Four Fundamental Forces

C_{60}

Four Fundamental Forces

range over space

Gravity

∞

Electromagnetism
∞

Strong Force
$10^{-12} \mathrm{~cm}$

Weak Force
$10^{-14} \mathrm{~cm}$

Four Fundamental Forces

strength

Gravity

1

Electromagnetism
10^{42}

Strong Force
10^{44}

Weak Force
10^{38}

Four Fundamental Forces

Gravity: attracts mass
has an infinite range

Four Fundamental Forces

Electromagnetism: attracts unlike charges
 repels like charges

has infinite range

Four Fundamental Forces

Strong Force:

works on protons and neutrons
has a range of only $10^{-12} \mathrm{~cm}$
 the atom . . .

Hydrogen fusion bomb

Four Fundamental Forces

Strong Force:

works on protons and neutrons
 has a range of only $10^{-12} \mathrm{~cm}$

Four Fundamental Forces

Weak Force:

turns p's into n's or n's into p's
has a range of $10^{-12} \mathrm{~cm}$

radioactivity

Atomic bomb

Force of Gravity

So what is keeping the astronaut from falling to Earth?

Gravity pulls down, only

Gravity cannot affect sideways motion

If one ball is thrown horizontal to the ground at the same time another is released from the same height....

Both balls hit the ground at the SAME TIME

and that is why a thrown ball flies through the air in a parabolic arc...

This is why we can put things in orbit.

So what is keeping the satellites from falling to Earth?

Once the satellite reaches a certain speed, ORBITAL SPEED,
 it misses Earth as it falls around it.

Objects in orbit are in free fall!

Remember that in order to move in other than a straight line, something must be accelerating you

The spacecraft is travelling straight to the left,
but it is accelerating downwards,
i.e. the velocity is trying to change to a downward direction

The net result is that the spacecraft does not keep travelling straight to the left, but curves downwards and is displaced downwards and leftwards
direction of motion

The spacecraft is travelling straight to downwards,
but it is accelerating to the right,
i.e. the velocity is trying to change to a rightward direction

The net result is that the spacecraft does not keep travelling straight downwards, but curves to the right and is displaced downwards and rightwards

The spacecraft is travelling straight to right,
but it is accelerating upwards,
i.e. the velocity is trying to change to a upward direction

The net result is that the spacecraft does not keep travelling straight to the right, but curves upward and is displaced upward and rightwards

The spacecraft is travelling straight to upwards,
but it is accelerating to the left,
i.e. the velocity is trying to change to a leftward direction

The net result is that the spacecraft does not keep travelling straight upwards, but curves to the left and is displaced diagonally upwards and leftwards

At every point in its path, the spacecraft is accelerating in a direction that is perpendicular (i.e. makes an angle of 90°) to the direction of motion, and continuously curves.

Therefore, the combined path curves and forms a circle.

Note: A circular path is generated if the acceleration has a specific magnitude based on the speed; if not, the path may be elliptical or parabolic instead of circular

!

direction of acceleration
 direction of motion

looking down from the ceiling

what would happen to the ball if the string broke?

looking down from the ceiling

what would happen to the ball if the string broke?

looking down from the ceiling

If we are looking from above so gravity is pulling the ball downward, our view of the ball would see it going straight. If our view is from the side, then the ball would make a parabolic descent to the ground

So what is keeping the astronaut from falling to Earth?

縎

the acceleration of Gravity turns the astronaut as his horizontal speed makes him miss the giround.

As gravity pulls him down, his speed moves him sideways. Gravity can only pull downward.

So the astronaut is in free fall around the Earth

$\mathrm{V}_{\text {orbl }}=5 \mathrm{mi} / \mathrm{s}$

唡

mass depends only on the total amount of stuff that makes you up
weight depends on the MASS and SIZE of the planet you're standing on

unit of MASS is a kilogram (kg)

unit of WEIGHT is a Newton (N) (metric)

 or a pound (lb) (American)

$$
W t_{m}=\frac{M_{m} m_{\text {you }} G}{R_{m}^{2}}
$$

$$
\mathrm{Wt}_{\substack{\text { you } \\ \text { on } \\ \text { earth }}}^{F_{\text {grav }}}=\frac{M_{e} m_{\text {you }} G}{R_{e}^{2}}
$$

