Let's talk about motion

SIDE VIEW

side-view of spinning Earth

TOP VIEW (above North Pole)

TOP VIEW (above North Pole)

When viewed from
above the North
pole, the earth
rotates in $C C W$
direction
(when viewed from
below the South
pole, the direction
is $C W$)

top view of spinning Earth

TOP VIEW (above North Pole)

The Sun illuminates only half of any object at a time. This is why we have night.

TOP VIEW (above North Pole)

TOP VIEW (above North Pole)

sunset

TOP VIEW (above North Pole)

sunset

TOP VIEW (above North Pole)

sunset

TOP VIEW (above North Pole)

sunset

the directions E and W depend on whether you face NORTH or south

TOP VIEW (above North Pole)

sunrise
if you face NORTH your RIGHT hand is E, your LEFT hand is W

Your field of view of the sky: your HORIZON

We can't draw you on the Earth to scale, so there's a trick to find your horizon:

1. Draw a radius (i.e. line joining observer to center of earth)
2. Draw a line passing through the center that is perpendicular to radius

We can't draw you on the Earth to scale, so there's a trick to find your horizon:

1. Draw a radius (i.e. line joining observer to center pf earth)
2. Draw a line passing through the center that is perpendicular to radius
this part of the sky is above your horizon
this part of the sky is below your horizon you can't see it
i.e. you cannot see the star at 3 pm
sunset

-

np

this part of the sky is above your horizon

this part of the sky is below your horizon you can't see it
i.e. you can barely see the star at sunset

can you see the star at 8 pm?
this part of the sky is above your horizon
i.e. you can see the star at 8 pm
this part of the sky is above your horizon
this part of the sky is below your horizon

The star appears at this angle measured up from the horizon height
this part of the sky is above your horizon
this part of the sky is below your horizon you can't see it
this part of the sky is above your horizon

The star appears straight overhead (i.e. at an angle of 90° measured up from the horizon)
this part of the sky is below your horizon you can't see it

Not only do you see different stars over the course of the night, but over the seasons too
(since the night sky faces different directions [slide 86])

SEASONS AT A GLANCE

e.g. Orion in Northern Winter

and, Sagittarius in Northern Summer

When and where you see a given star also depends on Earth's orbital position around the Sun

When and where you see a given star also depends on Earth's orbital position around the Sun

About 2 months later, the star won't be overhead at midnight (because the earth has moved to a different position with respect to the sun)

About 2 months later, the star won't be overhead at midnight

Position of Polaris:

Polaris (i.e. the north star) lies on the extension of the earth's N -S axis

Position of Polaris:

 Observer at North PolePolaris appears
overhead

side view of spinning Earth

Position of Polaris:

Observer at Equator

Polaris appears at horizon

side view of spinning Earth

Polaris would be on your horizon-barely visible, if at all.

Polaris
equator
side view of spinning Earth

Position of Polaris:

Observer in Southern
Hemisphere

Polaris not visible

Below the equator, Polaris would NEVER be visible

Position of Polaris:

 Observer in Northern HemispherePolaris appears at an angular height that depends on the latitude of the observer

Between the NP and the equator, you would see Polaris at your latitude above the North horizon

The angular height you see Polaris is your latitude

e.g. if your latitude on Earth is 30°, then the angular height of Polaris is also 30°

Polaris

Observer's view of North horizon: Polaris remains at fixed position throughout the night

But for latitudes ABOVE the equator, some stars, within your latitude in angle between Polaris and the horizon never set - CIRCUMPOLAR stars

Observer's view:

Polaris remains fixed at center and Star A rotates around it during the course of the night

Star A is a circumpolar star that does not set and appears to rotate around Polaris

Observer's view of North horizon

Observer's view of North horizon:
Polaris remains at fixed position whereas circumpolar stars rotate around it

Time-lapse Video Clip of Rotating Milky Way

face NORTH

Polaris at 30 deg above North horizon

W

at Valdosta, Georgia, USA latitude 30 deg

face NORTH

W

Polaris at 30 deg above North horizon
E
at Valdosta, Georgia, USA latitude 30 deg

Over the course of an evening

stars within 30 deg of Polaris do not set - these are CIRCUMPOLAR stars

stars within 30 deg of Polaris do not set - these are CIRCUMPOLAR stars

Facing SOUTH EAST over the course of an evening

Facing SOUTH-EAST - star trails that are straight show part of

 the celestial equator that will arc over the sky as you face due south
The Ecliptic Plane

Side view of earth:

View looking down on north pole of earth

Motion of planets over the course of a year

All planets move counterclockwise

View looking edge-on to the solar system planets are in plane - the ECLIPTIC plane

If the equator of the earth and the celestial equator lay on the same plane, an observer on earth would see the sun and the planets lie on a line parallel to the horizon

View from Earth:

However, the view from the ground shows ...

view from the ground: ...the ECLIPTIC appearing like an arc
if the rotation axis were perpendicular to the ecliptic plane, the celestial equator would lie along the ecliptic....

... but Earth was hit by something a long time ago which tilted its rotation axis, and therefore the celestial equator does NOT lie along the eliptic.

When we project the equator and ecliptic on the celestial sphere, they make two great circles around us.
equator

N
ω
0
2
8

$81 / 015$
s

To an observer on earth, the sun and planets appear to revolve around the earth along the ecliptic

From our view on the ground, the Ecliptic is the apparent path the Sun and planets take over the course of the year and it intersects in 2 places with the Celestial Equator

When the Sun is on one of the cross-overs, we call it the EQUINOX When the Sun is as far as possible from the celestial equator, we call it the SOLSTICE

solstice

Consider the marked equinox:

solstice

The view from Earth

The view from Earth

When the Sun is at the cross-over point, it is the EQUINOX

Earth's precession causes the exact location of the equinoxes to move a little each year

Consider the marked solstice:

solstice

The view from Earth

From our view on Earth when the Sun is farthest from the celestial equator, it is the SOLSTICE

The Earth's Tilt and the Seasons:

First, imagine what a day would be like if Earth were NOT tilted...

Imagine a person who lives near the rotation axis.

24-hr day

6 months later, the seasons are exchanged.
Note that the tilt of the Earth is the SAME

Notice that the tilt does not change

Note that in the Northern Hemisphere, the Sun is CLOSER to Earth in WINTER, and that the Sun is FARTHER from Earth in SUMMER

spin axis

