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ABSTRACT

The nine-banded armadillo is unique for producing multiple embryos derived from a 

single fertilized egg (polyembryony), resulting in the production of four genetically 

identical offspring. Juvenile littermates are known to maintain close proximity to one 

another during their first summer above ground, but it is uncertain if they remain together 

as adults. Typically in armadillo populations adults disperse, which may be due to 

inbreeding avoidance and/or resource competition. There have been multiple studies that 

have examined sex-biased dispersal in armadillos, but with conflicting results as to which 

sex disperses. The goal of the present study was to determine whether spatial genetic 

structure diminishes at a certain life stage (juvenile, adult) within a population and if 

there are any detectable differences in the degree of genetic structure between the sexes.

Genomic DNA from a total of 402 individual armadillos was isolated from ear clip tissue

from a wild population of armadillos inhabiting the Yazoo National Wildlife Refuge, 

Mississippi. Individuals were grouped based on age (juvenile, adult) and further 

subdivided between the sexes (male, female) for each age group. Genetic measures of 

spatial autocorrelation based on eight microsatellite loci were used in correlograms to 

resolve patterns of spatial genetic structure within this population. My results show 

significant spatial genetic structure in juveniles (both males, females) and adult males, 

but not adult females. These results support either female-biased dispersal or high 

variance in male reproductive success (via polygyny).  However, further work is required 

to discriminate between these two possibilities.
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INTRODUCTION

Restricted dispersal can result in increased relatedness between neighboring 

individuals, a phenomenon that has been referred to as viscous population structure (in 

the context of the evolution of altruism (Queller, 1992; Wilson et al., 1992) and as 

isolation by distance (in the context of the balance between gene flow and drift; Wright,

1943). Studies of spatial genetic structure use genetic markers (e.g., allozymes, 

mtDNA, microsatellites, and SNPs) to make inferences about the ecological and 

microevolutionary processes that shape the distribution of genetic variation over 

geographic space.

dencies of different sex and age classes 

can be even more difficult to ascertain (Greenwood, 1980; Koenig et al., 1996). Ideally, 

a combination of both field and genetic methods are required to obtain an understanding 

of dispersal patterns and to make inferences about sex-biased dispersal (Lawson 

Handley & Perrin, 2007). The power to detect dispersal and sex-biased dispersal 

patterns can be improved by increasing the number of polymorphic loci, but there have 

been instances where it is better to invest in the number of individuals sampled rather 

than the number of loci (Goudet et al., 2002; Lawson Handley & Perrin, 2007; Banks &

Peakall, 2012). For example, Goudet et al. (2002) found intensive sampling (large 

sample size) to be the most effective strategy to resolve sex-biased dispersal patterns 

and that sex biases would have to be intense to provide valid detectable differences 

using spatial genetic methods.
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Dispersal in Mammals

Dispersal can occur at different stages of a mammal’s life. As juveniles, they 

may associate with their parents and siblings until they reach sexual maturity 

(Greenwood, 1980; Lawson Handley & Perrin, 2007). When sexually mature (i.e., as 

adults), they may engage in dispersal for mates, inbreeding avoidance, and territory or 

resources (Wolff, 1994). Dispersal, however, can differ between males and females.

Sex-biased dispersal involves individuals of one sex staying or returning to their 

home site to breed (known as philopatry) while individuals of the other sex disperse.

Greenwood (1980) proposed that dispersal bias was driven by the mating system of the 

population. For example, in most polygynous and promiscuous populations of 

mammals, juvenile males are the predominant dispersers while in monogamous species 

both male and female juveniles disperse equally often and equally far (Dobson & Jones,

1985). Even though social systems play a key role in understanding the intensity and 

direction of sex-biased dispersal, other factors may also play a role, such as inbreeding 

avoidance, kin competition, and mortality (Gaines & McClenaghan, 1980; Wolff, 1994;

Lawson Handley & Perrin, 2007). Understanding the factors that generate sex-biased 

dispersal also provides insight into the genetic structure of populations. When one sex 

or age group is philopatric, genetic similarity and spatial genetic structure is established 

within the population, while the opposite is true for the sex that disperses.