$$
\mathrm{Wt}_{\substack{\text { you } \\ \text { on } \\ \text { earth }}}=\mathrm{F}_{\text {grav }}=\frac{M_{e} \mathrm{~m}_{\text {you }} G}{R_{e}^{2}}
$$

$$
\text { Wt }_{\substack{\text { you } \\ \text { on } \\ \text { earth }}}=F_{\text {grav }}=\frac{M_{e} m_{\text {you }} G}{R_{e}^{2}}
$$

$$
\begin{aligned}
& M_{m}=\frac{1}{100} M_{e} \\
& R_{m}=\frac{1}{4} R_{e}
\end{aligned}
$$

$$
W t_{\mathrm{m}}=\frac{\frac{1}{100} \mathrm{M}_{\mathrm{e}} \mathrm{~m}_{\text {you }} G}{\left(\frac{1}{4} \mathrm{R}_{\mathrm{e}}\right)^{2}}
$$

$$
\text { Wt }_{\substack{\text { you } \\ \text { on } \\ \text { earth }}}=F_{\text {grav }}=\frac{M_{e} m_{\text {you }} G}{R_{e}^{2}}
$$

$$
\begin{aligned}
& M_{m}=\frac{1}{100} M_{e} \\
& R_{m}=\frac{1}{4} R_{e}
\end{aligned}
$$

$$
W t_{m}=\frac{\frac{1}{100} M_{e} m_{\text {you }} G}{\frac{1}{16} R_{e}^{2}}
$$

$$
\text { Wt }_{\substack{\text { you } \\ \text { on } \\ \text { earth }}}=F_{\text {grav }}=\frac{M_{e} m_{\text {you }} G}{R_{e}^{2}}
$$

$$
\begin{aligned}
& M_{m}=\frac{1}{100} M_{e} \\
& R_{m}=\frac{1}{4} R_{e}
\end{aligned}
$$

$$
\mathrm{Wt}_{\mathrm{m}}=\frac{16 \mathrm{M}_{\mathrm{e}} \mathrm{~m}_{\mathrm{you}} \mathrm{G}}{100 \mathrm{R}_{\mathrm{e}}{ }^{2}}
$$

$$
\text { Wt }_{\substack{\text { you } \\ \text { on } \\ \text { earth }}}=F_{\text {grav }}=\frac{M_{e} m_{\text {you }} G}{R_{e}^{2}}
$$

$$
\begin{aligned}
& M_{m}=\frac{1}{100} M_{e} \\
& R_{m}=\frac{1}{4} R_{e}
\end{aligned}
$$

$$
\mathrm{Wt}_{\mathrm{m}}=\frac{16}{100} \times \frac{\mathrm{M}_{\mathrm{e}} \mathrm{~m}_{\text {you }} \mathrm{G}}{\mathrm{R}_{\mathrm{e}}^{2}}
$$

$$
\mathrm{Wt}_{\substack{\text { you } \\ \text { on } \\ \text { earth }}}=\mathrm{F}_{\text {grav }}=\frac{\mathrm{M}_{\mathrm{e}} \mathrm{~m}_{\text {you }} \mathrm{G}}{\mathrm{R}_{\mathrm{e}}}
$$

$$
\begin{aligned}
& M_{m}=\frac{1}{100} M_{e} \\
& R_{m}=\frac{1}{4} R_{e}
\end{aligned}
$$

$\mathrm{Wt}_{\mathrm{m}}=\frac{16 \mathrm{M}_{\mathrm{e}} \mathrm{m}_{\mathrm{you}} \mathrm{G}}{100 \mathrm{R}_{\mathrm{e}}^{2}}$

$$
W t_{\mathrm{m}}=\frac{16}{100} \times \mathrm{Wt}_{\substack{\text { you } \\ \text { on } \\ \text { earth }}}
$$

$$
\text { Wt }_{\substack{\text { you } \\ \text { on } \\ \text { earth }}}=F_{\text {grav }}=\frac{M_{e} m_{\text {you }} G}{R_{e}}
$$

$$
\begin{aligned}
& M_{m}=\frac{1}{100} M_{e} \\
& R_{m}=\frac{1}{4} R_{e}
\end{aligned}
$$

$$
\mathrm{Wt}_{\mathrm{m}}=\frac{16 \mathrm{M}_{\mathrm{e}} \mathrm{~m}_{\text {you }} \mathrm{G}}{100 \mathrm{R}_{\mathrm{e}}^{2}}
$$

$$
\mathrm{Wt}_{\mathrm{m}} \approx \frac{1}{6} \mathrm{Wt}_{\substack{\text { you } \\ \text { on }}}
$$

earth

If you weigh 120 lbs on Earth, what would you weigh on the Moon?

