Background Information:

• <u>HPLC</u>: High-performance liquid chromatography, a sample in a solvent (mobile phase) is pumped through a chromatographic column (stationary phase) at a high

pressure

• <u>Retention time</u>: Measure of time taken for a solute to pass through a

chromatography column

- <u>Reflux</u>: When a liquid is boiled, allowed to condense, and the condensed liquid returns to the flask
- <u>Phenolics</u>: Aromatic benzene rings with one or more hydroxyl (OH⁻) groups
 - Simplest phenol: C₆H₅OH
 - Mainly produced by plants for protection against stress
- Ester: A chemical group derived from an acid, where at least one hydroxyl group is replaced by an -O- alkyl group

Transesterification:

- Exchanging the organic group "R" of an ester with an organic group "R" of an alcohol
 - Large excess of alcohol drives the reaction
 - Typically acid catalyzed

Optimizing Transesterification:

- KOH: Potassium Hydroxide, Catalyst
 - MeOH: Methanol
- All reactions monitored by HPLC
- Trial 1: 1 wt% KOH and 20 v% MeOH
- Trial 2: Volume % of MeOH increased to 40%
 - Trial 3: 0.5 wt % KOH added
- Optimum conditions set as 40 v% MeOH and 1.5 wt% KOH

Creating Biodiesel from Used Coffee Grounds

Carly Eaves Faculty Sponsor: Dr. Thomas Manning

Purification:

- Coffee oil mixed with 40 v% MeOH and 1.5 wt% KOH
 - Refluxed at 70° C
- Mixture kept static overnight and formed 2 layers
- Top layer washed with warm water to get rid of catalyst
 - Final pH of biodiesel: 6.8
 - Continued washing with 0.5 wt% tannic acid
- Tannic acid wash to remove traces of catalyst left over from warm washing and to increase the antioxidant properties of the biodiesel
- Washing steps diminished intense color of biodiesel
- indicated the removal of any water-soluble pigments

Conclusion:

- Why is this research relevant?
- With a growing global population, humans are using more resources and energy now than

ever

- Biodiesel is a green energy alternative to burning fossil fuels and coal which is heavily relied on today
- The future effects of coffee-biodiesel could

remarkably impact the world

References:

1. Kondamudi, Narasimharao. et al. Spent Coffee Grounds as a Versatile Source of Green Energy. J. Agricultural and Food Chemistry. 2008, 56 (24), 11,757-11,760. 2. Izida, Thaís. et al. Monitoring the Transesterification Reaction of Vegetable Oil to Biodiesel by Fluorescence Spectroscopy with UV Excitation: Correlation with Viscosity. Orbital. 2018. 10 (1), 22–25. EBSCOhost, doi:10.17807/orbital.v10i1.1026.

• Want to minimize/diminish the formation of the MG, DG, TG HPLC Analysis: sharp decrease in intensity of oil peak within first few mins meaning oil was completely converted to biodiesel under optimized reaction conditions • Intensity of oil peaks monitored in HPLC to determine presence of oil

Data and Results:

HPLC Analysis of the coffee oil transesterification process

• Oil peaks correlated with MG, DG, TG

Complete conversion of oil to biodiesel under optimum reaction conditions

Table 1:

Table S1. Future market scenario of coffee-biodiesel (based on waste gene Starbucks's stores). ⁺			
Starbuck's market	USA	World	Overall World marke
Feedstock (lb/yr)	210,000,000	294,000,000	15,000,000,000
Bio-diesel (G/yr)	2,920,000	4,080,000	208,000,000
Pellets (tons/yr)	89,150	125,000	6,375,000
Revenue of bio-diesel	\$13,140,000	\$18,360,000	\$936,000,000
Revenue of pellets	\$20,080,000	\$28,114,000	\$1,434,375,000
Total revenue	\$33,220,000	\$46,474,000	\$2,370,375,000
Operating costs	\$25,200,000	\$35,280,000	\$1,800,000,000
Total profits	\$8,020,000	\$11,194,000	\$570,375,000

Economic benefits of coffee-biodiesel in 2008