Not all mammalian populations have a detectable dispersal difference between 

age groups or sexes. However, in most species, dispersal probability is male biased and 

males tend to travel greater distances than do females (Bowman et al., 2002). Generally, 

because the costs of reproduction are higher for females, they may benefit more from 
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remaining in the natal area, which has proven to have sufficient resources to support 

reproduction due to the fact that the females were born there (Wolff, 1994; Gauffre et al.,

2009). Because females remain within their natal area, they are often in proximity to 

other females that are genetically similar to them (Nussey et al., 2005). This creates 

genetic structure within the population and can potentially generate further benefits to 

females via kin selection. In contrast, because males are the dispersing sex, one expects 

decreased spatial genetic structure amongst them.

Juvenile nine-banded armadillos (Dasypus novemcinctus) are born in litters of 

genetically identical quadruplets (Taulmage & Buchanan, 1954; Prodöhl et al., 1996).

This form of reproduction, known as polyembryony, is unique among mammals 

(Prodöhl et al., 1996; Loughry et al., 1998). After birth in late spring, littermates 

typically maintain close proximity to one another during their first summer above 

ground (Taber, 1945). Subsequent dispersal away from natal areas in the fall appears to 

dilute adult spatial genetic structure and the potential for kin selection (Prodöhl et al.,

1996). Nonetheless, certain findings from capture-recapture studies suggest a viscous 

population structure could exist that might promote the evolution of kin-selected

interactions. For example, the mean distance between successive capture locations of an 

individual is usually less than 200 m, with no significant differences between sex and 

age classes (Loughry & McDonough, 1998, 2013). This suggests that population 

viscosity could result from high site fidelity, coupled with high variance in reproductive 

success (Prodöhl et al., 1998). On the other hand, viscous population structure could be 

compromised by occasional long-distance dispersal, although the frequency of this 

phenomenon is generally difficult to estimate (Nathan et al., 2003). This could be a 
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serious issue in the nine-banded armadillo because the ongoing range expansion of this 

species in the United States (Taulman & Robbins, 1996) suggests long-distance

dispersal events do occur. Even so, the majority of existing behavioral and population 

genetic data suggest fine-scale spatial genetic structure among juveniles (due to 

associations among littermates), with the potential for genetic viscosity in adult 

populations.

In the present study I used genetic measures of spatial autocorrelation (based on 

μDNA loci) to resolve patterns of fine-scale spatial genetic structure in a wild 

population of the nine-banded armadillo at the Yazoo National Wildlife Refuge in 

western Mississippi. The large number of animals sampled at this location allowed me 

to evaluate spatial genetic structure over continuous distances and to compare these

patterns between different sex/age subgroups. Based on previous studies of this species, 

I expected to find enhanced spatial genetic structure in juveniles relative to adults, and 

no differences in spatial genetic structure between males and females (both as juveniles 

and adults).
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METHODS

Field Sampling 

Armadillo samples were collected at Yazoo National Wildlife Refuge in 

Mississippi from May 2005-July 2010. Captures included road kills as well as live 

animals. Live armadillos were captured using long dip nets (Loughry & McDonough,

1996). Each live captured armadillo was marked permanently with a PIT tag injected 

under the dorsal area of the front carapace. They were also marked temporarily by 

attaching different shapes and colors of reflective tape to their carapace. A veterinary 

ear notcher was used to obtain a small piece of ear tissue from each sampled animal as 

the source of DNA for the genetic analyses (preserved in vials containing 100 percent

ethanol until screened). Individuals were then sexed and divided into three age groups 

based on weight measurements: juvenile, yearling, and adult (Loughry & McDonough,

1996; McDonough & Loughry, 2005). The location of each armadillo capture (or 

recapture) was recorded using a Global Positioning System (Trimble GeoExplorer 3).

DNA Extraction and PCR

Eighteen microsatellite primer sets have been developed for nine-banded 

armadillos (Prodöhl et al., 1996; Chinchilla, 2011). Of the eighteen available primer 

sets, eight were used in the spatial genetic analysis. These included five described by 

Prodöhl et al. (1996) and three developed by Chinchilla (2011; see Appendix A). The 

four remaining microsatellite primers of Prodöhl et al. (1996) (i.e., Dnov 2, Dnov 3,

Dnov 16, Dnov 65) were not included in this study because they produced anomalous 

bands that could not be scored. Of the six remaining primer sets developed by 

Chinchilla (2011), Dnov 2433 was only partially genotyped because of evidence of a 
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severe heterozygote deficiency at this locus that may have been indicative of a high 

frequency of null alleles. Dnov 4035 and 2426 produced weak bands and were also 

excluded. Other primer sets developed by Chinchilla (2011) (i.e., Dnov CTLA4, Dnov 

4724, Dnov VDR) were linked to known leprosy resistance genes and were not included 

due to potential linkage disequilibrium. 

