)
	Parallel Analysis
	Kernel Density Estimation (KDE)

	Chapter III
	MATERIALS AND METHODS
	Data Retrieval
	Retrieval of Type I Protein List
	Retrieval of Protein Sequence
	Retrieval of Regional Amino Acid Count
	Total Amino Acid Count Calculation
	Retrieval of Charges
	Retrieval of Number of Amino Acids
	Retrieval of Number of Individual Amino Acid Type
	Retrieval of Total Number of Each Individual Amino Acid Type

	Retrieval of Theoretical Isoelectric Point (pI)
	Retrieval of Instability Index
	Retrieval of Aliphatic Index
	Retrieval of Grand Average of Hydropathicity
	Retrieval of Glycosylation Site for Extracellular Region
	Retrieval of Phosphorylation Site for Cytoplasmic Domain
	Retrieval of Secondary Structure Content
	Alpha Helix Content
	Beta Sheet Content
	Random Coil Content

	Retrieval of Disorder Average and Standard Deviation

	Determination of Function (Enzyme or Non-Enzyme)
	Statistical Analysis
	Principal Component Analysis (PCA)
	Parallel Analysis to Determine the Number of Principal Components to be Retained
	Assessment of Statistical Significance of Separation of Enzymes and Non-Enzymes from PCA Data
	Matrix Plot of Scores Values
	Wilcoxon Ranked-Sum Test and Kernel Density Estimation (KDE) Plot


	Chapter IV
	RESULTS
	Principal Component Analysis
	Scree Plot

	Horn’s Parallel Analysis
	Matrix Plot for First 10 PCs Score Values
	Separation of Enzyme (E) and Non-enzyme (NE) clusters.
	Table 2. Mahalanobis Distance (Dm), Hoteling’s T2 and 𝐹-statistics between Enzyme and Non-enzyme Based on the First 10 PCs.
	Loadings Plot for PC1
	Loadings Plot for PC2
	Statistical Difference and Kernel Density Estimation (KDE)

	Chapter V
	DISCUSSION
	Prediction of Type I CD Proteins Functional Class Based on Their Cytoplasmic Amino Acid Counts

	REFERENCES
	APPENDIX A:
	Mahalnobis Distance, Hotelling’s T-squared Values and F-statistics for each Combinations of Principle Components for PC1 to PC10.
	APPENDIX B:
	Loadings Values of PC1 to PC10 for 126 Different Physicochemical Properties.
	Appendix C:
	Wilcoxon Ranked-Sum Test for Cytoplasmic Amino Acid Count for Enzymes and Non-enzymes for Type I CD Proteins