Let's consider the acceleration of

 gravity near Earth's surface$$
\text { a = } 32 \text { (ft per sec) per sec }
$$

As you fall, your speed will increase by $32 \mathrm{ft} / \mathrm{s}$ every second you're in flight toward the ground

Let's consider the acceleration of

 gravity near Earth's surface$$
\text { a = } 32 \text { (ft per sec) per sec }
$$

So the higher you fall, the faster you'll be going when you hit the ground

Let's consider the acceleration of gravity near Earth's surface

$$
\text { a = } 32 \text { (ft per sec) per sec }
$$

after $1 \mathrm{sec}, \mathrm{v}=32 \mathrm{ft} / \mathrm{s}$

Let's consider the acceleration of

 gravity near Earth's surface$$
\text { a = } 32 \text { (ft per sec) per sec }
$$

after $1 \mathrm{sec}, \mathrm{v}=32 \mathrm{ft} / \mathrm{s}$
after $2 \mathrm{sec}, \mathrm{v}=64 \mathrm{ft} / \mathrm{s}$
after $3 \mathrm{sec}, \mathrm{v}=96 \mathrm{ft} / \mathrm{s}$
after $4 \mathrm{sec}, \mathrm{v}=128 \mathrm{ft} / \mathrm{s}-$ SPLAT

Let's consider the acceleration of gravity near Earth's surface

$$
\text { a = } 32 \text { (ft per sec) per sec }
$$

If the building had been taller, you would have hit the ground going even faster \rightarrow BIGGER SPLAT

Let's say you weigh 120 lbs.

If you and a ball of iron weighing 500 lbs fell off at the same time,

You'd both hit the ground at the same time! Everything falls at the same rate.

Let's say you weigh 120 lbs.

If you and a ball of iron weighing 500 lbs fell off at the same time,

You'd both hit the ground at the same time! Everything falls at the same rate.

The speed at impact would be

$$
\mathrm{v}=128 \mathrm{ft} / \mathrm{s} \text { for both }
$$

Let's say you weigh 120 lbs .

If you and a ball of iron weighing 500 lbs fell off at the same time,

Who would hit the ground with the greater force?

The speed at impact would be $v=128 \mathrm{ft} / \mathrm{s}$ for both

Why do things at the same height fall at the same rate?

fall rate $=$
$a=32 \mathrm{ft} / \mathrm{s}^{2}$

In other words, why is their acceleration independent of their mass?

$\underset{\text { mass } m}{\mathrm{~F}_{\text {on }}}=\frac{\mathrm{mM} M_{e} G}{R_{e}^{2}}=m a$

$$
\frac{M_{e} G}{R_{e}^{2}}=a
$$

fall rate is

independent of mass, m !

$\frac{M_{e} G}{R_{e}^{2}}=a=g$

Let's calculate the value of a

$$
a=\frac{M_{e} G}{R_{e}^{2}}
$$

$$
=g
$$

$$
\mathrm{a}=\frac{\left(6 \times 10^{24} \mathrm{~kg}\right) \times\left(6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} / \mathrm{s}^{2}\right)}{\left(6.374 \times 10^{6} \mathrm{~m}\right)^{2}}=\mathrm{g}
$$

$$
a=9.8 \mathrm{~m} / \mathrm{s}^{2}=32 \mathrm{ft} / \mathrm{s}^{2}=\mathrm{g}
$$

$$
\underset{\substack{\text { on } \\ \text { mass } m}}{ }=\frac{m M_{e} G}{R_{e}^{2}}=m a
$$

$$
a=\frac{M_{e} G}{R_{e}^{2}}=32 \frac{\mathrm{ft} / \mathrm{s}}{\mathrm{~s}}
$$

So, the acceleration of an object falling to Earth is independent of its mass! From a given height above Earth, all things fall at the same rate!!