Genomic DNA from a total of 480 individual armadillos was isolated from ear 

clip tissue samples using DNeasy Blood & Tissue kits (Qiagen). To increase yields, 

soak times in lysis buffer at 56° C were extended from ten minutes to a minimum of 

twelve hours, with occasional vortexing to help break down the tissue. The 

concentration of nucleic acids in each genomic extraction was measured using a

NanoDrop 2000 (Thermo Scientific) spectrophotometer and each sample was then 

standardized to a working stock of 100 μg/ml (if yields were lower than 100 μg/ml, they 

were not diluted further). Labeled and unlabeled oligonucleotide primer sets were 

custom ordered from Integrated DNA Technologies (IDT). For the Prodöhl et al. (1996) 

primers, 5’ ends were labeled with IRDye 700 or 800. Primer sets for the Chinchilla

(2011) primers were synthesized with a 19-mer (5’-CACGACGTTGTAAAACGAC -

3’) M13 primer on the 5’ end, and the complementary IRDye-labeled (700 or 800) 

primer was included in the PCR reaction at concentrations specified by the author.

IRDye 700 and 800 M13 dye labels used in PCR protocols were purchased from LI-

COR Biosciences. Isolated DNA was amplified using Polymerase Chain Reaction 

(PCR). For Prodöhl et al. (1996) primers, Qiagen 2X PCR Master Mix was used 

following manufacturer protocols to give a final 1X concentration. Each 15 μl PCR 

tube contained 1μl of genomic DNA, 7.5 μl 2X Master mix, and a final forward and 
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reverse primer concentration of 0.3μM, with a 3:1 concentration of unlabeled forward 

primer to labeled forward primer. Promega GoTaq 2X PCR Master Mix was used for 

Chinchilla (2011) primers following the manufacturer’s protocol to give a final 

concentration of 1X. Each 10μl PCR reaction tube contained 1.5 μl of genomic DNA, 5 

μl of Master Mix, and a final forward and reverse primer concentration of 0.45 μM, 

with a 3:1 concentration of unlabeled forward primer to labeled forward primer. 

The PCR protocol included two minutes of activation at 94 °C, one minute

denaturation at 94° C, followed by a one minute annealing period with temperatures 

specified by Prodöhl et al. (1996) and Chinchilla (2011) and one minute extension at 

72° C. PCR reactions included 37 cycles and were extended for ten minutes at 72° C at 

the end of the final cycle.  

Gel Electrophoresis and Genotyping

Fragments were sized using the LI-COR 4300 DNA analyzer and SAGA 

automated microsatellite software. Six percent acrylamide gels were used for 

genotyping following LI-COR protocols for microsatellite DNA loci. PCR products 

were diluted between six and eight times before loading samples into the gels. To each 

diluted PCR reaction tube, 1.5 to 2 μl of sucrose loading dye was added. Tubes were 

then placed into a centrifuge chamber for ten seconds at 4000 rpm to spin down 

contents. When loading samples into the gel wells, 0.25 μl was used in each lane. PCR 

products of the same locus were run in every other lane to avoid leakage across lanes.

Lanes 1, 16, 32, 48, and 64 were used for the size standard (0.2μl) of either IRDye 700 

or 800. Each gel ran for two hours in LI-COR and produced gel images in either 700 or 

800 spectra (depending on the dye label used). Individual genotypes that were difficult 



 

8
 

to interpret, produced weak bands, or did not amplify were re-run following the same 

protocol. Alleles were scored for each individual for all primer sets with the assistance 

of the SAGA automated microsatellite software. Genotypes were amplified twice to 

validate readings.

Population Genetic Analysis

GenAlEx 6.5 (Peakall and Smouse 2012) was used to conduct standard 

population genetic analyses, including calculation of observed and expected 

heterozygosities and testing for Hardy-Weinberg equilibrium and linkage disequilibrium 

(Appendix A).

