Our Changing view of the Universe

Geocentric Universe

Geocentric Universe

sun and planets move around Earth

Retrograde Motion of Mars

Video: https://vimeo.com/298439756

Time-lapse

Geocentric Universe

In a geocentric universe, retrograde motion of a planet implies that the orbit of the planet follows the irregular path below:

This deduction is inconsistent with the concepts of motion in orbiting paths

Heliocentric Universe

Heliocentric Universe

In a heliocentric universe, retrograde motion of a planet can be explained by using circular planetary orbits and the concept of earth revolving around the sun:

Planets move around sun

Video: https://youtu.be/TK9ozJYELR8

direction of Mars with respect to background stars

Mars orbit

Recording more observations in the same manner, Mars is observed

Earth's orbit to switch its direction twice and generate retrograde motion

Heliocentric Universe

Mathematical basis

Sun

Tycho Brahe

distance between observations

Each eye see's a slightly different image, due to parallax, since there is about 2 inches separating your eyes

RIGHT
 eye

Each eye see's a slightly different image, due to parallax, since there is about 2 inches separating your eyes

Each eye see's a slightly different image, due to parallax, since there is about 2 inches separating your eyes

Your brain does the math and makes the images come together so that you see depth within about 20 ft . Stare at this picture on the next page and let your eyes relax and you'll see 3-D.

parallax

By increasing the distance between observations, a larger parallax angle is obtained

A larger angle involves smaller measurement errors.

Increasing distance between observations: sunset and sunrise

How do we get distance from this?

Create a Triangle:

If the distance between the observations is larger, then we can detect farther stars - so let's use the size of earth's orbit around the sun

Johannes Kepler

Kepler's Law \#1:

The planets do not move in perfect circles around the Sun. They move in ELLIPSES with the Sun at one focus point.
focus

Circle — distance to rim always the same (radius)

Ellipse - 2 focal points (foci)

Ellipse - sum of each line from the foci to the rim is the same

Ellipse - sum of each line from the foci to the rim is the same

Planetary orbit with Sun at one focus

Kepler's Law \#2:

The closer the planet is to the Sun in its orbit, the faster it goes.

Kepler's Law \#2:

A mathematical way to say this is: a planet will sweep out equal areas in equal times
a month to travel this distance going slowly

Kepler's Law \#2:
 A mathematical way to say this is: a planet will sweep out equal areas in equal times

a month to travel this distance going slowly

a month to travel this distance going fast

Kepler's Law \#2:
 A mathematical way to say this is: a planet will sweep out equal areas in equal times

a month to travel this distance going slowly

a month to travel this distance going fast

According to Kepler's $2^{\text {nd }}$ Law: Area $1=$ Area 2

Kepler's Law \#3:

The farther out a planet is, the longer it takes to go around the Sun

The planet farther from the sun will take more time to complete a revolution

Kepler's Law \#3:

$$
\mathrm{P}^{2}{ }_{\mathrm{yr}}=\mathrm{D}^{3}{ }_{\mathrm{AU}}
$$

Kepler's Law \#3:

Distance in AU

Period in
Earth-years

$$
P_{y r}^{2}=D_{A U}^{3}
$$

$P_{y r}^{2}=D_{A U}^{3}$

If we want the PERIOD of a planet
(time it takes to orbit the Sun)

If we want the PERIOD of a planet
(time it takes to orbit the Sun)

$$
\begin{aligned}
& P_{y r}=\sqrt{D_{A U}^{3}} \\
& P_{m=}=\sqrt{D_{m o}^{3}} \\
& P_{m=}=\sqrt{(1.6 \mathrm{AU})^{3}}=2.02 \mathrm{yr}
\end{aligned}
$$

$P_{y r}^{2}=D_{A U}^{3}$

If we want the DISTANCE to a planet
(in AU from the Sun)

$\sqrt[3]{P_{y r}^{2}}=D_{A U}$

If we want the DISTANCE to a planet

(in AU from the Sun)

$$
\begin{aligned}
& \sqrt[3]{\boldsymbol{P}_{y r}^{2}}=D_{A U} \\
& \mathrm{D}=\sqrt[3]{\mathrm{P}_{\text {ypleer }}^{2}} \\
& \mathbf{D}_{\text {juper }}^{2}=\sqrt[3]{(12 \mathrm{yrs})^{2}}=5.3 \mathrm{AU}
\end{aligned}
$$

Let's Practice

- The period of Saturn is 29.46 Earth years. How far is Saturn from the sun?
- Venus is 0.723 AU from the Sun. What is the period of the planet Venus?
- The asteroid Vesta 4 has an orbital period of 3.63 Earth years. How far is it from the sun?
- If Ceres' period is 1.4 times longer then Vesta 4, how far is Ceres from the sun?

Isaac Newton

Newton's 1st Law:
Objects will keep moving at constant velocity.

Newton's 1st Law:

Objects will keep moving at constant velocity.

or
anything with mass has inertia.

some detitnitions:

velocity $=$ speed and direction
inertia $=$ the ability to resist a force

some detilnitions:

velocity $=$ speed and direction
inertia $=$ the ability to resist a force

Newton's 1st Law:
 Objects will keep moving at constant velocity.

What is the kind of PATH an object with CONSTANT velocity takes?

Newton's 1st Law:
 Objects will keep moving at constant velocity.

What is the kind of PATH an object with CONSTANT velocity takes?

STRAIGHT LINE!!

some detitnitions:

velocity $=$ speed and direction

acceleration $=$ a change in velocity

somne óefilnitions:

velocity $=$ speed and direction
acceleration $=$ a change in velocity
Force provides acceleration

Newton's 2nd Law:

A force will change an object's velocity, and its acceleration is related to its mass:

Newton's 3rd Law:

Forces don't act in isolation.

Bob
Sue

Force on Bob $=$ Force on Sue

$$
\mathrm{M}_{\text {Bob }} \mathrm{a}_{\mathrm{Bob}}=\mathrm{m}_{\text {Sue }} \mathrm{a}_{\text {Sue }}
$$

large MASS;
low acceleration
small mass;
high ACCELERATION

Force of Gravity between

the Earth and Sue

Force of Sue on the Earth

