Our Solar System

Planets orbit the Sun in a plane known as the ECLIPTIC PLANE

Path of planets around the Sun edge-on view

Jupiter

Jupiter and its moon orbit Jupiter in a flat plane, too. There is a reason the Solar System and Jupiter's moon system orbits are flat - we' ll talk about it soon!

Earth - Sun Distance = 1 Astronomical Unit (AU)

Looking down onto (north) inner Solar System all planets orbit Sun counterclockwise

How does being in the ecliptic affect where we see the planets in the sky from the ground, on Earth?

there are more than just planets and Sun in the Solar System in the ecliptic plane - the ASTEROID BELT

INNER SOLAR SYSTEM, plus Jupiter

Thousands of asteroids (rocks) — rubble from failed planets
Asteroids that wander to inner Solar System pose great danger to Earth

NASA missions arrival dates

Ceres (900 km) and Vesta (400 km) -
others asteroids from < 1 m to 100 km

Beyond Neptune's orbit — Kuiper belt — asteroids and COMETS
But that is still not the edge of the Solar System....

This is the whole Solar System:

50,000 AU diameter

artist' s depiction of Oort Cloud swarms of comets

orbits of comets in Oort Cloud are like bees swarming around a hive
naked eye can see about 6,000 stars in the sky

the brighter ones line up to make pictures - the Constellations

Little Dipper

Big Dipper

Polaris, the North Star
from Northern hemisphere, whole sky rotates around Polaris

time-lapse photo - sky turns around Polaris

$$
r^{\prime-i}
$$

polaris

1

+
polaris

polaris

$$
r^{\prime-i}
$$

polaris

1

polaris

Pioneer 11

Voyager 2

view of Earth and Moon from Mercury Messenger

Probe

\square

view of Earth and Moon from Saturn
Cassini Probe

Phases of the Moon

Iittes: //www.youtube.con /watch?v=mQwvHn akBA

$3,400 \mathrm{~km}=1 / 4$ size of Earth!

Moon
Earth

\ddagger Ø!!!uns
moon

We see different parts of the moon illuminated over the course of the month. This phenomenon is referred to as

The Phases of the Moon.

)
)
)
)
)
)
$1^{\text {st }}$ quarter

$$
D
$$

$$
0
$$

θ

Full

$3^{\text {rd }}$ quarter

(
(
(
(
(

New

Phases of the Moon

1.8	2.5	3.4	4.8	5	(3.3	
8.4	9.7	10.7	11.8	12.5	13.6	
15.6	16.4	17.8	18.9	19.7	20.8	
22.4	23.7 3	$\underbrace{24.4}$	$8_{8}^{25.3}$	8		8
						almost new

Why do we see the moon in phases?

Because it moves between us and the Sun.
Everything that moves between us and the Sun we will see in phases, including other planets.

Moon just before New

Venus π

A SOLAR ECLIPSE takes place when the new Moon happens to cross the ecliptic when the Sun is right there!

$3,400 \mathrm{~km}$

the Moon is the same ANGULAR SIZE as the Sun

The Moon's orbit is tilted 5 deg from the ecliptic.

Viewed from Earth, during a new Moon, the Moon passes above the Sun's position or...

... below the Sun's position.

But every now and then, the moon crosses the ecliptic where the sun is, and we are treated to a SOLAR ECLIPSE

The reason that the Moon changes position as it crossed the ecliptic is that the orbit of the Moon precesses, like a top with the Moon on the rim, with a period of about 18 years. See link:

httos://WWW.youtube.com/watch? $=$ G $1 / 23$ dogED7W

With a side-view, you can see that the Moon will cast a shadow on a small part of the Earth. People inside the shadow will experience "totality."

Solar Eclipse - the Moon's shadow on earth

Stages of a Solar Eclipse with Time-stamps

cocerfran

رر ر

A word about SAFETY:

don't look at the Sun

when it is covered by the Moon it is safe, BUT you don't know exactly when the Sun will peak back out....
... and you can experience PERMANENT damage.