Spatial Genetic Analysis

Fine-scale spatial genetic structure was evaluated for the entire sample, as well 

as among different sex/age subgroups. Originally, there were 480 individuals used for 

DNA analysis, but 59 individuals lacked genotyping scores and/or GPS coordinates, so

they were removed from the data set.  Yearlings were removed as well due to their small 

sample size (n = 19), resulting in a final sample size of 402 animals. Age groups 

included adults (n = 327) and juveniles (n = 75). The data were further partitioned by 

sex to include adult males (n = 161), adult females (n = 166), male juveniles (n = 40), 

and female juveniles (n = 35).

For each group, correlograms were generated in GenAlEx 6.5 (Peakall and 

Smouse 2006) based on the autocorrelation coefficient (r) proposed by Smouse and 

Peakall (1999). The r coefficient is bounded by an interval [-1, +1]. Geographic 

distance matrices were generated from GPS coordinates (UTM zone 17N; datum = 

WGS 1984) for each captured individual. For individuals that were captured more than 
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one time, the first capture location was used. For each correlogram, pairs of individuals 

were binned into ten even distance classes (= 200 m per class).  This distance lag (= 200 

m) was chosen based on previous work by Loughry and McDonough (1998) and Perez-

Heydrich et al. (2016), which showed that recaptures were, on average, less than 200 m 

from the previous capture location. For comparison, correlograms with distance classes 

that contained even sample sizes were generated. These correlograms did not yield 

different inferences from those that used even distance classes; hence, only data from 

even distance class correlograms are presented here. The significance of spatial 

correlation in each distance class was assessed via Monte Carlo analysis with 999 

permutations, which is the minimum number of permutations required for a test at 

significance level of 0.1 percent. Bootstrap resampling was used to build upper and 

lower 95 percent confidence intervals around the estimated autocorrelation coefficient 

for each class (Smouse et al., 2008).
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RESULTS

Spatial Genetic Structure

For the pooled data (all samples combined), significant positive autocorrelation 

was detected in the first (0 to 200 m; r = 0.051, P = 0.001), second (200 to 400 m; =

0.014, P = 0.001) and third (400 to 600 m: = 0.007, P = 0.008) distance classes 

(Appendix B, Figure 1A). For males, significant positive autocorrelation was detected in 

the first (0 to 200 m; = 0.110, P = 0.001), second (200 to 400 m; = 0.042, P = 0.001) 

and third (400 to 600 m; = 0.017, P = 0.003) distance classes as well (Appendix B, 

Figure 1B). The  correlogram line for males suggested a patchy pattern; it began to 

decline at 800 m and showed significant negative autocorrelation at distance classes five 

(800 m to 1000 m; r = -0.020  , P = 0.001) and six (1000 m to 1200 m; r = -0.016 , P =

0.002; Appendix B, Figure 1B ).  Spatial autocorrelation values then overlapped zero in a 

positive direction and later declined again with significant negative autocorrelation at 

distance class nine (1600 m to 1800 m; r = -0.018, P = 0.002) (Appendix B, Figure 1B).  

Females exhibited significant positive autocorrelation in the first distance class only (0 to 

200 m; = 0.034, P = 0.001; Appendix B, Figure 1C).

When juveniles were removed from the analysis, pooled adult data displayed

significant positive autocorrelation in the first (0 to 200 m; r = 0.033, P = 0.001), second 

(200 m to 400 m; r = 0.016, P = 0.001) and third (400 m to 600 m; r = 0.006, P = 0.028) 

distance classes (Appendix B, Figure 2A).  Likewise, when each sex was examined 

separately, positive spatial autocorrelation was detected for adult males in the first two 

distance classes (0 to 200 m; r = 0.091, P = 0.001; 200 to 400 m; = 0.046, P = 0.001; 

Appendix B, Figure 2B).  Based on the correlogram line (Appendix B, Figure 2B), a 
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patchy pattern of spatial genetic structure was suggested for males, with spatial 

autocorrelation steadily declining and exhibiting significant negative autocorrelation at 

distance class five (800 m to 1000 m; r = -0.018, P = 0.004; Appendix B, Figure 2B).  