We live in an Air Force community and pilots talk about pulling so many g's in their planes.

What are they talking about?

When you are standing on the ground, you feel your weight -1 g

We live in an Air Force community and pilots talk about pulling so many g's in their planes.

What are they talking about?

When you take off, you feel the acceleration of the engines against Earth's gravity - 2.5 g or larger

This pilot feels 2.5 times his weight

In Free-Fall you do not feel your weight

In free fall (ex., in orbit or falling from a building) you experience 0 g

A car accelerating from 0 to 100 mph in 10 seconds is 0.28 g

(get shoved back in your seat by about $1 / 4$ your weight)

Taking off in an airplane 1.5 g
(get shoved back in your seat by 1.5 times your weight)

Wicked Roller Coaster

$$
4.3 \mathrm{~g}
$$

Apollo re-entry to Earth 7.19 g

Human Body can take about 13 g , but not for long.
This puts a strict limit on how fast we can accelerate space ships for interstellar travel.

Let's go back to the big SPLAT.

Would you and the 500 lb iron ball hit the ground with the same FORCE?

Your speeds at impact would both be $v=128 \mathrm{ft} / \mathrm{s}$

Let's calculate.

$$
\begin{aligned}
& \mathrm{F}_{\text {of you }}^{\text {on earth }} \\
& \mathrm{F}_{\substack{\text { of ball } \\
\text { on earth }}}=\mathrm{m}_{\text {bou }} \\
& \text { acceleration }=\frac{\text { you hit the ground }}{\text { change in velocity when long it takes to stop }}
\end{aligned}
$$

Let's calculate.

change in velocity when you hit the ground

Let's calculate.

how long it takes you to come to a stop

Let's calculate.

$$
\begin{aligned}
& F_{\substack{\text { of vou } \\
\text { on earth }}}=m_{\text {you }} \frac{(128 \mathrm{ft} / \mathrm{s}-0 \mathrm{ft} / \mathrm{s})}{1 / 10 \mathrm{~s}} \\
& F_{\substack{\text { of ball } \\
\text { on earth }}}=M_{\text {ball }} \frac{(128 \mathrm{ft} / \mathrm{s}-0 \mathrm{ft} / \mathrm{s})}{1 / 10 \mathrm{~s}}
\end{aligned}
$$

$F_{\text {of you }}=5,060 \mathrm{lb}$
$F_{\text {of ball }}=21,120 \mathrm{lb}$

Why do stuntmen survive?

If you toss a ball up...

It will come back down.

If you toss it faster it will go higher...
but it will come back down.

If you throw it at the ESCAPE SPEED of Earth....
it will NEVER come back down.

$$
v_{\infty}=\sqrt{\frac{2 G M L}{R_{e}}}
$$

$$
=\sqrt{\frac{2 G M_{e}}{R_{e}}}
$$

$$
v_{e c c}=\sqrt{\frac{2 G M_{P}}{R_{p}}}
$$

What is the fundamental difference between this and the gravity equation?

$$
F_{P}=\frac{m M_{p} G}{R_{p}^{2}}
$$

$v_{e c c}=\sqrt{\frac{2 G M_{P}}{R_{P}}}$

Note that the mass of the object trying to leave the planet is not in the $V_{\text {esc }}$ equation!

$$
F_{P}=\frac{m M_{p} G}{R_{p}^{2}}
$$

$v_{x}=\frac{2 G M}{R_{m}}$

A rocket or a baseball both need to reach
$7 \mathrm{mi} / \mathrm{s}$ in order to escape Earth.

25,200 mph !!

What about escaping the Moon?

$$
\begin{aligned}
& M_{\text {moon }}=\frac{1}{100} M_{\text {earth }} \\
& R_{\text {moon }}=\frac{1}{4} R_{\text {earth }}
\end{aligned}
$$

put those numbers into the equation and:

compare with escape speed from earth:

which is:

which is:

which is:

$2 G M_{\text {earth }}$
 R earth

which is:

$\nabla_{\text {esc moon }}=$
$\mathcal{V}_{\text {esc earth }}$

The more compact the planet, the more you weigh and the faster you must go to escape. The fluffier the planet, the less you weigh and the slower you can go to escape.

I think I've found a way out of here.

$$
v_{e}=\sqrt{\frac{2 G M}{r}}
$$