Autocorrelation values became positive for the next two distance classes but at distance 

class eight values began to decline again, remaining negative to the last distance class 

(1400 m to 1600 m, r = -0.016, P = 0.009; 1600 m to 1800 m; r = -0.012, P = 0.045; 

1800 m to 2000 m; r = -0.013, P = 0.039; Appendix B, Figure 2B).  In contrast, adult 

females did not exhibit any distance classes with significant autocorrelation coefficients 

(Appendix B, Figure 2C).

When all juveniles were pooled and analyzed separately, significant positive

autocorrelation was detected in the first distance class (0 to 200 m,  = 0.251, P =

0.001; Appendix B, Figure 3A).  Spatial autocorrelation quickly declined after the first 

distance class and reached significant negative autocorrelation at distance class three 

(200 m to 400 m; r = -0.034, P = 0.046; Appendix B, 3A). The correlogram line

ascended in a positive direction at 600 m, but then at a distance class of 600 m to 800 m,

negative significant autocorrelation occurred again (r = -0.05, P = 0.040; Appendix B, 

Figure 3A). Male juveniles also exhibited positive autocorrelation at distance class one 

(0 to 200 m,  = 0.348, P = 0.001; Appendix B, Figure 3B).  At distance class four

spatial autocorrelation became significantly negative (r = -0.102, P = 0.003) and again

at 1200 m (r = -0.084, P = 0.006; Appendix B, Figure 3B). The correlogram line

(Appendix B, Figure 3B) suggested a uniform patchy pattern for juvenile males due to 

frequent fluctuations in positive and negative values. Female juveniles exhibited 

significant positive autocorrelation in distance class one (0 to 200 m;  = 0.265, P =
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0.001; Appendix B, Figure 3C).  Beginning at a distance class of 600 m to 800 m 

negative spatial autocorrelation was found (r = -0.065, P = 0.038; Appendix B, Figure 

3C).  The line of the correlogram for juvenile females (Appendix B, Figure 3C)

suggested an irregular patchy pattern, with a sudden decline at 800 m, as previously 

stated, which remained until 1200 m and then declined again steadily at 1400 m.  
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DISCUSSION

Prior population genetic (Prodöhl et al., 1996, 1998) and behavioral (Loughry &

McDonough, 1998) studies have established that juvenile armadillos maintain close 

proximity to their littermates prior to fall dispersal, but it is unknown whether they 

remain together subsequently. The results of the present study support prior inferences 

of clustering of clonal siblings prior to dispersal (Prodöhl et al., 1996, 1998), while also 

providing novel evidence of spatial genetic structure in adult male armadillos. Because 

female-biased dispersal is rare in mammals (Lawson Handley & Perrin, 2007), my

results raise interesting questions about ecological and population genetic processes that 

could result in increased genetic similarity between geographically proximate male 

armadillos.

Even though there were a limited number of loci used in this study (n = 8), it has 

been demonstrated that larger sample sizes are more effective when estimating dispersal 

(Goudet et al., 2002; Lawson Handley & Perrin, 2007; Banks & Peakall, 2012).

According to Goudet et al. (2002), the power to detect sex-biased dispersal is positively

correlated with bias intensity, sampling intensity and genetic variation per locus. Thus, 

the results of the present study suggest that the sample size of armadillos and level of 

polymorphism at each locus were sufficient to detect even the weak differences in 

spatial genetic structure between males and females that are reported here.

A previous population genetic study of this species by Prodöhl et al. (1996) used 

seven microsatellite DNA loci to identify presumptive siblings and found that average 

distances between juvenile siblings were significantly less than distances between adult 

siblings. The results of the present study, based on measurement of spatial genetic 
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autocorrelation between pairs of individuals over different distance lags (i.e., 

correlogram analysis) indicated significant, positive autocorrelation between juveniles in 

the first distance class ( 200 m), at a magnitude that was two to three times higher 

than what was observed for adult males. This high level of spatial autocorrelation at 

relatively short distances likely reflects close proximity between clonal siblings prior to 

dispersal, thus supporting the inferences of Prodöhl et al. (1996). Such positive spatial 

autocorrelation could also reflect patches of related individuals that have different 

mothers but share the same father (i.e., polygyny), albeit additional analytical work 

would be required to test this possibility.

The shapes of the correlograms can be used to provide additional information 

about the patterns of genetic similarity within the Yazoo population. Most correlograms 

indicated irregular patches of genetically similar individuals; significant positive 

autocorrelation quickly diminished beyond the first several distance classes and then 

oscillated above and below the null expectation. While most correlograms were 

consistent with irregular patchiness, some subtle differences are worth noting for the 

sake of further investigation. For juveniles, the spatial autocorrelation coefficient was 

lower for females in the first distance class and seemed to decline steadily, indicative of 

a steady decline in genetic distance with increasing geographic distance. Although 

inconclusive, due to the fact that the confidence intervals for the autocorrelation 

coefficients overlap for males and females in each distance class, it seems unlikely that 

the steady decline in the autocorrelation coefficient for juvenile females was due to 

chance alone. This may indicate reduced spatial cohesion in juvenile females, perhaps 
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indicative of female-biased dispersal at an earlier stage than had been previously 

recognized.

The correlogram pattern for adults was also consistent with irregular patches of 

genetically similar individuals, but with substantially lower autocorrelation than 

observed for juveniles over the same distances. For adults, however, the significant 

autocorrelation over short distances appears to be driven entirely by positive 

autocorrelation between males; significant autocorrelation was not observed in any 

distance class for adult females. The gradual decline in the autocorrelation coefficient 

for males suggests that genetic similarity was less patchy than what was observed for 

juvenile males.

Sex-biased differences in spatial genetic structure were unexpected for the nine-

banded armadillo because behavioral data (based on long term capture/recapture data 

from this and other populations) have failed to detect significant sex differences in adult 

capture/recapture distances (Loughry & McDonough, 2001). The results of the present 

study suggest that there could be differences in long-distance dispersal tendencies 

between males and females after leaving natal areas and/or that there could be high 

variance in male reproductive success associated with a polygynous mating system 

(resulting in higher genetically similarity between males as compared to females).

Observational data provide some evidence of polygyny in armadillos (McDonough,

1997), which may support this latter hypothesis.

Mating systems play a key role in understanding the intensity and direction of 

sex-biased dispersal, along with inbreeding avoidance, kin competition, and mortality 

(Gaines & McClenaghan, 1980; Wolff, 1994; Lawson Handley & Perrin, 2007). Two of 
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these factors may play a role in explaining the patterns of spatial genetic structure found 

in this study. First, populations of nine-banded armadillos exhibit overlap between 

generations; hence, to avoid inbreeding, some mechanism must exist to avoid possible 

mother-son or father-daughter mating.  If males are philopatric, female-biased dispersal 

could occur as a mechanism of inbreeding avoidance. Second, Greenwood’s (1980) 

resource-competition hypothesis predicts female-

than females from philopatry, perhaps because of increased familiarity with an area and 

the resources it provides. In the case of nine-banded armadillos, breeding males might 

also benefit from philopatry because of increased access to female mates.  Breeding 

male armadillos defend their home ranges, thereby generating minimal space overlap 

with other breeding males, and are then able to pair (and presumably mate) with the 

adult females whose home ranges overlap theirs (McDonough, 1994, 2000).  If 

establishing a home range elsewhere that will provide sufficient mating opportunities is 

more costly (or less likely) than remaining in the natal area, then males might be 

selected to be philopatric, thus generating the enhanced spatial genetic structure in adult 

males that was detected. In contrast, females do not have to defend home ranges in 

order to gain multiple breeding opportunities.  Dispersing females may easily find a 

home range that has food resources and areas for burrow construction, and may 

typically pair with the male that overlaps their home range the most (McDonough,

2000).  Thus, females might be better able to “afford” dispersal than males because they 

can settle anywhere and still have the opportunity to reproduce.  In any case, while there 

are plausible hypotheses to explain the patterns of genetic structure I have found, they 



 

17
 

remain somewhat speculative and consequently, no firm conclusions can be made at this 

time.

Even though female dispersal is rare in most mammalian species there have been 

studies that document its occurrence. For example, the greater white toothed shrew, 

Crocidura russula, showed strong female bias in post-natal dispersal, as revealed by 

direct evidence through marking of immigrants and emigrants (Favre et al., 1997). The 

Hamadryas baboon, Papio hamadryas hymadryas, showed evidence for female-biased 

gene flow as population genetic structure was roughly four times higher for paternally 

inherited versus maternally inherited DNA (Hammond et al., 2006). Another study 

involving the sac-winged bat, Saccopteryx bilineata, found increased levels of female-

biased dispersal based on the facts that all female juveniles had dispersed prior to 

reproduction, and that new reproductive females in a population were immigrants (Nagy 

et al., 2007). Previous population genetic studies of the nine-banded armadillo have 

produced conflicting results regarding sex-biased dispersal. Frutos and Van den 

Bussche (2002) found multiple female exchanges among populations per generation in 

Paraguay, which they interpreted as reflecting high levels of female-biased dispersal.

However, analyses of populations in Mexico indicated that male-biased dispersal was 

more prevalent and females were philopatric (Arteaga et al., 2012). My results support 

the findings of Frutos and Van den Bussche (2002), but it remains unclear how 

widespread female-biased dispersal is in populations of armadillos, or what is different

between populations that exhibit male- versus female-biased dispersal.

While male-biased spatial genetic structure could result from female-biased 

dispersal, observed spatial genetic structure depends on both the pattern of dispersal and 
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the mating system. For example, in a polygynous mating system, males may mate with 

groups of females that occupy an area, resulting in high levels of relatedness between 

offspring of different females. Nevertheless, spatial genetic structuring associated with 

cohorts of harem offspring may or may not be incorporated into the gene pool of adults 

depending on the dispersal patterns of juveniles; if both males and females disperse,

spatial genetic structure associated with polygyny may be diluted (McCracken &

Bradbury, 1977; Storz, 1999). In the present study of the nine-banded armadillo, the 

male-biased spatial genetic structure observed in adults probably reflects some 

combination of the mating system and dispersal, but, due to a lack of clear information 

about the mating system and long-distance dispersal tendencies in this species, the 

mechanisms underlying the observed pattern remain unclear. With that said, the fact 

that the observed spatial genetic structure was weak suggests that it probably does not 

reflect both high variance in male reproductive success and strongly female-biased 

dispersal. Further population genetic analyses and simulation-based modeling would be 

required to clarify this issue.

In summary, my results demonstrate differences in spatial genetic structure 

between different sex/age subgroups within the Yazoo population of armadillos driven 

primarily by adult and juvenile males. Although only eight polymorphic microsatellite 

markers were examined, 402 individuals provided enough power to determine spatial 

genetic structure between sex/age subgroups. 
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APPENDIX A:

Genetic Diversity Measures of Eight Genetic Markers 
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Table 1: Genetic diversity measures of each locus using GenAlEx 6.5 (Peakall and 

Smouse 2012) software.  The number of alleles is given for each locus as well as 

Expected Heterozygosity (HE ) and Observed Heterozygosity ( HO ). P > 0.05 = no 

significance, P 0.05* = significant.

Locus HE HO P-value # of alleles
Dnov 1 0.708 0.738 0.905 7

Dnov 5 0.661 0.624 0.070 7

Dnov 7 0.528 0.511 0.991 5

Dnov 24 0.659 0.646 0.187 5

Dnov 51 0.197 0.195 0.962 3

Dnov 2092 0.254 0.254 0.995 4

Dnov 2179 0.586 0.536 0.017* 7

Dnov 3824 0.506 0.513 0.008* 4
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APPENDIX B:

Spatial Correlograms of Nine-Banded Armadillos
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Figure 1: Correlograms of A) All armadillos, B) All males, C) All females. The 

correlogram line represents spatial autocorrelation values of the r coefficient. Upper and 

lower error bars represent 95 percent confidence intervals as determined by bootstrap 

resampling.
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Figure 2: Correlograms of A) All adult armadillos, B) Adult males, C) Adult females. 

The correlogram line represents spatial autocorrelation values of the r coefficient. Upper 

and lower error bars represent 95 percent confidence intervals as determined by bootstrap 

resampling.
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Figure 3: Correlograms of A) All Juvenile armadillos, B) Juvenile males, C) Juvenile 

females. The correlogram line represents spatial autocorrelation values of the r

coefficient. Upper and lower error bars represent 95 percent confidence intervals as 

determined by bootstrap resampling.
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